
Zelt8chrift für Analysis 
und thre Anwendungen -	 Bd. 2(6) 1983, S. 611 —52t 

Uniform approximation by solutions of general boundary 
value problems for elliptic equations of arbitrary order I 

G.WrLDENBAIN 

Es sei Q c W ein beschränktes, glattes Gebiet,I' eine geschlossene, glatte, (n - 1)-dimensio-
nale Fläche im Innern von Q und V eine offene Teilmenge des Randes W. In Q werde ein eigent-
lich elliptischcr Differentialoperator L beliebiger Ordnung mit glatten Koeffizienten betrachtet. 
B....., Bm sei ein normales System von Randoperatoren auf 00, weiches der klassischen Wür-
zelbedingung genugt. Lv(F) bezeichne den Raum der Einschrhnkungen der Funktionen des 
Raumes

L(Q)r (u:L'a = 0in.Q,B 1uI=	1mUl3Q 0 inaQ\V} 

auf I'. Es wird unter ánderem bewiesen, daB Lv(I') im Raum Wm—'(F) der Whitneyshen Tay-
lorfelder der Ordnung m - 1 dicht Iiegt, d. h., alle Ableitungen bis zur Ordnüng m - 1 lassen 
sich auf F gleiehmäBig approximieren. 

rlycTb Q R'1 - opraHH4eHHaR, rMaxan o6acTb, F— 3asiic11yTai'i, raxa (n - 1)-MepHan 
flJ10[U3b BHTH O6J1acT11 Q H V - oTxpaiToe HOJMHOHCCTBO Fcpafl Q. PacchiaTpliBaeTCH B Q 
c06crBeH11b1ft 3J1J1IInTIrecKHt 9114epeHuHaJ1bI1ufl oneparop L .io6oro nopa C rJ1aJHnMH 
RoaM[MeHTaMH. flycm B....., B - HOMJ1b}IH ducreMa icpaex onepaTopoB Ha W, 
y)oBsIeTnopouaf• acc ecioMy YCJ1OB111O Ha HOUH. Lv(1') 0603Ha4aeT flOCTHCTBO 
orpaIIueHHf1 Ha I' yHKL14tt npocTpaHcTr3a 

Lv(7) ={u: L,u = 0BQ,BiUIøX = = B.ujaD 0 nQ \V}. 

JoHa3h1BaeTcH, MeHy flpOIHM, qTO L,(I') HJIOTHO B flOCTHCTB Wm-1(I') TeilJloposhlx 
noiieM BuTilen nopnaa m - 1, T. e. 'ITO Bee flPOH3BOJXHH jo (m - 1)-oro nopa )onyc-
IcaloT pauriosiepuyto annpocHMauuo na 1'. 

Let Q R' be a bounded, smooth domain, F a closed, smooth, (n - 1)-dimensional surface 
in the interior of I? and V an open subset of the boundary aD. In Q we consider a properly 
elliptic diffrential operator L of arbitrary order with smooth coefficients. Let, B1 , ..., B,,, be a 
normal system of boundary .operators on W, which fulfils the classical roots condition. Lv(F) 
denotes the space of the restrictions on F of the functions from 

Lv(Q) ={u: Lu = 0 in 12, B1uaij = = BmU3 = 0 in W \ V}. 

Among other things it is proved, that the space Lv(F)' is dense in the space 117141 (F) of the 
Vhitrey-Taylorfields of the order. m - 1, i.e. all derivatives up to the order m - 1 can be 

uniformly approximated on F. 

1. In 1960 H. BECKERT [2] proved the following result-. Let L be an elliptic differential 
operator of the second order with sufficiently smooth coefficients, .Q R" a bounded 
smooth domain, fc 12 a smooth surface, such that Q \.P is connected, V a given 
open subset of the boundary OS2 and 

L(Q) = {u E C2(Q) n C(Q) Lu = 0 in Q, uIQ\v = 01.'



