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Asymptotic conditions at the two first eigenvalues for the periodic solutions 
of Liénard differential equations and an inequality of E. Schmidt 

C. P. GurrA and J. MAWUIN 

Wir untersuchen die periodische Randwertaulgabe 
x"(t) -f-. /(x(t)) x'(t) -f- g(t, X(0) = 
x(0) — x(2z) = x'(0) - x'(2r) = 0 

unter Nicht-Reaonanz.Bedingungen auf z'g(t, x) fj)j jxj- 

HccieJtyeTcH nepno3eecRas RpaeBaH 3aaqa 
x"(t) -4- /(x(t)) x'(() -4- g(t, x(t)) = e(t), 
x(0) — x(2) = x'(0) — x'(2) = 0 

fiplt HC30HHCHMX ycJxosnsx Ha r'g(t, z) AaR lxi -+ no.	 S 

We study the periodic boundary problem 
' x"(t) + /(x(t)) z'(t) + g(t, x(t)) = e(t), 
x(0) — x(2) = x'(0) —. x'(2z) = 0 

under some non-resonance conditions on the asymptotic behavior of z'g(t, x) for lxi —'oc. 

1. Introduction	 S 

This paper is devoted to the study of the periodic boundary value problem 

x"(t) -f-- /(z(t)) x'(t) + g(t, x(t)) = e(t),	 . 

x(0)—x(2ir)=x'(0)—x'(2'r)=O 

when the asymptotic behavior of x'g(t, x) is compared with the two first eigen 
values 0 and I of the linear problem 

.x"+Az=O,
(1.2) 

x(0) — x(2r) = x'(0) — z'(2r) = 0. 

The results are in the line of the ones given by MAWRrN and WARD in [2] and [3] 
where a review of the preceding literature can be found. They essentially differ from 
[2] and [3] by generalizing the conditions on the function I' which is such that 

lini Sup x'g(t, z) :5: r(t). 
IzI—w 

Instead of assuming, like in [2] or [3] that F(t)	1 with strict inequality on a 
subset of [0, 2r] with positive measure, we write I' in the form I' = f'o + 1', + P 
3 Aualysis Bd. 3, Heft 1(1984)	1-



34	C. P. GUPTA and J. MAwmN 

with' f' satisfying the 'above condition on .1', f1 .€ L'(O, 2), I' € L(O 2) and 
TIIL' and TwILOO sufficiently small. Thus the expression 

lim sup x'g(t, x) 
xI-oo 

can now cross any number of eigenvalue n2 of the problem (1.2) as far as those 
crossings take place in subsets of [0, 2n] of sufficiently small measure. See OOSSEZ 
[1] for similar results around the first eigenvalue. 

As in [2] and [3], the results depend on lemmas giving a' priori inequalities and 
degree arguments. For Theorems .1 and 2, respectively in Sections 3 and 4, and which 
apply to the general case (1.1), those lemmas are slight improvements of the ones 
in [2] and [3]. For Theorem 3 in Section 5, which requires f to be constant, a rather 
different lemma is introduced which makes uses of an inequality of E. SCHMIDT [5] 
for periodic absolutely continuous functions. This lemma allows an improvement 
on the condition on I' when I' = f,,,, = 0 and f = 0, but this condition is no more 
sharp when applied to the case of a constant 1'. 

We end this introduction by mentioning that besides the classical spaces C([0, 221]). 
Ck([0, 221]) and Lk(O, 221) of continuous, k-times continuously differentiable or meas-
urable real functions whose kthl power of the absolute value is Lebesgue integrable, 
we shall makeuse in what follows of the Sobolev space H'(O, 221) defined by 

H'(O, 221) = '{x: [0, 221] -> R I x is abs. cont. on [0, 2n] and x' € L2(O, 221)), 

with the inner product defined, by 

(x, Off. = _ fx(t) dt) (JY(t .dt) + _fx'(t) y'(t) dt 

and the corresponding norm •IH'• Notice also that we define for convenience the 
norm in Th(O, 221) by

2	 ' 1/k 

IXILk 

=	

/ x(t))kdt) 

2. 'An inequality for some Liénard operators with periodic boundary conditions 

For x € L'(O, 221), let us write 

= (2)-'fx(t) dt,	(() = x(t) - 

so that 	(t) dl = 0. Let fl'(O, 221) = {x € H'(O, 2x): = 0. 

