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Uniform approximation bj' solutions of general boundary
'value problems for elliptic equations of arbitrary order I

G. WILDENBAIN

Es sei Q < R" ein beschranktes, glattes Gebiet, I eine geschlossene, glatte (n — 1)-dimensio- -

nale Fliche im Innern von 2 und V eine offene Teilmenge des Randes 9Q2. In 2 werde ein eigent- -
lich elllptlscher leferentla.loperator L beliebiger Ordnung mit glatten Koeffizienten betrachtet..
" By, ..., B, sei ein normales System von Randoperatoren auf 92, welches der klassischen Wur- .
zelbedmgung genugt Ly(I') bezeichne den Raum der Emschrankungen der Funktlonen des
-Raumes

Ly(Q) = {u:Lu =0in 2, Bju|agg = -+ = Bm?"IQQ = 0' in 82 \\ V} ) o

auf I". Es wird unter anderem bewiesen,vduB LV(}“) im Raum W"‘“(F) der Whltne;yschén Tay-
lorfelder der Ordnung m — 1 dicht liegt, d. h., a,]le Ablextungen bis zur Ordnung m — 1 lassen
- gich auf I' gleichmiBig approximicren. K

- ITycrb Q2 — R® — oprasnyeHHas, rnagkas obaacts, I' — 3aMKHYTasd, INIAAKAA (n — 1)-MepHAn
IUTIOWAAL BHYTPH 0051acTi 2 1 ¥V — OTKPHTOE NOMHO#ECTBO Kpas 9f2. Paccmarpusaerca B 2
COGCTBEHHKI BNIAMNTITIECKH I nuq)d)epeﬂuuanbm{m oneparop L aw060ro nopAnKa.c riaKuMu
Ko:)(b(buuuen'rawu Mycrs By, ..., B, — HOpMAJbHAaA cHCTEMA Hpaeaux onepaTopoB Ha 92,

YAOBJICTBOPAIMIAA - KITACCUYECKOMY YCIOBUI HA KOpHH. Ly(I') 0603HAYaeT MpOCTPaHCTBO '

orpanuyeHuit Ha I"' PyHKuUKIt HpocTpaHcTBa
Lp(@) ='{u: Lu = 082, Byulog = - = Byulog = 0882 \ V}. .

HorasuBaeTca, Mexny npounM, uto Ly (I') mioTHO B npocrpanctse Wm—1(I") TeiifopoBHx
noseil Burnen mopagka m — 1, T.e. UTO BCe NPOH3BOJIHHE 10 (m — 1)-0r0 MOPARKA ponyc-
KAIOT PaBHOMEDPHYIO annmpokcuMannio ua I,

Let 2 — R" be a bounded, smooth domain, I" a closed, smooth, (n — 1)-dimensional surface
in the interior of £2 and V an open subset of the boundary 22. In 2 we consider a properly
elliptic differential operator L of arbitrary order with smooth coefficients. Let, B, ..., B,, be a
normal system of boundary operators on 812, which fulfils the classical roots condition. Ly (I")
denotes the space of the restrictions on I' of the functions from

.

Ly(2) ={u: Lu = 0 in Q, B u[ag == Bpulog = - 0 in 39 \ V}. .

.

Amoi)g other thmgs it is proved, that the space Ly (") is dense in the space IVm*l(f) of the ~

Whitney-Taylorficlds of the order.m — 1, i.e. all derivatives up to the order m — 1 can be

uniformly approximated on I

)

1. In'1960 H. BECKERT [2] proved the following result. Let L be an elliptic differential
operator of the second order with sufficiently smooth coefficients, 2 — R* a bounded
smooth domain, I'— 2 a smooth surface, such that \ I is connected, V a given
open subset of the boundary 92 and A

L) = we C@nC(@) : Lu=0 in 2 ulsow = 0)."
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Furthermore ‘it ‘is supposed, that the homogeneous Dirichlet problem for Lu = 0
_ does not have a non-trivial solution in £ (Condition (U)). Then the space Ly(I) of the
restrictions on I of -the space Ly(£2) is dense in LX([I').-
A. GOPFERT [6, 7] generalized this result in the following directions:

— For the case, that the condition (U) for the domain £ does not hold.

