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Asymptotic conditions at the' two first eigenvalues for the periodic soln_itions
of Liénard differential equations and an inequality of E. Schmidt.

C. P. Guera and J. MAwEDY

\ ‘Wir untersuchen die pex;iodiscllle Ra;ldwemdgabe
| 2() + f(a(0) ') + g(t, 20)) = e(t),

2(0) — z(27) = z'(0) — z'(27) = 0
unter Nicht-Resonanz-Bedingungen auf z-g(¢, z) fir |z| - oco.
Mcmen&ercn nepuogH9decKans KpaeBad 3ajgada

2(t) + f(=(0) Z(O) + 9(t, =) = e(t),

- z(0) — z(2n) = z'(0) — 2'(2n) = O

npu Heﬁeaonaﬂcuux ycﬁoannx’ Ha z~Y¢g(t, x) naA |z| — oco.
We study the periodic boundary pr<’>b]em

() + f(20) 2 + 96, 2(0)) = e(t), -

2(0) — z(2n) = z'(0) — «'(2n) —0

" under some non-resonance conditions on the asymptotic behavior of z-g(¢, z) for |z] — oc.

1. Introduction .-
ThlS paper is devoted to the study of the penodxc boundary value problem

2(t) + f(=(0) /() +g(t, x(t)) = ¢(t), (11
z(0) — 2(2n) = 2'(0) — 2'(27) = 0 1

when the asymptotic behavior of z-g(¢, z) is compared with the two fu‘st eigen-
values 0 and 1 of the linear problem
x4+ Az =0,
(1.2)
2(0) — z(2n) = 2'(0) — = (27:) = 0.

» The results are in the line of the ones given by MawamN and WARD in [2] and [3]
where a review of the preceding literature can be found. They essentially differ from
[2] and 3] by generalizing the condmons on the functlon I" which is such that

limsup z71g(¢, ) < F(t) ;

1z]—c0
Instead of assuming, like in [2] or [3] that I'(t) < 1 with strict inequality on a
subset-of [0, 2z] with positive measure, we write I'" in the form I'= Iy + Iy + Iy
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34 C. P. Gupra and J. MAwWHIN

with- I, satisfying the 'above condition on [I', I'.€ LY(0, 2n), ' € L0 2n) and
il and || 0 sufficiently small. Thus the expression

lim sup z-ig(t, z)
Jzj—>00 ‘
can now cross any number of eigenvalue n? of the problem (1.2) as far as those
crossings take place in subsets of [0, 27] of sufficiently small measure. See GGossgz
{1] for similar results arcund the first eigenvalue. :

As in [2] and [3], the results depend on lemmas giving a priori inequalities and
degree arguments. For Theorems 1 and 2, respectively in Sections 3 and 4, and which
apply to the general case (1.1), those lemmas are slight improvements of the ones
in [2] and [3]. For Theorem 3 in Section 5, which requires f to be constant, a rather ‘
different lemma is introduced which makes uses of an inequality of E. ScumipT [5]
" for periodic absolutely continuous functions. This lemma allows an improvement
on the condition on I" when I'y = 'y, = 0 and f = 0, but this condition.is no more
sharp when applied to the case of a constant I :

We end this introduction by mentioning that besides the classical spaces C([0, 2z}).
C¥([0, 2x]) and L¥(0, 2n) of continuous, k-times continuously differentiable or meas- .
urable real functions whose kt* power of the absolute value is Lebesgue integrable,
we shall make.use in what follows of the Sobolev space H(0, 27) defined by

HY(0, 27) = {z: [0, 27] — R | z is abs. cont. on [0, 2x] and 2’ € L¥(0, 27),
with the inner product defined by '

25 " ea . o
- 1 1 YL
‘(z, P = o fx(t) a o f!/(‘)d‘ + -ﬂf z'(¢) y'(¢) dt
T [1] 0 0 °

and the corresponding norm |-|g. Notiée also that we define for convenience the
. norm in L¥(0, 2x) by :

25 ;
' 1
= | =— k
el = | 5= f (¢ de
]

1k
2. 'An inequality for some Liénard operators with periodic boundary conditions
Fof z € LY0, 2x), let us write o

A 2n

z == (2n)7! [ z(t) dt, E(t) = z(t) — 7,
; .