512	G. WILDENHAIN 

Furthermore it is supposed, that the homogeneous Dirichiet problem for Lu = 0 
does not have a non-trivial solution in Q (Condition (U)). Then the space L(P) of the 
restrictions on I' of the space L(Q) is dense in L2 (P).-

A. COPFERT [6, 7] generalized this result in the following directions: 
- For the case, that the condition (U) for the domain Q does not hold. 
- For the case, that I' is a closed surface in Q,.such that Q \ P is not connected. 
- For the second and the third boundary-value problem. 
- For the elliptic system of the theory of elasticity-
- For parabolic equations of the second order. -	 - 

In the case of the Laplace operator and if the boundary t9S2 is regular and Q \ I' 
is connected, G. AoER [1] proved the density of L(F) in C(P). G. WANKA [10] has 
given this result for general elliptic equations of the second order with sufficiently 
smooth coefficients - also for a closed surface -r and without condition (U). 

In the presentpaper a corresponding theorem for elliptic equations of arbitrary order 
with smooth coefficients is given. We shall prove (Theorem 2), that the-space L(r) of 
the restrictions on P of the space 
L(Q) = {u: Lu = 0 in Q, B1u156 =	= BmUIj = 0 in afl \ V} -	(1.1) 

is dense in the space Wm-l(P) of the Whitney-Taylorfields on I' (2m order of the diffe-
rential operator). This means, all the derivatives up to the order m - 1 can be appro-
ximated uniformly by the corresponding derivatives of u E L(Q). B1, B2, ..., B is a 
given normal system of boundary operators with ord B1 2m - I, which fulfils the 
classical roots condition (see [8, 9]). Here we suppose, that the condition (U) with 
respect to L, B1 , .. , Bmand Q is fulfiled. Furthermore it must be supposed, that there 
are not eigensolutions of the 1)irichlet problem for Lu = 0 in the inner domain Q•, 
which is bounded by I'. Otherwise the assertion of Theorem 1 and 2 fails (Theorem 5). 
Contrary to H. Beckert, A. Gopfert and G. Wanka in the proof we do not use directly 
the Cauchy problem. We consider an open set 0 c Q. : = Q \ S? 1 and define 

LG (Q) = {u: Lu-= g in Q, g_* E C2 (Q) (0 <) <1), 
gO in Q/G, - Bjulsr=0	(= 1,...,m)}.	 (1.2) 

Under the so-called condition for uniqueness in the Cauchy problem in the small for the 
adjoint operator L* we prove, that the space L0(P) of the restrictions on P of the 
space LG (Q) is dense in Wm-l(P) (Theorem 1). The proof of Theorem 2 is then reduced 
to Theorem I. Moreover we use results from the potential theory of eelliptic equations 
of higher order, developed in [11, 9]. 

Founding upon the same idea one can prove the-density of L(P) in the Sobolev 
space Wm-'(fl, a generalization of a further result of H. BECKEñT [2] to elliptic 
equations of higher order. This will be published in a forthcoming paper. For 52 \ P 
connected the approximation in Wm (P) by potentials is studied in [9]. Theorems of 
an other type for the approximation of solutions of elliptic equations of arbitrary 
order are given by F. E. -BROWDER [4, 5]. 

In Section 2 we summarize the basic facts from the general theory of elliptic 
boundary value problems and from the potential theory. In Section 3 we prove the 

- Theorems land 2.. Section 4 contains some'additional. remarks. 
2. Let  

L= f a,(x)D'  

(m > 0 an integer, a = (ô, ..., x e), c ^_> 0 integers, Ja l = x i +	+ 
aII	 -	-  =	, x = (x1, ..., x,) € R') be a properly elliptic differential ope-
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rator with real coefficients in C(W'). We suppose, that for the ad joint operator 
L*u.= (-1)''D(a(x)u) 

kI2m 

the "condition for iniqueness in the Cauchy problem in the small" holds. This means, 
if u E C2m(Q) is a solution of L*u = 0 in a connected open set Q, vanishing on a non-
vacuous open subset Q0 £2, then u must be identically zero in D. 

Let £2 II" be a bounded domain with '4 smooth boundary aQ and I' a (n - 1)-
dimensional, closed, smooth surface, which splits up the domain £2 in two parts Q 
and S2,,:.	 -.	-	 - 

•	Q=Q1uQuP.. 