— TFor the case, that I' is a closed surface in Q,.such that 2\ I'is not connected.
— For the second and the third boundary-value problem.

— For the elliptic system of the theory of elasticity.

— For parabolic equations of the second order. . S -

In the case of the Laplace operator and if the boundary 912 is rcgular and 2\ I
is connected, G. ANGER [1] proved the density of Ly(I") in C(I"). G. WANEA [10] has
given this result for general elliptic equations of the second order with sufficiently
smooth coefficients — also for a closed surface 7" and without condition (U). .

In the present paper a corresponding theorem for elliptic equations of arbitrary order
with smooth coefficients is given. We shall prove (Theorem 2), that the'space Ly(I") of
the restrictions on I" of the space

Ly(2) = {uI/u=0 in 0, Bulsgg =+ = mu|ag= 0 in o2N\V) - (1.1)

is dense in the space W™—1(I") of the Whitney-Taylorfields on I" (2m order of the diffe-
rential operator). This means, all the derivatives up to the order m — 1 can be appro-
ximated uniformly by the corresponding derivatives of u € Ly (£2). By, By, ..., By is a
given normal system of boundary operators with ord B; < 2m — 1, which fulfils the
.classical roots condition (see [8, 9]). Here we suppose, that the condition (U) with
respect to L, B, ..., Bmand Q is fulfiled. Furthermore it must be supposed, that there
are not eigensolutions of the Dirichlet problem for Lu = 0 in the inner domain £;,
which is bounded by I'. Otherwise the assertion of Theorem 1 and 2 fails (Theorem 5).
Contrary to H. Beckert, A. Gépfert and G. Wanka in the proof we do not use directly '
‘the Cauchy problem We consider an open set G- 2,:= 2\ O, and define

L) ={u: Lu=gin 2,g€C{Q) (0 <2 < 1),
g=0inQ/G, . Bula=0 (j=1,..,m) T2

,Under the so-called condition for uniqueaness in the Cauchy problem in the small for the
ad]omt operator L* we prove, that the space Lg(I") of the restrictions on I” of the .
space Lg(£2) is dense in W™~1(I') (Theorem 1). The proof of Theorem 2 is then reduced
to Theorem 1. Moreover we use results from the potentml theory of eelllptlc equations
of higher order, developed in [11, 9].

Founding upon the same idea one can prove the-density of Ly(I") in the Sobolev
space WZ™ Y(I'), a generalization of a further result of H. BEckERT [2] to elliptic
equations of higher order. This will be published in a forthcommg paper. For Q \ I
connected the approximation in W™ Y(I') by potentials is studied in [9]. Theorems of
an other type for the approximation of solutions of elllptlc equa.tlons of arbitrary
order are given by F. E. . BROWDER [4, 5].

In Section 2 we summarize the basic facts from the general theory of elliptic
boundary value problems and from the potential theory. In Section 3 we prove the
Theorems 1 and 2..Section 4 contains some additional remarks.

“2. Let :

L= % ax) D - o ’
lalS2m ' )
(m >0 an integer, &« = (o, ..., &y), o; = 0 integers, || = &3 + -+ + &,
lal . : )
D = ._a_a, = (2, ..., T,) € R") be a properly elliptic differential ope-

0x,\® ... 0Ly
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rator with real coefficients in ‘C°°(R"). We suppose, that for the adjoint Ioperat;or

L= 3 (=1 D“(aa(x) u) ' S !
. lals2m N
[ N . - .
the “condition for uniqueness in the Cauchy problem in the small” holds. This means,
if w € C®>™(02) is a solution of L*u =0 in a connected open set 2, vanishing on a non-
vacuous open subset 2, Q, then u must be identically zero in.Q.. i '
Let 2 <= R* be a bounded domain with a smooth boundary 92 and I"a' (n — 1)-

dimensional, closed, smooth surface, which splits up the domain Qin two parts Q;
and Q,: . C -