The following result is proved in MAwMn'r-WARD [3]. 

Lemma 1: Let FE L'(O, 221) be-such that, for a.e. I € [0, 221], one has


P(t)1	 '	'	 '
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with the strict inequality on a subset 0/[0, 2] of positive measure. Then there exists 
= 5(I') > 0 such that for all t E H'(O, 2) one has 

B() _: (2n)ft((t))2 - I'(t) 2(01 d€	ô I t12.. 

Lemma 2: Let f = F0 + j'+I' where I'EL(0,2), P1 cL'(O,2), and 
'0 E L'(O, 27t) is such that J(t) :!^ I for a.e. t E [0, 2v] with strict inequality on a subset 

of [0, 2n] of positive measure. Let 6(I'0 ) >, 0 be given by Lemma 1. Then one has, for 
all E i'(0, 2n),

	

7j2	
;j12 Br() 	-	- J'lL] 

Proof: We have 

B(±) = (2)-'f(['(t)]2 - P0(t) 2(g))dt 

()- 1 fr1(f) 2(t) dt - (2)-' fr(t) 2(t) dt. 

	

Using the fact that H'(O. 2n)	C°[0, 2] and the well-known inequalities (see e.g. 

ROtJCHE-MAWUrN [4: p. 208]) 

I2 IL'	I x Itt = IIii',	1 2 IL	kf' 11' =	XIH, 

as well as Lemma 1, we obtain 

B() ^ ô(f'0) II	- JflL' I2I	Pc,oILco 

	

^	-	rlJJl - I n 1 00] kI1 
• 

Remark 1: The best value for 6(0) is clearly 1, so that B,()	(i - -- I J'1!L' IJ 

	

for all E fll(Ø, 2,r).	 "	"	/ 

Lemma 3: Let y  L1(0,	r= F0 + F1 + I',, be like in Lemma 2 and 6(I') 
be given by Lemma 1. Then, for all meas-urable real functions p on [0, 2,v] such that


^S P, p(t) :!^ F(t) a.e. on- [0, 24 all continuous functions /: B	B. and all z E W2 
x (0, 2) such that 

x(0) - x(2n) = x'(0) - z'(2n) = 0	 (2.2)

one has

(2' f( - (')) (z"(t) + f(x(t)) x'(t) + p(t) z(t) dt 

> 2 +	- --IJ'dL' - if'00! 1 00]	. 

Proof: If x  W 1 . 2(0, 2) and satisfies (2.2), we obtain easily, integrating by parts 
3*
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and using Lemma 2, 

(2n) / (Y 	2(t)).(x"(t) + f(x(t)) z'(t) + p(t) z(t)) de 

= y2 + (2nY' f(['( t)1 - p(l) 2(t)) d 

> p 2 -f- B(2)	p ± [o(r0) -	- IrO I L D]	 I 
3. 

Ir1IL-

3. Nonresonance conditions for the existence of periodic solutions 
for some forced Liénard equations 

Let f: It -# R be continuous and let g: [0, 2] x R --'R, (1, x) i-+ g(t, x) be such that 
g(•, x) is measurable on [0,.2n] for each x E R and g(t,.) is continuous on It for 
almost each I E [0, 2n]. Assume moreover that for each r> 0 there exists a Yr € 

L1 (0, 2) such that g(t, x)I y,(I) for a.e. £ € [0, 2] and all x € [—r, r]. Such a g 
will be said to satisfy the Caratheodory conditions. Consider the following periodic 
boundary-value problem for the Liénard equation, with e € L'(O, 2), 

x"(t) ± /(x()) X 1 (t) + g(t, x(t)) = e(t),	t E [0, 2], 

We prove the following existence result for (3.1). 