It is further supposed, that the Dirichiet problem 

Lu=O in'Q1, 

-	
= 0 (j = 1, ..:, m; n outer normal direction) 

only has the trivial solution: 
On the boundary aQ we consider a normal system B1 , . . ., B. of boundary operators 

with ord B, = m 2m - 1 and smooth coefficients, which fulfils the classical roots 
condition (see [8, 9, 13]). Moreover we suppose, that the problefri 

Lu=O in £2, 
Bju IQ = 0 (j = 1 ..., m), 

only has the trivial solution. 
It is well-known (see [8, 13]), that the system (B)) 1 ... by a (not uniquely deter-

mined) normal system (C1 )11 m (ord C1 = I 2m - 1) can be completed to a 
Dirichlet system (B 1 , ..., B,,,, Cl, ..., Cm) of ordei 2m on aS2. This means, that the 
completed system is a normal system and the set of the orders of the operators is 
(0, 1, ..., 2m - 1). If the.operators ( C1 ), 1 mare fixed, then in an unique way one 
can find 2m boundary operators (B1 ')1 . 1	(C1')11 ....... ,, with smooth coefficients on-




.Q, such that the following properties hold: 

(i) ordB'=m,'=2m-1—1,,	ordC,'=l,'=2m-1—m1 
(ii) (B1', ..., B,,,', Ci ', ..., Cm') is a Dirichlet system of the order 2m on Q and 

for'u, v E C(Q) the Green formula 

f (Lu) v dx - f UL'V dx = E f C,uB/v da - f B,uC,'v dr	(2.1) 
Q	 ji ØQ	 . 

holds.	•	 . 
According to results of J. M. BEREZASKIJ and J. A. ROJTBERQ [3] (see also [13]) 

the unique solution of the boundary value problem 

L-u=ginQ,  
BJu Q = 99j (j = l ..., m) 

under certain smoothness conditions for g and * pi (which in the following, always are 
f4lfiled) can be represented by a Green function G(x, y) in the form 

- u(x) = f g(y) G(x, y)dy + Z f ,(y) C1 ' G(x, y)da(y).	 (2.2) ' - 

33 Analysis Bd. 2, Hen 6 (1983)
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• The operators C/ are the corresponding operators from the Green formula (2. 1), and 
they are applied to the variable y. Under our conditions the function G(x, y) for 
x == y has derivatives of arbitrary order with respect to both variables. By appli-
cation of the differential operators with respect to y we have 

L*G(x,y)'=O	(x'+ Y),	 S.	
(2.3) 

B1 'G(x, Y)IYEQ = 0	(j = 1, ..., m). 

Furthermore we suppose the existence of a global fundamental solution P(x, y) for 
the operator L, i.e.	 - 

f (x, z) L*ç(c) dx, 92(x) = f (.b(x, ) L q(z) dz	 (2.4) 

for all ç € C000 (W'). Set	(x,z) := DX DZ b(x, z). For II + P1	2m - 2, 
Ix — zi	q the estimates 

	

Ifl Ix - 2 1 2_ti for	2 
z)I 	 (2.5) 

[Cap (1 •+ log x - zil) for n= 2 

hold (see [9]). The Green function G(x, y) then can be written as a sum 

•	G(x, y) = (x, y) + h(x, y),	 (2.6) 

where h(, y) for. fixed x € Q with respect to y is a regular solution of the following 
•	boundary valueproblem: 

L*h(x, y) = 0 in Q, 

B'h(x, Y)IYEQ = —B'(x, Y)IyEaQ	(j =	)	 ( 2.7)


(The operators applied to y.) With (x, y) := D(x, y) the function 

=	'	f	(x, y) d(x)	 (2.8) 
II m - 1 1 

is called the adjointpotentialwith respect to the vector measure (y.)1 . 1 5.- 1 on -P. In [9; 
p. 228-229] the potential is defined more general as a vector function. The function 

•	(2.8) is the,first component of the potential in the sense of [9]. 
A system g	 of continuous functions, defined on I', is called aWhitney-