Q=0,uQ,ur.
- It is further supposed, that the Dirichlet problem
Iu=0 in' i,

o1 ‘ Lo .
%’.g . =0 (j=1,..;m;n outer normal direction)

only has the trivial solution: o . '

On the boundary 82 we consider a normal system By, ..., B, of boundary operators
with ord B; = m; < 2m —'1 and smooth coefficients, which fulfils the classical roots:
condition (see [8, 9, 13]). Moreover we suppose, that the problem

Lu=0 in 9, '
Bjuloag =0 (j=1,...,m), . {

only has the trivial solution. - - \ : o ’

. Ttis well-known (see [8, 13]), that the system (Bj)j=1....m bY & (not uniquely deter-
mined) normal system (C)j=,,..m (ord C; =; =2m — 1) can be completed to a
Dirichlet system (B, ..., By, Cy, ..., C\y) of ordefr 2m on 9. This means, that the
completed system is a normal system and the set of the orders of the operators is
{0, 1, ..., 2m — 1). If the operators (Cj)j=t....m are fixed, then in an unique. Wiy one
can find 2m boundary operators (Bi)i=t....mu» (C}')j=1....s With smooth coefficients on-
082, such that the following properties hold: .

(i) ord By’ =m; =2m —1—1;, - ordC; = ' =2m—1—m, '

(ii) (B, ..., B/, €Yy ..., Cy') is a Dirichlet system of the ox_"dér 2m on 82 and
for'u, v € C=(R) the Green formula o :

. o m m 4
f (Lu) v dx — fuL*v dz = 3, f CuBjvdo — )] f BuCvdo (2.1)
9 g =1 0 : j=1729
holds. ‘ ' . ‘ .
According to results of J. M. BEREZANSKIJ and J. A. RoJTBERG [3] (see also [13))

1

the unique solution of the boundary value problem
Lu=yg in 9, ] ’ : !
Bjulsg = @i (j=1,...,m)

<
7
'

under certain smoothness conditions for g and @; (which in the following- always -are
fulfiled) can be represented by a Green function G(z, y) in the form

@) = [ 9) Gz, ) dy + 5 [ o) Cf Gla, ) doly). 2.2)
o) = [ o) ¢ ‘ .

j=1 82 ’

33 Analysis Bd. 2, Heft 6 (1983)
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The operators C; -are the corresponding operators from the Green formula (2.1), and
they ‘are applied to the variable 3. Under our conditions the function G(z, y) for
-z == y has derivatives of arbitrary order with respect to both variables. By appli-

cation of the differential operators with respect to y we have : -
¥y =0 (@*y, _ @3

Bj'G(z, y)lyco0 = 0 (j=1,...,m).

Furthermore we suppose the existence of a global fundamental solution @(z, y) for
the operator L, i.e. - : S

L g(a) = [ Bz, 2) LAp(#) dx, glz) = [ Blz,2) Lglz) dz (2.4)
for all @€ C@(R"). Set BA(z,2):=D,"Df Bz, 2). For |af + |l <2m—2, -
| — z| < q the estimates : : . ’ ' . :
Cop |l — 2]2°" for n>2

Cap (1 + [log |z — 2l|) for n=2 - (2.5)

12401 = |

hold (see [9]). The Green furllctioan’(:v, y) then can be written as a sum
AL Gl y) =B, y) + k=, y), o ‘ (2.6)

where hl(:k, y) for fixed z € Q with respect to y is a reguia.r solution of thé following
boundary value problem: T !