. , 2n ) . . : )

so that [ #(t)dt = 0. Let AY(0, 2x) = {z € HY(0, 2n): Z.= Ol.
0 N .
The following result is proved in MAWHIN-WaARD [3].

Lemma 1: Let I" € L'(0, 2x) be such that, for a.e. t € 10, 27), one has

Ty =1

——~
o
r—
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with the strict inegquality on a subset o/ {0, 27:] of positive measure. Then there exists’
8 = &(I') > O such that for all % ¢ HY(O, 2n) one has

‘ 25
%) = (2n)! f’[( (O — I'(t) x*(z)] dt = 6 1%|%..

Lemma 2 Let 1" Iy + I + P .where Iy € L°°(O 2n), I'y € L‘(O 2n), and
I‘o € LMO, 27) is such that I'y(t) < 1 for a.e. t € [0, 2] with strict tnequalily on a subset
of 10, 27:] of positive measure. Let 6(I'g) >, 0 be given by Lemma 1. Then one has, /0)

all ¢ H‘(O 2n), ~ :

’

Br(#) = [«s(m — Sl — |I‘mxm] #l3.

P;‘oof:_Wé have
- om .
. Br(®) == (2a) [ ([#'(&)} — To¢) 2%(¢)) at
0 . :
2n ) 2%

— (2n)? f Iy(t) zZ(e) dt — (2n)f1" [ Tol) 52(» dt.

Using the fact that HY0, 2x) = 0°[0 27) and the well-known mequa.htles (see e. g
RoucHE-MAWBIN [4: p. 208]) . .

T
= leﬁl,

<

. _ o,
£, < |2 o= 1&lw, |Elieo = 73 1Z]s =

as well as Lemma 1, we obtain .
Br(£) Z 8(Io) |25 — I1ilor 1830 — 1ol oo 1215
. -
= [6(Po) — = N — IFle] |27 8
Remark 1: The best va.lue for 6(0) i is clearly 1,s0 thath,(x) = (l - = II’,IL.) 1212

* for all z € AY(0, 2n).

Lemma 3: Let y € LN0, 2n), L' = I'g + I'y + I be like in Lemma 2 and 6(1)
be given by Lemma 1. Then. for all measurable real functions p on [0, 2n] such that
7 =P plt) = I'(2) a.e. on [0, 27), all continuous functions f: R — R and all z € W22
X (0 2n) such that

z(0) — z(2n) = 2'(0) — z'(27) = 0 - . (2.2)
one has ‘ o

2w

(27: f(x — x(f)) (z"(! —+ f(:c ) (8) -+ p(t) z(t)) dt

0
FAN .
g ﬁz -f' [6(Fo) hd T |PI;L‘ - iroo!L"":l !iﬁ!"
Proof: If z € W¥0, 27%) and sabisfies\(2.2), we obtain easily, integrating by parts

3%
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and using Lemma 2,

25
(2m)! [ (Z — &)=z (0) + f(=z(t)) ='(8) + ple) z(t)) dt

0o -

= pz + (20)7) [ ([Z'(O) — p(e) Z(®)) dt
[}]

= 7zt + Br(#) Z y2* + [5(Fo) — 5 Ml — lrmlbw] 215 8

Vs

" 3. Nonresonance conditions for the existence of periodic solutions
for some forced Liénard equations

Let f: R — R be continuous and let ¢: [0, 27) X R —'R, (¢, z) > g(¢, z) be such that
g(-, z) is measurable on (0, 27] for each z € R and g¢(¢, -) is continuous on R for
almost each ¢ € [0, 27). Assume moreover that for each 7 > 0 there exists a y, €
~ L}0, 2x) such that |g(¢, z)| < y.(¢) for a.e. £ € {0, 27) and all z € [—7,7). Such a g
will be said to satisfy the Carathéodory conditions. Consider the following periodic
boundary-value problem for the Liénard equation, with e € LY(0, 27),