Theorem 1: Assume that the ineqwZlitie8 

y(t)	tim ml x 1g(t, x) ^ urn sup x'g(t, x) ^5 F(t)	 (3.2) 
Izi-.. 

hold uniformly a.e. in I € [0, 2n] and that y and 1' satisfy the following conditions 
a)yE L1(0,2v) and p>0, 
b)r=r0+r1+r.,, with ri€L'(o,27c), 

.r00 € L°°(0, 2r), I' is rneaurable on [0, 2], f(t)	1 a.e. on [0, 2] with strict in- 

equality on a subset of measure zero and -- 1t1IL' + I'c,IL oo < ô(I'o), where 6(f'0 ) is 
given by Lemma 1. 

Then problem (3.1) has at least one solution for each e € L'(O, 2n). 

Proof: If 77 = - min[, ô(F0) — ç I 111L' —	> 0, then, by (3.2), we 

can find r > ,O such that for a.e. I € [0, 2] and all x with jxI ^!- r we have y( I ) - 
xg(t, x)	1(1) + 77. We then write, like in the proof of Theorem 1 of [2], the 


equation in (3.1) in the form 

x''(t) -4- f(x(t)) X, ( t ) -4- 0, x(t)) x(t) -F- h(t, z(t)) =.r 

where

Y( t ) —	7(1, x)	1(1) +,	Ih(t, x)I 5 a(t)	 (3.3) 

for a.c. I € [0, 2r], all x € it and some a € L'(O, 2n). By the same degree argument 
than in the proof of Theorem 1, our result will be proved if we show that the set
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of possible solutions, of the family of equations	- 

x"(t) + Af(x(t)) X'(t) + [(1 - A) F(t) + 2(t, x(t))] x(t) 

+ Ah(t, x(t)) = Ae(t),	A € [0, 11,	 (3.4) 

•	x(0) - x(2n) = x'(0) - x'(2t) = 0 

is a priori bounded in C'([O, 2n]) independently of A € [0, 1]. If x is a solution of 
(3.4), then multiplying (3.4) by T - , integrating over [0, 2t] and using (3.3) to-
gether with Lemma 3 with F. replaced by f + 77 and y replaced by y j, we 
find

2. 

0 = (2 1 f (i. — 2(t)) {"(t) +A/(x(t)x') 

-1- [(1 - A) F(t) -f- A5i(t, x(t))] x(t) -f. Ah(t, z(t)) - ;.e(t)} di 

(_	2 + [o(I'o) -
	

IJIL' -	
-

HI 

- (kx iL + t e lL . ) IX - XILOO 

+ -.
 [o(FO)- - f'1 - 1colLOO] 2. - P 

and hence IxI H ,	This implies then, like in the proof of Theorem I of [2] that

I x Ic . <B for some B independent of A E [0, 11 U 

4. Periodic solutions for a Liénard equation at resonance 

Let f:R -*R be continuous and let g:[O,27m] x R -*R, (t,x)i-+g(t,x)ibe such 
that g(•, x) is measurable on [0, 27m] for each x E R and g(t,.) is continuous on R 
for a.e. t € [0, 2am]. Assume moreover that for each r> 0. there exists Yr € L1 (0, 27C) 
such that g(t, x)l y,(l) for a.e. t E [0, 2n] and all x € .[—r, r]. We consider the fol-
lowing periodic boundary-value problem for the Liénard equation 

x"(t) + /(z(t)) x'(t) + g(t, x(t)) = e(t),	I € [0, 2am],	
4 1


x(0) - x(2m) = x'(0) - x'(2n) = 0. 