L*h(z,y) =0 in £,

Bk, Ylycoo = — B/, Plyese G=1,..,%m) @7
(The operators applied to y.) With @.(z, y) := D;*®(z, y) the function _
DHu(x) =_ Y - [ Polx, y) dua(2) - ' (28)
(dlsm—1 I ,

is called the adjoint potential withrespect to the vector measure (is)asm—1 ont. In[9;
p- 228—229] the potential is defined more general as a vector function. The function
(2.8) is the first component of the potential in the sense of [9]. :
A system g = (ga)jajsm—1 Of continuous functions, defined on I, is called a Whitney-
. Taylorfield of order m — 1 on I, if there exists a function ¢ € C""}(R") with Deg|r
=ga(la] =m — 1). W™ YI') denotes the vector space of all such Whitney-Taylor--
. fields. From the smoothness\ of I follows, that W™=3(I") is a Banach space,with respect
to the norm a : . ' o
. Nigllwmxry =2 sup |ga(2)| - (2.9)

la|€m-—1 z€1°

((m —1) — regﬁlafity of I'). Every c,onvtinuous linear functional I on W™~}(I") can be
" represented with the help of a vector measure (fa)jsjsm—1 (SUPP #a & I} in the form

U) = X [ gu(®) dpala) (2.10)

lal=m—1 1

(see [9)). . : ~

" For the proof of Theorem 1 we need a special result of the general balayage theory
(developed in [11, 9]) for the domain ;. At first we consider the Dirichlet problem for
L* and 2; in the formulation with Whitney-Taylorfields: Given a Taylorfield g = (g.)
€ Wm-Y(I') we are looking for a solution of the equation L*w=0in£; with Dfw|,
= (gp)is1=m—1 for |fl.= m — 1.In [13: p. 77, remark 7.2] it is shown, that under the
preceding conditions there exist so-called harmonic measures t#(1f| =m — 1, z€ 2,), '

*

. . ‘ : N
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. whlch can be represented by-smooth densities on I, such that the umque solution of
the Dirichlet problem for z € £; is given by

w@z) = 3 [ ga )dn(y) ~ ' (2.11)

:  \B)sm—1 T : : ) \
Moreover, from the general balayage theory in (9] follows. ‘

- Lemma 1: For z€ Q; frxed we have

' S = 5 [ 0wy didy)

Blsm—1T
/oranyxél“and[a|<m—1 .
It is well- Lnown that the fugdamental solutlon of the Laplace operator is glven by .
R .

=2 0, I — g2
.1 A 1 :
— g—lz—yl ‘ for n=2 ’
' (w, area of the n-dimensional unit sphere). Let My* be the set of all nonnegatlve :

" Radon measures with compact support and %* e 9)20* the subset’ of all measures 4,
- for which the Newton potentials . -

d)NA x) f Dy(z, y) dA(y) C o~
are “continuous i the whole space f 2 denotes the class of the umversal measurable,
sets A with )(A) = 0 and . -
C Iy =NA. S ‘ o,
lEfr" . - .
A Borel set’ B is cal]ed a set of capacity zero, 1f B¢ f - Ifan assertion holds with the

"~ exception of a set of capacity zero, then we shall say, that the assertion holds fy- =
~ almost everywhere (Jy-a.c.). For instance we have (see [9]) - ’

: for n>2 - .
0 ) ‘.DN(?C‘,?/) = : -

Lemma 2: For an arbitrary measdre uEMy*

@N,u(a:) < oo S y-a.e. holds

.

‘The measure u is called & N-absolutely continuous, if £y f For instance the har- '
monic measures in (2.11) are .}"N—absolutely continuous. N

3. Theore mi 1: Let be fulfiled the suppositions of Sectzon 2 wzth respect to L Q2 and I
. Then the space Lg(I') is dense in Wm=Y(I") with respect to the norm (2. 9)

Proof: a) Le(I’) = WmY(I') holds iff every L€ (WmY(I)) with l(u) =0 for all _

u € Lg(I') vanishes identically. Therefore we consider 1 € (Wm- YI"))" and suppose
‘ lw) =0 forall ue Ly(I. ‘ ' (3.1)

By (2.10) I can be represented with" the help of a vector measure (,ua)lals,,, 1 (supp Ha
. & I').and we get

lw= X [Du@)dpa), o . (3.2) -
. lal€m—1 I .
y (2.2) for u € Lo(I') and z € I" we have N o ' .
ufz) = f 9(y) G(z, y) ‘ . o - . (3.3)