Taylorfield of order m - 1 on I', if there exists a function 99 € Cm- 1 (R") with Dq4r 
= g(IcxI	rn— 1). Wm1(f') denotes the vector space of all such Whitney-Taylor-
fields. From the smoothnes of P follows, that Wm:(I') is a Banach space.with respect 
to the norm	 S 

IIgIhv-'(r) =	sup g(x)i	•	 .•	 (2.9) 
IIm-1 xE r	- 

((m - 1) — regularity of I'). Every continuous linear functional 1 on Wm_l(P) can be 
represented with the help of a vector mëaure (a)iaim—i (supp	I') in the form 

•	1(g) =	'	f g) d(x)	•	.	
5	

(2.10) 

	

•	 IIm—i r 

	

•	(see [91).	 5 

For the proof of TheOrem 1 we need a special result of the general balayage theory 
(developed in [11, 9]) for the dbmain Q 1 . At first we consider the Dirichlet problem for 
L* andQ 1 in the formulation with Whitney-Taylorfields: Given a Taylorfield g = (ge) 

€ Wm-'(F) we are looking for a solution of the equation L*w= 0 inJQj with DwIr 
= (gfl)Im-1 for . ;;5 m - 1. In [13: p. 77, remark 7.2] it is shown, that under the 
preceding conditions there exist so-called harmonic measures r/(IPI m - 1, z € Q.),
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which can be represented by-smooth densitie's on F, such that the unique solution of 
the Dirichiet problem for z E Q, is given by	 - 

w(z) = ,	f g(y) dt/(y).	 .	 (2.11) 
IPIm-i r	. 

Moreover, from the general balayage theory in 
.
[9] follows. 

Lem ma  1: For z E Q 1 fixed we have	 S 

	

(x, z) = ,	f .(X, y) dr(y) 
IPI m -1 F 

for any x€Fazdx_:!E^m_1. .	 .	.	S. 

It is well-known, that the fundamental solution of the Laplace operator is given by 

H•-,1	
-	forn>2	S. 

• .	 . (n. — 2) (iJ I	yn 2	 0 

lN(X,	=	-1	1	 S 

2	Ix 
—log	 for n=2 

—yI 
(w area of: the n-dimensional unit spheie). Let Jl 04- be the set of all noniegativo 
Radon measures with compact support and	the 'subset of all measures); 

	

• for which the Newton potentials	 . 

NA(X) 
= f	y) 1A(y) .	 .	 5-.. 

are cOntinuous in the whole space. .52 denotes the class of the universal measurable, 
sets A- with 2(A) = 0 and  

•	.	--	Nfl1.	 S... 
•	.. A Ea .	. 

A Borel set  is called a set of capacity zero, if B E J. If an assertion holds with the 
• exception of a set of capacit zero, then we shall say, that the assertion holds N 

álmot everywhere (JN-a.e.). For instance we have (see [9])	- 

J.e ni ma 2: For an arbitrary measure ,u E Jl 

N/(X) <oo JR -a.e. holds.	
0 

The measure 1u is called JN-absolutely continuous, if .f	5,. For instance the har-




.monic measures in (2.14) are f-absolutely continuous. 

3. T h eo re ni 1: Let be full iled the suppositions of Section 2 with respect to L, Q and I'. 
Then the space L(P) is dense in Wm- l (F) with respect to the norm (2.9). 

• Proof: a) 1G (T) = Wm-'(r) holds iff every 1E (Wm-1(F))' with 1(u) =0 for all 
u E LG(F) vanishes identically. Therefore we consider I . E (Wm-1(r))' and suppose 

1(u) = 0 . for all u E L0(F).	 • (3.1) 

By (2.10) 1 can be represented 'with the' help ofavector measure ( iUa)jjm_i (supp 
..I'). and weget  

1(u) 
=-	

'	f Du(x) diJa(X);	. 
0	

(3.2) 

•	 . •	 kI'n-1 F 

By (2.2) for u E L(F) and x E F we have  
-u(x)=fg(y)G(.x,y)dy.	S	 •	 (3.3) 

33*

.5	
S
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Because G n I' = 99 the derivatives Dcii on P can be calculated by differentiation of 
(3.3) under the integral:	. 