We prove the following existence result for (4.1) 

Theorem 2: Assume that there exists 1€ L'(O, 2r) such that 

lim sup g(t, x)	r(t)	 (4.2) 
X 

uniformly a.e. in I € [0, 2n] and such that I' = r0 + r,. + I',, where F. € L00(0, 2n), 
P1 € L'(0, 2n) and P0 € L1 (0, 2n) are such that FO(t)^ 1 for a.e. I € [0, 2n], with 

strict inequality on a subset of [0, 27r] of positive measure and r L ±	11 V -< 6(F0). 
Assume moreover that there exists real numbers a, A, r, and B with a _< A and r <0< R 
such that

g(t, x) r-:^ A	 (4.3)
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for a.e. I E [0, 2n] and all z ^ 1? and 

g(t, z) :!^ a (4.4) 

for a.e.' I € [0, 2] and all x:5, r. Then the prèblern (3.1) has at least one solution for 
each e E L'(O, 270 such that 

a^-.ë:!:-:^A.	 (4.0) 

Proof: Define g1 on [0, 2r] x It by g1 (t. x) = g(t, x) —'(1/2) (a + A) and e 1 on 
[0, 2] by e 1 (1).= e(t) -. ( 1!2) (a + A), so that, for a.e. I E [0,-2n, using (4.3) to 
(4.5), we have 

g (t , x)	(1/2) (A - a)	0	if x	11,	 (4.6) 

g 1(t,x)	(1/2)(a—A)	0	if -x ^r, ,	,	 (4.7)


and

(1/2) (a'— A)	ë,	(1/2) (A 7-a).	 (4.8) 

Clearly, the equation in (4.1) is equivalent to 

•	x"(i) -4-- /(x(t)) x'(t) + g j(t, X(P) = e 1 (t) .	 (4.9) 

Moreover, we have 

urn sup x'gj(t, z)	F(t) 
•	Ixl-.. 

uniformly' a.c. in I € [0, 2] and if Ix	max (B, —r), then for a.e. I E [0, 2r] we 
have also i'g 1 (t, x)	0. So that r(t)	0 a.e. on [0, 2r]. 

Let , = -- [oro -	- j- 	Then there exists r 1 > 0 such that for 

a.e. t € [0, 20 and for all x with x	r 1 , one has 

0 :!-, x 19 1 (t, z)	r(t) + 7.	 •	
(4.10) 

Proceeding like in the proof of Theorem 1 of [3] we can write the equation in (4.9) 
in the equivalent form 

/(x(t)) x'(t) -I- y(t, x(t)) z(t) _'f h(t, z(t)) = e(t),	(4.11) 

where 0	 ' (t, z) ;5 r(t) + i, Ih(t, x)I :!E^ a(t) for a.e. t E [0, 2v], all x E R and some

a € L'(0, 2i). Again, degree arguments will imply the existence of a solution for 
(4.1) if the set, of possible solutions of the family of equations 

x"(t) + 2/(x(t)) x'(t) + [(1 - 2.) (r(t) + ) + ;y(:, z( t i)1 x(t) 

-f- 2h(t, x(t)) = Ae 1(t),	) E [0, 11,	 (4.12) 

X(0) - x(2n) = x'(0) - x'(2r) = 0 

is a priori bounded independently of 2 € [0, 11. If x is a possible solution of (4.12) 
for some 2 E [0, 11, then, integrating (4.12) over [0, 27E1 after multiplication by



/
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2 - 2, we obtain, using Lemma 3 with y =0 and F replaced by J' ± 

0= (2)-' f{(2 - 2(t)) [z"(t) ± A/(x(t)) x'(t) 

-f- ((1 - A) (1'(t) -I- j) 4.. 2.y i (t, x(t))) x(t) -f- A.h(t, z(t)) - Aei(t)1} dl 

[r	
.	F11 . - IJL°° 

	

- (1 01 1V + I e lIL a) 2— 2ILoo	J2,	fl(12 I .+ 2Iu). 

Consequently,

(fl/,7) (12i + 21w). 
integrating the differential equation in (4.12) over [0, 2], we obtain 

(1 - A) (2'f () + n) x(t) di ± 2(2)-'f[gl(t, x(t)) — ei(t)J di = 0. 