20 + fled) 20 + glt, =) = ey, € [0,27),

)

(3.1)°

z(0) — 2(27) = 2'(0) — z'(2a) = 0.
We prove the follo;ving existence result for (3.1).
Thebrem 1: Assume’tha«t the inequalities
(t) < lim inf z-1g(¢, 7) < limsup &~g(t, ) S 1'(O) (32)

|z} oo {zj—s00 -

hold uniformly a.e. in t € [0, 2] and that y and T satisfy the following conditions
a) ye LNO,2n) and 7 >0, : o
b) T = Iy + I'y + ' with I’y € LY(0, 27), . ‘ .o
I'y € L®(0, 2n), T, is measurable on [0, 2x}, Ly =1 a.e. on [0, 2n) with strict in-
equality on a subset of measure zero and ”—2 1M+ ool poo < (1), where 6(}‘0) is
given by Lemma 1. . - ‘3 S )
Then problem (3.1) has at least one solution for each e € L\0, 27).

. 1 ~ , ‘ -
Proof: If o= 5 min |7, 6() — 7—;-2 (Il — IFwI] > 0, then, by (3.2), .we

can find r > 0 such that for a.e. ¢ € [0, 2x] and all z with jz| = r we have y(t) — 7
< z7g(t, 2) < I'(t) + n. We then write, like in the proof of Theorem 1 of [2], the
equation in (3.1) in the form ' .

2(t) + fl@(®) 2'(0) + 7{t, 2(0) 2() + lt, 2(0)) = e(t),
where . - .
YOy —n S Pt STE) 41, bt 2)] = at) : (33)

for a.c. t € [0, 27), all x €R and some « € L1(0, 27). By the same degree argument
than in the proof of Theorem 1, our result will be proved if we show that the set
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of possible solutions, of the familylof cquatidns

z(t) + M=) (1) + [(1 — 2) T'(1) + 25(t, (1)) z(t)
+ Ah(t, z(t)) = Re(t),  2€][0,1], ©(3.4)
2(0) — z(27) = 2’(0) — z'(2n) = 0 ‘ -
is a prioti bounded in CY([0, 27)) independently of 4 € [0, 1]. If z is a solution of
. (3.4), then multiplying (3.4) by T — £, mt,egratmg over [0, 2n] and using (3.3) to-
gether with Lemma 3 w1th Iy, replaced bv 'w -+ 1 and y replaced by y — », we
find _ o
0 = (2n)" j z— 5(:)) {=z"(t) + ;/( z) z (t))
+ [(1 = 2) Tty + a5(t, 2(0))] =() + AR(t, z(t)) — Je(t)} dt
- 2 .
ZG-nP+ [«su’o) — S Dl — Teliom — r/] 1513
— (alus + i€l1) |E — &len |
= . . .
= -;L 7+ = [ (Ie) — % [Pnlg,' — lrooILop] |25 — B l2|m

= 7 l2ltn — B Izl /

and hence Izl,,. < B/n. This implies then, like in the proof of Theorem 1 of [2] that

|z|c: < R for some R independent of 2 € {0, 1] ¥ -

4. Pgriodié,solutions for a Liénard equation at resonance

Let f: R - R be continudus and let g¢: [0, 2z] X R — R, (¢, z) — g(¢, 2): be such
that g(-, z) is measurable on [0, 27] for each = € R and g(¢, -) is continuous on R
for a.e. ¢ € [0, 2r]. Assume moreover that for each r > 0. there exists y, € L0, 2n)

such that |g(¢, z)| < y,(¢) for a.e. ¢ € [0, 2n] and all z € [—r, r]. We consider the fol- -