D(x) =f (y) . DG(, y) dy	 '	(3.4) 

x € F, JI - 1). Putting (3.4) in (3.2 it followsx. 

1(u) =	 f(1 g(y) D;G(x, y) dy\ d(x 

	

II m - 1 I	 .	/ 

	

= fg(y) {
	

f DG(x,y) d/L(x)} dy. 
tIm—iF  

We define G* j(y) 
= ' f D G(x, y) d(x) Since g m U can be choosen arbitrary 

.......	 m—i F	 . 
• and since O is smooth on U (supp I'!), from (31) we get G*u(y) = 0 in U. 
From (2.3) follows that Gi is a solution of the equatioriL*u = 0 in Q\f'. Therefore 
the condition for uniqueness in the Cauchy problem, in-the small implies G* 1u(y) = 0 
inQ\P.	 -. 

b) In the next step we prove for IPI m —1 

	

-- 'DflU*(y) :=	f D' D.,' G(x,y) d(x)= 0	JN	a.e.on F. 

Usiig (2.6) and (2 7) we have 

G*(y)	E f (x y) dLa(X) + R(y) = *(y) + R(y), 
kIm—i F 

where R(y) is smooth in a neighbourhood of P Moreover 

DPG*1u(y) =	
' f tP(x, y) d(x) + DPR(y) 

kIm—i F	•	 •• 

•	Imma 2 implies.  

• .	. .	 -	 f	1/) d l/aI (x) <o° . .-N - a.e. on F. 

We choose a point y € F with 

	

f OAX, y) d 1,-. 1 (x) <co for II ^ m - 1	 (3 5) 

•	and consider yE , .Q, on the norhial direction through y• Since 'O*u_ 0 in . Q,,, we 
have D$G*(y) =' 0, such that,  

DPU*,2(yi )I = 11y0*/1(Yi) - DG*/2(y)I 

•	'	 ;;5;	Z	f	Yi) d(x) -	f	(x, y) du(x) 
- ,	Im-1 r	0	- am—i F 

•	 -	-	+ DPR(g1) - DR(y)I.	 - ,	 -
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Obviously IDR(y 1 ) - DR(y)I <f for ly - yiI <ó(e) holds. Moreover wehave 

-	f	(x, Yi) da(X) -.	'f	(x, y) dfi(x)	•'	 - 

•	jm—i F	 F 

f	(x, Y) -	(x, )I	(x) 
• w!!m—i I'	 - 

•	f	P(X, y) - 02(x, )I dj,uI (x)	 - 
IIm1 r\K6(y) 

•	 •••	 f	P(x, y) - 0.1(x, )I djaI (x) 
•	 IIm-1 rnKa(y,Y 

J1±12. 

K6 (y 1 ) denotes the ball with center y ' an'd radius 6. For > Owe can find 62(a) > 0,' 
such that  

'I( y ) -	(x,y)I < 
• S	 41/2lmax( 

fII m: 	I - y V< 62 and uniformly with espect to x E r\K6 (y1). Herek 
is the number of the terms in 11 and 

• IILiax(P) = max, f.d Ii (x). 
1-Im-1 F '	•?	 '	- 

Thus.	 .	.	-.	. 

< 4Iirna:(fl k kIImax(P\Ko(yi)) <	 '.	
•' 

• • for I - 'y 1 1 <62. •

	

	From the smoothness condition for r follows, that there exists a cone in Q0 with 
vertex in y and axis 'in the normal direction. From this we obtain the existence of 
a 'cOnstant c 1 > 0 with Ix - y	c 1 Ix - y I for x• € I' o K 6 (y 1 ) and therefore 

Using this inequality, (3.5) and the estimates (2.5), which hold since we have 
IxI + IPI ;^ 2m —2, we get 

• 1 121	I	y)l djI (x) +	57	f J(x, )l d ly. 1 (x) 
Im—I FflKâ(y)	 ,	• IIm-1 IflK5(y) 