(4.13) 
If x(t) ^t R for all I E.[0, 2z], then (3.6) and (3.8) imply that (1 - A) (P ± ) R 0, 
a contradiction with P 0. Similarly we cannot have x(t) ;5r for all I E [0, 24 
Consequently there exists T E [0, 2] such that r <x(r) <R and we can achieve 
the proof like in Theorem 1 of [3]I

r 

5. An inequality for some linear second order operators with periodic boundary 
conditions and periodic solutions of some Dulling equations 

We shall show in this section that a partial extension of Theorem .2 can be obtained 
when / is constant and F0 = = 0. It depends upon an inequality given by the 
following Lemma. 

Lemma 4: Let c€ R, e E L'(O, 2), FE L1(0, 2r) with F 0. Then every possible 
solution z of the problem	 .	. 

	

x" (t) + cx'(t) -t-- p(t) x(t) = e(t),	-	.	(5 1

x(0) - z(2.) = x'(0) - x'(2) = 0 

with p E L'(0,2) such that 

^ P,	0	p(t)	 .	(5.2) 
a.e. on [0, 2] satisfies the inequality	 . 

r) Ix" + cz'	:E^ 2 e IL' !x" + CX 'IL + P IeJ ! X IL OO.	(5.3) 
Proof: Let p be like above and let z be a possible solution of (5.1). Then, multi-

plying the equation by x and integrating over [0 1 2iv] we obtain 

- _	X 12(
t) dt . 	X2(t) di = _ f ( t ) x(t) dl.	.	(5.4)
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Now, by Schwarz inequality and (5.2) we have, as ph l!x and p112 belong to L2(0, 2n),

i. 

(fin x(t)I dt)2 ^ (Jr(t de) (_f (t ) x2(t) dt) 

	

f

p(t) X2(j) dt	 (5.5) 

and hence, using (5.1), 

f  - x"(t) - cx'(t)! dt)P	_f P(t) x2 (t) dt).	(5.6) 

On the other hand, by an inequality of E. ScumT [51 we have, for every absolutely 
continuous function y on [0, 2n] such that y(0) y(2n), = 0, the inequality 

f

2x	
7g2 

Ta	 71


y2(t) dt ^ (±. f iY'(t)I it)	
(M ±	

0


where M = max !l m = nun Y and - is the best possible constant. Applying this 
0.21	10.2n1	 4 

inequality to x' + c& we find 

+ 0(t))2dt = ._f	
2n 

 [x'(t)]2 dt + - J'2(t) dtrz 

	

•	 -	 S	 c(	JIx"t)± cx'(t)I dt).	(5.7) 

Introducing (5.6) and (5.7) in (5.4), we obtain 

MS	 12 

	

-	Ix" + cx'!Ii ± r-' le - X" — CX'	jeI IZlL, 

and hence (5.3) by elementary computations I 
Let now c E it and g: 10, 2n1 x R —> R be like'in the first paragraph of Section 4. 

e € V(O, 2n) and consider the following periodic boundary value problem for the 
Duffing equation 

x"(t) + cx'(t) + g(t, x(t)) =	' (5. 8 ) 
x(0) - x(2n) = 1(0) T x'(2.-r) = 0. 

Theorem 3: Assume that there exists FE L'(O, 2n) such that 

urn sup x'g(t, x) 
txI—I.00 

uniformly a.e. on [0, 2n] and such that r <'4/n2. Assume moreover that there exists 
real numbers a, A, r and R with a ^ A and r <0< R ,s'uch that, for a.e. t € [0, 2n},.
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g( t, r)	A when x ^! R and g(t, x)':5,- a when x :E^: r. Then the problem (5.8) has at 
least one solution for each e E L'(O, 27 verifying the relation a	ë	A. 