- lowing periodic boundary-value problem for the Liénard equation

2(t) + f(=0) 'O + glt, z0) = e(t), ¢ € [0, 2n},

(£1)
z(0) — z(2x) = z'(0) — z'(2n) = O.
We prove the following existence result for (4.1).
Theorem 2: Assume that there exists I' € L0, 27) such that
. lim sup gt xx) < P(t) : ' (4.2)

|z}—00

. uni/onnlé/ ae. int€ tO 27) and such that I' = Iy + I'y + I, where Iy, € L2(0, 27),
I € L0, 2n) and I'y € LY, 27) are such that I'o(t) <1 for ae. te {0, 2=), with

strict mequaluy on a subset of [0, 27] of positive measure and | 'y poo ~{ - |] | < 6(Lg)-

Assume moreover that there exists real numbers a, A r, and R witha < A and r< 0 R
~ such that '

TR IR

o(t, 2) = A4 - g | (4.3)

£ UEY

RO TR AT
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for a.e. t € {0, 2n) and all z = R and

git,z) < a ' o (4.4)

¢

A jor a.e. t € [0, 2n) and all z < r. Then the problem (3.1) has at least one solution for
each e € L0, 2n) such that -

ale< A. . ) : ’ ‘ (4.5)
Proof: Define g, on [0, 2z} X R by g,(¢. z) = glt, 2) —(1/2) (a + 4) and e; on

[0, 27) by e,(t) = e(t) — (1/2) (a + A), so that, for a.e. ¢ ¢ [0, 2x]; using (4.3) to
(4.5), we have : '

gty = (1/2)(4 —a)20 if z =R, (46)
it z) <(1/2)(a—A) <0 if .z<r, . (4.7)
aﬁd , L ' |
(1/2)(a— A) S & < (1/2)(4 —a). , (4.8)

Clearly, the equation in (4.1) is equivalent to
z"(t) + f(=(t) () + guft, 2(8) = e(t).- ‘ (4.9)
Moreover, we have '

lim sup z-3g,(¢, z) < T'(¢)

{z|—+00

uniformly a.e. in t‘e [0, 27) and if !z = max (R, —r), then for a.e. € [0, 2n] we
have also 2-1g,(t, ) = 0. So that I'(t} = 0 a.e. on [0, 2x]. :

1 . 2 :
Let n = 5 [6(1’0) — | Teolgo — % ]'I",|,,,]. Then there exists , > 0 such that for

A

© a.e.t€{0,2n) and for all z with |x] = 7,, one has

0 < 2t 2) < T() + 0. n (4.10)

Proceeding like in the proof of Theorem 1 of [3] we can write the equation in (4.9)
in the equivalent form A ‘ , ‘ ‘
2"(t)+ flz(t) 2'(8) + rlt, 2(0) 2(t) + B{t, (1) = ex(t), (4.11)

where 0 < py(t, z) < T'(¢) + 7, 1b(t, 2)] < x(t) for ae. t € [0,2n], allz€ R and some
« € L0, 27). Again, degree arguments will imply the existence of a solution for
(4.1) if the set of possible solutions of the family of equations

S &) + M) 26 + [(1 = 2) (T®) + 7) + e, =(0)] 20
+ 2h{t, z(t)) = Aey(t), 2€[0,1}, (4.12)
z(0) — z(2n) == 2'(0) — 2'(2x) = 0

is a priori bounded independently of 2 € {0,1]. If z is a possible solution of (4.12)
for some i€ [0, 1], then, integrating (4.12) over [0, 2x] after multiplication by
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Z — Z, we obtain, usmg Lemma. 3 with - y == 0and Iy replaced by P L 7,
0 = (22) j{(z — &) [z + Aj(x(t))x )

+ ((1 — ;) (P(t) 4 77) + )y,(t (1)) x(t) + Ahft, x(t)) — /e,(t)]} d
[6(1’0) ~— = lrlll' — ]y~ 7]] |25

= (&l + lefe) 12 — Zlp00 = 7 [2lF — BUZ] + 12]40)-

; Consequently,

1813 < (B/n) (12 + [l).
~.Integratmg the dlfferenbla.l equation in (4 12) over [0, 2z}, we obtam
2n
(1 — 2) (2n)2 j (re) + n) z(t) dt - 4(27:)- f [g,t x(t)) — ey(t)] dt = 0.
(4.13)