33+
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. Because G n r= @ the derlvatwes D"‘u on I'.can be calculated by dlfferentlatlon of .
(3. 3) under the mtegral :

. Doz = fg(y ;G(ég,wdy A ¢ XY
zel ol Sm—1). Putting (3.4) in (3.2) it follows /-
=X f ( [ 9%) D: "Gy )dy) dtala)
|tx|$m 1 I -

lalSm—1'T | I

4

= f g(y){ > DGz, y) d/»a(x)} dy

. We defme G* = 3 f D “G‘ (, y) dya(x) Since g in @ can be choosen arbltrary e
lalsm \r

- and since G*,u is smooth on G (supp ,u, o F'), from (3 1) we get G¥u(y) =0 in G.

* From (2.3) follows ,that G*x is a solution of the equatlon L*u'= 0 in Q\I". Therefore.

: the condition for uniqueness in the Cauchy problem in.the small 1mp11es G*u(y) =0
in ONT.
' b) In the next step we prove for Iﬂ] =m—1

DPG*u( 2 fD pD G’(x, ?/) d/‘a(x) = 0 Iy — a.e on I

aISm 11‘« . N . : -

Usmg (2 6) and (2. 7), we ha.ve

BN

Guly) = X [0 @ 9) dpa(x) + Rly) = *uly) + RW),.
. . IaISm 1 r ‘ SNt \

\

A where R(y) is smooth in a nelghbourhood of I. Moreover ' B o

N ' DPGHuly) = Z Jo "(x, )d/ta(x) +D"R(y)

lalsm 1 r

Lemma 2 implies.

-

f(bN(x, y) d Iyal (x) <o Sy — aeonl.

We choose 8 pomt yl er wnth

f(DN(z,yl)dl,u,I (x < o - for locISm—l .' . (3.8)°

and consider y.€ 2, on the noriﬁal direction throu'gh Y1 Since G*uw=0in Q, we
have DfG*u(y) =0, such that . - . .

| DPGHu(yy)| = |DPG*u(y:) — DPG*uly) ‘ o
T [0z ) dual@) — y 5z, )dﬂa(x)

lajsm—1 T N Ialsm 1 r

+ |D*R(y,) — DR(y)i.

<
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noee Obvionsly._[Df’.R(y;) — DPR(y)| < % " for ]y — ?/1| < 0(¢) holds Moreovcr we' have

RN

.

Z f (baﬂ(x: yl) dﬂa(x) Z f ¢ ﬂ(xs y) d/"a( )

-

e ) laigm— 1 r |a|sm 1 r
=z [ 1®4(, ?/1) — Ph(z, y)| d|pal ()
. IaISm 1r

X 0,y — @ "(x Y| dlual (2)

. IaISm <1 I‘\lxo(lh)

NV S I | X 0) — D4z, y) dipl (2) -
Ia|<m lrnho(u.) -

A

_11+12

K;(yl) denotes. the ball with center % and radlus 8. For ¢ > 0 wecan fmd 62(8) > 0
such that .

BN

~¢au, —'rp'ﬂx' < L
|PA( ?/1) ( )l Tl (1) , _

for’ Iotl =m—1, ly — yl'< 8, and umformly with respect toz € I‘\K‘,(y,) Here %
is the number of the terms in/ ! and .

I/"lmax (F) _ max fdl.“aI (x)

) JalSm— 11‘ .
Thus; . =~ E . : ; S

|Il| < kl/‘!max (F\Ké(?h))

. 4|p Imax(P )k
. for |?/ - yll < 0,.