<• ' cp f OAX, y 1)dJu,I(x) + Z cp f	N(x, y) d I,UaI (x) 
IPm-1 FflK6(y)	•	 ,	 aIm—I mflKó(y)	- 

• • '	•	 E e	f. N(X,Y1) d I/A I(X)<T	-	 S 

kIm-1	FrK(y)	 S	 - 

for sufficiently small 6 (p = cp (1 + c2 )).	 • 

We now have IDPG*iu(yi )I <r for any e > 0, i.e. DPO*u(y i ) = 0. By Lemma 2 this 
holds for every /9(IfiI m - 1) and J - a.e. on P. 

• • c) Next, we pove G*s().= 0 for all z E Q 1 . We write down the right-hándside of 
P.11), replacing g #(y) by the expressions DPG*1u(y), which vanishes f-almost every-
where on 1'. Because the harmonic measures t/ are JN-absólutely continuous and
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using (2.6) Nye get 
•	=	J	f D9D/G(x, y) d(x)l dr/(y)	 S 

IPIm-1 I' Um-1 r	 j 

= z f	Z frD;D/G(x, y) dr/(y) da(X)	 - 
IIm-1 r tIim-1 F	 -	 J	 - 

= E f	E - f	(x, y) drfl(y) du()	-	 -: 
kIm-1 V tIPIm-1 V	 J	 - - 

+ •	f ( -	f D1ih(x, y) dr/(y) da(x):	- -.	 . (3.6)- 
lm-1 .1'	IflIm-1 1'	 J	'S 

For fixed x E P the function h(x, y) with respect to z is a smooth solution of the equa-
tion -L*w = Oin Q 1 with boundary values D/h(x, y). Consequently by (2.11) we have 

h(x, z) =,	f D/h(x, y) dt/(y).	 - 
•	 Iflitn-1I'	 -	S	

S 

Differehtiation with respect to x implies-  

-	D'h(x, z) =	f DD/h(x, y) d-r(x)	 - 
tPIm-1 r	 -	 -	S 

for jal	m - 1. Using Lemma 1, from (3.6) then follows - - 

O=	f (x, z) d(x) + Z f Dh(x; z) d(x) - - 
II m - 1 F 1.15m-1 V -.	 I 

	

' f D2 "G(x,z) d1z(x) = G*1u(z) -	S


•IJm-1 V 

for any z € Q 1 .	 - -

d)- Using G*u(y) = 0 _O -almost everywhere in £1, we shall conclude 1 = 0. For 
that reason we consider the set	•	 •	 • / 

/	D(P)r:çECo(Q)}, 


which is dense in Wm(F), and show, 

l ( p) = E f Dip(x) d(x) = 0 for all q' € D(P). 
•	 IaIm-1 r 

Since süpp - cP(IxI ;5 m -. 1), then 1 = 0 follows. By (2.4) for everyq € C0(Q) 

-	f G(x, y) Lç(y) dy = f. (x, y) L99(y) d -f f h(x,y) L9(y) dy	 - 
-Q	 £2 

	

= 92(x) 4- f L*h(x, y) q'(y) dy = q(x)	• -	: 

holds. Because the Lebesgue measure is J-absolutely continuous, from G*1u(y) = 0

- a.e. in Q then follows	 -	 - - - 

-	l(p) =	' f ( f 
D'G(x, y) L92	

3 
(y) dy d(x) :


S  
J. 

i:i;m-i V	D	
•	

-  

ff DG(x,.y) d(xL92(y) dy = f G*,u(y) L(p(y) dy =0. - 
£2 (Im-i I'	 3	 Q	- 

The proof of LG(P) = Wm-1(f) now is complete I	-	 - 

'S
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Besides the suppositions of Theorem 1 now we presume, that the domain D can 
be enlarged to a smooth domain Q 1 Q, such' that the following properties hold: 
(1) '	a.Q\VcD1 

'(ii) The coefficients of B, can be extended to' bQ1 \ Q in such a way, that for 
the new system of boundary operators on bQ 1 all the suppositions, formulated in 
Section 2, are satisfied.  