If z(t) = R for all ¢ € [0, 2x], then (3.6) and (3.8) imply that (1 - ) (F + ’7) R0,

a contradiction with I' = 0. Similarly we cannot have z(t) <'r for all ¢ € [0, 27:]

- Consequently there exists 7 € [0, 2n] such that r < z(r) < R and we can achieve
the proof like in Theorem 1 of [3] B , :

[
5.' An inequality for some linear second order operators with periodic boundary '
conditions and periodie solutions of some Duffing equations '

We shall show in this section that a partial extension of Theorem 2 can be obtained
when f is constant and I'y = ', = 0. It depends upon an. mequa.llty given by the:
following Lemma.

Lemma 4: Let ¢ € R, e € LY(O, 27:), I’e L’(O 27:) with I‘ =0. Then every posszble
solution z of the problem .

2"(8) + cx'(t) + plt) 2(t) = e(t), .
z(0) — 2(27) =« (0) — x (..7:) =0
witk pE L‘(O 2m) such that . . ‘ v
<T, 0<p®t , ' L - (5.2)

(5.1y

a.e. on [0, 27) satisfies the inequality :
2 _ .
(1 —%I’) E2 +cx.L.S°|e|L. |x"+cx|L.-l—I‘|e]L. lz],eo (5.3)

Proof: Let p be like above and let z be a possible solution of (5.1). Then, multi-
plying the equation by z and integrating over [0, 2x] we obtain

2n 2n . . 2a . '
1 2 1 2 1 : .
~ 3 [z (&) dt + e fp(t):z: (t) dt = gje(t) z(t) dt. . (5.4)
0 0 K 0 .
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Now, by Schwarz inequality and (5.2) we have, as p*2z and p'/2 belong to L¥0, 2n);i

.

] 12n 2 . 2n b2
1 20
5 [wosia) s (o [roa)(s JECECL)
o o 0 :
1 2= . . . .
a2t el 2 . . . '
<T (23 f pl) 240y dt |, (5.5)
.o B o, . Co N
and hence, using (5.1),
i 1 2n 2 . 1 2x
. %fk(z)_x () — cz'(t)dt) =T E—;fp(_t?‘x’(t) d\. (5.6)
0 ) ,

On the other hand, by an inequality of E. ScEMIDT [5] we have, for every absolutely .
continuous function y on [0, 2z] such that y(0) = y(2n), § = 0, the inequality
B . v \

-2 . 2= . 2
D | a1 M + m\?
_— 2 — | — 1y’ —
L [vwasT (g [woe) - (55 ).
, 0 0

/

b4

: : . o
- where M = mexy, m = min y and 7 is the best possible constant. Applying this

©.2a] (0,27
inequality to z’ + c%, we find N
S 2= 2z 2n
L[y + cspdt = o | woPd+ Ly P
0 , ) . 0 ,
g : i S\ |
i <=1 () 4 cx'(t)] dt (5.1
e e L GRCAOE 5.7)
: 3 :

Introducing (5.6) and (5.7) in (5.4), we obtain
3 ) _ . . :
—T el T e — 2 — o'l < lelis el

and hence (5.3) by elementary computations | - '

Let now c € Rand g: [0, 27] X R — R be like’in the first paragraph of Section 4,
e € 110, 27) and consider the following periodic boundary value problem for the
Duffing equation - :

(1) + ex'(t) + gt 2(8) = elt),
z(0) — z(2n) = z'(0) — z'(27) = 0.
Theorem 3: Assume that there exists I' € LY0, 2x) such that

(5.8)

lim sup z~g(¢, :f) A0

|x}—roc0

uhijomdy a.e. on [0, 2n) and such that I <4/n®.. Assume moreover that there ezists
real numbers a, A, r and Rwitha < A and r <0 < R such that, for a.e. t € [0, 2x)..
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“g(t,z) = A when x = R and ¢(t, x) < a when z = 1. Then the problerr;, (5.8) has at
least one solution for each e € LY(0, 2n) verifying the relationa < & = 4.