" From the smoothness condition for I follows,’ tha.t there exists a cone in Q with
vertex in y, and axis in the normal direction. From this we obtain the existence of
a constant ¢, >0 with |z — y| = ¢, [x — yll for z.€ I' n K4(y,) and therefore

Dy(x, y) = ,Py(x, y1). "

Usmg this mequahty, (3.5) and the estimates (2 5) which hold since- we have
Ioc] +|ﬁ| S2m—2 weget '

A AR flw(x,yxndm.ux) + X flw(xmdw.l()_

lalsm 1 FnKsty) ) clalgm—1 ano(vx)

* = 5 e [ Ouiz, yx)dl#al(x)+ T s [ Bulz y) dipal (@) <
K lalSm—1 ‘TnKs(y) . Ialsm 1 l‘nKow,) . .

v

= _2 Gs [ Pz, yodma] (%) <—<

lalsm—1  TnKsw:)

.

for sufficiently small & (8.5 = cap (1 + c5)).
We now have' | D’G*u(y,)| < ¢ for any & > 0, i.e. DPG*u(y,) = 0. By Lemma 2 this
holdsforevcryﬂlﬂl =m— 1)and Fy — ae.onl.
. -¢) Next, we prove G* u(2).= 0 for all z € ;. We'write down the rlght -hand-side of
" (2.11), replacing g4(y) by the expressions D?G*u(y), which vanishes £ y-almost every-
.where on: I'. Because the harmonic measures 7.# are £ y-absolutely continuous and
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ueing (2. 6) we get R o ' e
o { D, D"G(x y) dﬂa(x)} dr.A(y) |
]ﬂém 1 r \lagm-—1 .

f
r » ‘ |
{ Y fDsD ﬁG(x, y) dvf (y)} dua(a) . S
Ialsm 17 UBlsm—1T . . i 4
z )

=2 J

lalsm—1 r'{wlsm 'Wa

+ .z f{ Lz fD"D %hiz, y) dr./y )}d/t.(x) L 38)

. f“ISm i.r 1Bl=m—1 T .

DSz, drz"(y)} dua(z)

For flxed x € I' the function k(z, i) with respect to z is a smooth solution of the equa-
tion" L*w = 0'in 2; with boundary valuesD f’h(a: 1/) Consequently by (2.11) we have

h(z,2) = X fDﬂkx, y) dr.f(y): .
lﬂISm 'r ’ ) o -
Differcntiation with respect to x implies-

Do = £ [ DeD iy dette) o

Blsm—1 I p s

for o] < - m — 1. Using Lemma. 1, from (3.6) then follows

0= Y [ <1> (x, 2) d,u,(x)-f- Y [ D.oh(z; 2) dy,(x)

la|Sm—1 r . lajgsm—-1r1 . 1
© Y [ DoG(=, z) d,ua(x) = G’*,u(z) .
dolEm—1 T

for any z€ 2,
d)-Using G*uly) =0 f v-almost everywhere in 2, we shall conclude I'=0. For
that reason we consider the set . !

D) = {glr: ¢ € Ce=(D)}, o B I
whnch is dense in W»~(I'), and show ' . '

Up) = Z fD‘tp z) dus(z) =0 for all @e€ D(F)

lalgm—1r

Smce supp ,u“ < I'(jx| < m — 1), then I = 0 follows. By (2.4) for every @ € Co°°(9)
f Gz y) Loty dy = f (a, y) Lp(y) dy + FRCCEY ) Lg(y) dy I

= q)(x) + f L*k(z, y) ply) dy = w(x)

_holds. Becausé, the Lebesgue measure is S N-absolutely contmuous, from G*/A(y) = 0
_ Sy — ae. in Q then follows !

=3 { f Dy G(x, y) Ltp(y) dy} d/ta(x)

lelsm—-1 7 (0

3

=JE I vay)d/ta(x)} Loto) du = f @) L) dy =0.

2 llegm—1r

The proof of Lg(I') = W™Y(T') now is complete B
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Besides the supposmons of Theorem 1 now we presumne, that the doma.m 2 can
be enlarged to a smooth domain £, > .Q such that the following propertles hold:
iy ~  92\V < o8,

(ll) The coefficients of B; can be extended to 691\69 in such a way, that for
the new system of boundary operators on 92, all the supposmons, formulated in
Section 2, are satisfied. e

If the coefficiénts of B are constant (for mstance in the case of the Dlrlchlet problem)
‘ condltlon (ii) is always fulfiled. :

. Theorem 2: Under the precedmg supposztwns the space Ly (") of the restrictions on I"
of the space LV(Q), definéd in (1.1), is dense tn W™ Y(I") with respect to-the norm (2.9).