If the coefficients of B, are constant (for instance in the case of the Dirichiet problem) 
condition (ii) is always fulluled.  

Theorem 2: Under the preceding suppositions the space L 1, (I') of the restrictions on F 
of the space L(Q), defined in(1.1), is dense in W m1(P)with respect to -the norm (29). 

Proof: We choose an open subset G Q 1 \Q and consider the space L(Q1), 
defined in conespondence with (1.2). By Theorem 1-we have L(Qi)lr Wm-l(fl. 
Since obviously , the inclusion L(Ql ) I	L(Q) holds, it follows Lv(fl.= w"- 1(F) I 

Remark: Because the extension of £1 can be taken in- such a manner, that the 
boundary value problem	 - 

L'u=O in Q 1 ,	 -	- - 
	(3.7): 

Bjujeo, = 0	(j = 1, . . .,'m)  

only has the trivial solution,:we see, that Theorem 2 also holds, if the corresponding - - 
homogeneous problem in Q has non trivial solutions.  

4. In the followirg we shall give some complementary results  

Theorem 3: We suppose, that jor Land Q the assumptions from Theorem 1 and The-




orem 2 are ful/iled. Let F Q be a compact set, which sat'is/ ieä the following conditions; - 
(i) For every y € P there exists a cone in Q \ F with vertex in y.	 -	- - 
(ii) .Q \.P'is connected.  

(iii) F is (m - 1)-regular in the sense, that Wm1(P) is complete with respect to the norm 
- (2.9).  
Then the statements of Theorem 1 and 2 and of the preceding remark hold. 

Proof: From the proofs of Theorem 1 and 2 we see, that the step C-in this case is 
omitted and that the properties (i) - (iii) for the other parts of the proof are sufficient I 

The next Theorem is a result of the Browder-type(see [51). It is a simple conclusion 
from Theorem 2.  

Theo r e ni 4: We suppose, that for L, Q, V and F the assumptions from Theorem 2 are 
fulfiled. We do not 'suppose, that the problem (3.7) (for Q) only has the trivial solution. 
Let u0 € C2-(Q 1 ) n Cm-'(Q 1 ) be a,givCn solution of L-u 0 = 0 in Q. Then for e > 0 there 
exists a solution u € Lv(Q), such that  

-	lu - UOIIC-(Q) C.
 

Proof-: For the domain Q j the Agmon-Miranda-inequality (see [91) holds, Le. there 
is a constant c> 0, independent from u, such that for the solutions . u of the equation 
L-u =00 in.Q with U € C2-(Q 1 ) n Cm:l (Q 1) we have	 - 

O	 llUllC"-('Q)	c Z , sup Dau(y).  
m-1 vE øQ	 -	

0	 -
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The solution u0 defineson f= aS2 j an element v E Wm-1 (P) (sëe[12]). By Theorem 2 
there exists a equence (un), u, E L(Q) with Ilunir - v ii wm-(r) -->0. Applying the 
Agmon-Miranda-inequality for u,, - u0 and Q, we get Itu - u0I1c"-'() -> 0 I 

Theorem 5: The statements of Theorem 1 and 2 do not hold, if the homogeneous 
Dirichiet problem for the domain Q• has non-trivial solutions. 

Proof: Let u E LG (Q) resp. u,E L(92), 'and let v € C'-(Q1) n Cm-i1) be asolu-
tionof	 - 

L*v=0 in Q1,

m) 

(Moreover, we have v € C(D), see [13: Lemma 4.6]). Using the Green formula (2.1) 

for u, v and Q,B = B,' =	and Lu = 0, L*v = 0 in Q, it follows 

m	a'-'u 
(y) C,'v(y) do(y) = 0; 

After rewriting the normal derivatives into partial derivatives thelast equation can 
be interpreted as follows: There exists a vector measure t = (u ) rn-i =1= 0 (represen-
table,by smooth densities) with the property 1u(u) = 0 for all u € L(r) resp. U E Lv(fl. 
This means L0(r)	Wm '(P) resp. L(r) Wm1 (I') I 
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