Proof: We first define 9 and e, like in the proof of Theorem 2 so that the equation
can be wrltten

2"(f) + ez'(6) + guft, 2(t)) = et S ' (5.9)
with g‘(t z)'= 0 when z = R and ¢,(t,z) < 0 when z =< r, and lim sup x"g,(t x)
< I'(t) umformlv a.e. on [0, 2:1:] Consequently, . zl—vo0

=0 - ' - (510)

i
a.e. on [0 2x). Let n = (1/2) (4/n® — F) >0sothat I' + 5 < 4:/7:2 and let r, >0
be such that 0 < z-1g,(¢, ) < I'(f) + » for all z with lz| = r, and a.e. ¢ € [0, 27].
Proceedmg like in the proof of Theorem 1 of [‘3] we can write the equation in (5.8)
in the form

&(8) + cz'() + e, 2(8) 2(t) + A{t, z(t) ) = e){t) . Bay

where 0 Swnltbzy =T+ r), ht, z)| = «(t) for a.e. t € [0, 2x], all z € R and some
« € L}0, 27). The same degree arguments will imply the existence of a solution
for (5.8) if the set of possible solutions of the family of equations :

2(t) + ea'(t) + [(1 = A (I'()) + ) + Ayt 2(0))] 2(0)

= Je(t) — Zh{t, 2(t)), A €[0,1], : | (5‘.12)'

(0) — z(2n) = 2'(0) —2'(2m) =0 L

is a pl‘lOl‘l bounded mdependent,ly of A€ [O 1] in t,he uniform norm on [0, 27:] As

01— (e + n) + yit, 2(t)) = T(t) ¢ )
ofr a.e. ¢ € [0, 2x], with T+ 7 < 4/#%, and as

les + R(-» 2()|er = leales + le]as
it follows from Lemma 4 that the inequality

- o
[1 -+ _n)] 2" + ezl S Aless + o) 2 + o'l

+ (T + n) Uesles + ladzs) I2lzeo o (5.13)

holds. We can now proceed like in the proof of Theorem 2 to obtain the existence
of v € [0, 2n] such that

r < Z(7) < R. - ; (5.14)

It is easy'to write explicitly the unique periodic solution having mean value zero
of the problem z''(¢) + cxz'(t) = y(¢) where y € LY(0, 2n) and has mean value zero
and to deduce from those formulas the eéxistence of §; = 4,(c) > 0 and 6.. = ds(c) >0

such that
iill_w S 61 |i” + CillLl = 61 lx” + Cx,!lll’ ) (5,15)

Bl Z 0 87+ 0y = b |27+ 'l , : (5.16)
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for every z € C([0, 2x]) with 2’ absolutely continuous and satisfying the periodic
boundary conditions. Inserting (5.15) in (5.13) we get

[1——(F n)]lx"-f-cxl

S (el + lale) 12 + 8T + ) 2" - 2 o+ (T ) Gl + 122 1.

. (5.17)
Now, by (5.14) we have, for all ¢ € [0, 2r],
J2(t)] = | 2(r) + fx’(s) ds| < max(—r, R) 4+ 2= |2'| 1o
- < max (—r, R) + 2nd, |z'* + cx'|ps,
so that -
Iz < .21_75 f jx(t)| dt < max (—r, R) + 276, |x'’ + c:z:"|L-'-. ‘(5.18);

Inserting (5.18) in (5.17), we easily dednce the existence of o = el ey, n, 0,7, R)'> 0

_such that |z’* + cz’|;1 << ¢, which by (5.15) and (5.18) implies the existence of o > 0
dependlng on the same quantltles only and such that |z| 0 < ¢, which comp!etes the
proof. 1

Remark 2: With respect to Remark 1, we see that when Iy and 'y, = 0, the
condition on I' is improved from I'"< 3/::2 into I’ <C 4/=? but the existence result
requires that f is constant. Notice that, in contrast with Theorem 2, Theorem 3 is
not sharp when applied to the case of a constant I.
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