Proof: We choose au open subset ¢ = 2,\£2 and consider the space Lg(Q),
defined in correspondence with (1 2). By Theorem 1'.we have LG(Q ) P= Wmy(TI).

Since obviously the inclusion LG(.Ql)lg = LV(.Q) holds, it follows LV(I’) W"' ymn.

Remark: Because the extension of Q can be taken in-such a manner, that the
boundary value problem

Lu =0 in .Q,,
‘Bjujzo, =0 (7 = 1 ,‘m)

'only has the trivial solutlon, :we see, that Theorem 2 also holds, 1f the con‘espondmg
homogeneous problem in £ has non tr1v1al solutxons

4. In the followmg we sha.ll give some: complementary results :

"(3.7);

\

Theorem 3: We suppose, that for L and 2 the assumplions /’rom Theorem 1 and The- '

orem 2are fulfiled. Let I' — Q2 bea compact set, which satisfies the /ollowmg co'ndmo’ns

(i) For every A I there exists a cone in .Q\ T with vertex mny.
(ii) £ \\.I'7s connected.
(m) I'is (m — 1) -reqular in the sense, that W'” 1(I") s complete weth respect to the norm
. (2.9).

Then the statements of Theorem 1 and 2 and o/ the preceding remark hold.

Proof: From the proofs of Theorem 1 and 2 we see, that the step ¢.in this case is

omitted and that the properties (i)—(iii) for the other parts of the proof are sufficient i

The next Theorem is a result of the Browder typc (see [5] It is a simple conclusmn
from Theorem 2. ' .

Theorem 4: We sug')/pose, that for L, .Q' 14 and I the assumptions from ’]‘heorem 2 are

" fulfiled. We do not suppose, that the problem (3.7) (for Q). only has the trivial solution.

Let uy € C*™(2;) n C™ 1 Q,) be a.given solution of I/uo =01 Q; Then for e > 0 there

e:msts a solutwn u € Ly(02), such that .
T e — wgllomay < e

+ Proof: For the domain £; the Agmon- Mu‘anda mequallty (see [9]) holds, i.e. there

" is a constant ¢ > 0, mdependent from u, such that for the solutions u of the equa.tlon

Lu =0 in Q; with u € C*™(2,) n C™~Y(2)) we have )
llellem-rz0 < ¢ X . sup \Dou(y)]. ' -

lsm—1 116391 ' . . ) T
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. The solution u, defines on I' = 292; an element » € W™1(I') (see [12]). By Theorem 2
there exists a Sequence (u,), @, € Ly(2) with |[u,|r — 9| wm-r(ry = 0. Applying the
Agmon-Miranda-inequality for u, — u, and 9;, we get |[u,, — Uollemr5y —> 0 1

Theorem 5: The statements of Theorem 1 and 2 do not kold, f the homogeneous
Dirichlet problem for the domain 2; has non- trivial solutions.

Proof Let u € Lg(82) resp u € LV(Q), ‘and let v € CZ”‘(Q) n C'”‘l(!)) be a ‘solu-
tion of

umwin@

o1y

an—,._T =0_, (j=l,...,'m)
(Moreover, we have vE C°°(.Q,), see [13: Lemma 4.6]). Usmg the Grcen formula (2 1)
ai-1
for u, v and Q,, B; = B/ = o1 and Ifu = 0 L*y = 0 in Q,, it follows

31y ’
wal>wmwm=

After i‘ewriting the normal derivatives into partial derivatives the-last equation can
be interpreted as follows: There exists a vector measure u = (4,)js)sm—1 = 0 (represen-
table by smooth densities) with the property u(u) = 0 for all u € Lg(I")resp. u € Ly(I").
This means Lg(I") = W™ XI') resp. Ly(I') = Wm(I") |
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