Proof: We first define g 1 and e1 like in the proof of Theorem 2 so that the equation 
can be written 

z"(t) -f- cx'(t) -f- g1 (t, x(t)) = e 1 (t)	 (5.9) 

with g 1(t, x)'^t 0 when x ^! 11 and g1 (t, x) :—< 0 when x' :!^g r, and urn sup x 1g1 (t, x) 
F(s) uniformly a.e. on [0, 2n]. Consequently,	 IxI-+oo 

F(s) L-0	 (5.10) 

a.e. on [0, 22r]. Let , = (1/2) (4/2 - r) > 0 so that T + 71 <4/n2 and let r1 > 0 
be such that ,O ^-, x'g1(t, x) ^5 1'(t) ± ,j for all x with x -2: r1 and a.e. I E [0, 2n]. 
Proceeding like in the proof of Theorem 1 of [3] we can write the equation in , (5.8) 
in the form 

z"(t) -f- cx'(t) -I- y i (t, x(t)) x(t) -f.. h(t, x(t)) = e 1(t)	 (5.11) 

where 0	yi(t, z)	F(t) + 'i, Ih(t, x)J < a(S) for a.e. S E [0, 2n1, all x € R and some 

or € L'(O, 2n). The same degree arguments will imply the existence of a solution 
for (5.8) if the set of possible solutions of the family of equations 

z"(t) -f- cx'(t) + [(1	) (F(s) + 'i) + .y i (t,' x(t))] x(t)	- 

= e1(t) - ).h(t, z(t)),	2'E [0, 1],	 (5.12)


X(0) - x(2) = x'(0) - z'(2n) = 0 

is a priori bounded independently of A E [0, 11 in the uniform norm on [0, 24 As 

0 !!^ (1 - A) (I'(t) + 'i) + Ayj(t, x(€)) ;5 F(t) ± 

ofr a.e. I € [0, 2n], with P ± 77 <4/n2 , and as 

Iei 4- h(., X(-))IL ' ;5; ev -I- iiL' , 
it follows from Lemma 4 that the inequality 

(p + ii)] Ix" + cx'i, 15^ 2(I e llL + !L') ix" + cx'iv 

+ (P + 'i) (I eiiv+ 1 01 10 XI L OO	 S	
,	 (5.13) 

holds. We can now proceed like in the proof of Theorem 2 to obtain the existence 
of t E [0, 2n] such that 

r <x(i) <R.	 (5.14) 

It ' is easy to write explicitly the unique periodic solution having mean value zero 
of the problem x"(t) + cx'(t) = y(t) where y € L'(O, 2n) and has mean value zero 
and to deduce from those formulas the existence of ô = 6 1 (c) > 0 and 6.. = 62(c) > 0 
such that	 - 

Ii-IL ^ ô X + CX IL' = 61 Ix" + CX'iL,	-	 (5.15) 

iX ILoo	6 i i" +	= 2 Ix" + cx'j,..	 (5.16)
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for every x E C'([O, 2,r]) with z' absolutely continuous and satisfying the periodic 
boundary conditions. Inserting (5.15) in (5.13) we get 

(i + i)J Ia;" + cx' 

^ (le i , + IIL') 12 ± 6 1(r + 'i)] Ix" - CX' 11.1 + (F + 'i) (I e1Iv + IlL') II. 
(5.17) 

Now, by (5.14) we have, for all t E [0, 2], 

jx(t) =r(t) +fx'(s)ds < max (—r,R) + 2	IL	 / 

5: max (—r, R) + 2th2 x" + CX IL'S 
so that

I Y I ;5	f Jx(t)I dt < max (—r, R) + 262 a;" + cx 'ILI.	 (5.18) 

Inserting (5.18) in (5.17), we easily deduce the existence of L91 = (1', e3 , '?1 c, r, R)> 0 
such that Ii" + CZ'IL I < Lo, which by (5.15) and (5.18) implies the existence of o> 0 
depending on the same quantities only and such that ZILoo < , which completes the 
proof. I 

Remark 2: With respect to Remark 1, we see that when To and J',, = 0, the 
condition on I' is improved from r< 3/2 into I' < 4hr2 but the existence result 
requires that f is constant. Notice that, in contrast with Theorem 2, Theorem 3 is 
not sharp when applied to the case of a constant r. 
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