On the existence of the solution of an abstract optimization problem related to a quasi-variational inequality

G. BRUCKNER

Es wird ein allgemeines Konzept zur Erlangung von Existenz- und Regularitätsresultaten für ein Optimierungsproblem angegeben, das in einem engen Zusammenhang zu einer Quasi-Variationsungleichung steht.

Дается общий подход получения результатов о существовании и регулярности для некоторой проблемы оптимизации, которая тесно связана с одним квази-вариационным неравенством.

A general concept is given to get existence and regularity results for an optimization problem that is closely connected to a quasi-variational inequality.

In this paper a general concept is given to get existence results for the problem

$$||x - u||_B = \inf_{\substack{y \in X, v \in u_* \\ [y,v] \in G(S)}} ||y - v||_B$$

where X_0 and U_0 are closed and convex subsets of a reflexive Banach space B_0 being continuously imbedded into the reflexive Banach space B, and $[y, v] \in G(S)$ means that y is a solution corresponding to the parameter v of a certain parametric problem in B.

If the mentioned parametric problem is a parametric variational inequality (and this will be assumed later on)

$$\begin{array}{l} y \in C(v), \quad v \in U \subset B \\ (A(y, v) - y^*, z - y)_B \geq h(y, v) - h(z, v) \quad \forall z \in C(v) \end{array}$$

$$(2)$$

and $X_0 = U_0$ then (1) is closely connected to the quasi-variational inequality

$$\begin{array}{ll} u \in C(u), & u \in U_{0} \\ (A(u, u) - y^{*}, z - u)_{B} \geq h(u, u) - h(z, u) & \forall z \in C(u) \end{array} \right\}$$
(3)

(cf. [1]).

The main reasons to investigate (1) instead of (3) are the following:

(i) (1) can be solved under milder conditions than (3); a solution of (1) can be considered as a generalized solution of (3).

(ii) If (3) is solvable then the solution sets of (1) and (3) coincide.

(iii) To solve (1) optimization techniques can be used (cf. [1] where approximation procedures are given).

Compared with the literature on existence for quasi-variational inequalities (cf. e.g. [3, 5]) here the condition

$$SU_0 \subset U_0$$

6 Analysis Bd. 3 Heft 1 (1984)

(4)

(1)

(where S is the solution operator of (2)) is not needed. Further, in the sequel the uniform coercivity condition of [5] is weakened and other conditions are generalized to our case.

The author is obliged to R. KLUCE for hints and discussions.

Let B_0 , B be reflexive Banach spaces, let B_0 be continuously imbedded into B, B^* the adjoint space of B, (\cdot, \cdot) the pairing between B^* and B, $\|\cdot\|$ the norm in B and B^* , $\|\cdot\|_0$ the norm in B_0 . Let further U be a w-closed subset of B, X_0 and U_0 w-closed subsets of B_0 , $U_0 \subset U \cap B_0$. Let on U a multivalued mapping C be defined, $\emptyset \neq C(u) \subset B$, C(u) closed and convex. Further, let $A(\cdot, u)$ be an operator from (the whole of) C(u) into B^* , $h(\cdot, u)$ an admissible functional on C(u), and $y^* \in B^*$. We solve (1) with the help of the following theorem of Weierstrass:

In a reflexive Banach space a w-l.s.c. functional attaines its inf on a bounded, w-closed subset.

The functional

$$f(x, u) = ||x - u||$$

is w-l.s.c. on $B_0 \times B_0$. Indeed, let be $x_i \to x$, $u_i \to u$ in B_0 . As the imbedding into B is linear and continuous it is also w-continuous, i.e. $x_i \to x$, $u_i \to u$ in B. Hence $||x - u|| \le \lim ||x_i - u_i||$ because of the w-l.s.continuity of the norm.

Let G(S) be the graph of S, i.e.

 $G(S) = \{[y, v] \in B \times U \text{ such that } y \in Sv\}$

and let us suppose that

there is an $[y_0, v_0] \in G(S)$ with $y_0 \in X_0, v_0 \in U_0$.

We consider the (non-empty) set $M_1 \subset B_0 \times B_0$,

 $M_1 = \{[y, v] \in G(S) : y \in X_0, v \in U_0, ||y - v||_0 \le ||y_0 - v_0||_0\}.$

If M_1 is

(i) bounded in $B_0 \times B_0$ and

(ii) w-closed in $B_0 \times B_0$

then by the Weierstrass theorem f(x, u) will attain its inf on M_1 . This inf then is clearly a solution of (1).

Sufficient for the boundedness of M_1 in $B_0 \times B_0$ is that

$$M = \{ y \in X_0 : \exists v \in U_0 \text{ s.t. } [y, v] \in G(S) \text{ and } ||y - v||_0 \leq c \}$$
is bounded in B_0 for every $c \geq 0$. (6)

Indeed, let us take $c = ||y_0 - v_0||_0$. If y is bounded then also v has to be bounded since $||y - v||_0 \le c$. This is (i).

Sufficient for the w-closedness of M_1 is that

$$G(S) \cap (X_0 \times U_0)$$
 is w-closed in $B_0 \times B_0$.

Indeed, let be $[y_i, v_i] \in M_1, [y_i, v_i] \rightarrow [y, v]$ in $B_0 \times B_0$. Since $[y_i, v_i] \in G(S) \cap (X_0 \times U_0)$, (7) implies $[y, v] \in G(S) \cap (X_0 \times U_0)$. We have further $||y - v||_0 \leq \underline{\lim} ||y_i - v_i||_0$ $\leq ||y_0 - v_0||_0$. This is (ii).

If G(S) is w-closed in $B \times B$ then clearly (7) holds.

In the sequel we will assume that $[y, v] \in G(S)$ means y is a solution corresponding to the parameter v of the parametric variational inequality (2) and give sufficient conditions for (6) and (7).

Let us begin with (6).

(5)

(7)

An abstract optimization problem

If one of X_0 and U_0 is bounded M is clearly bounded. In the case where both X_0 and U_0 are unbounded we have

Proposition 1: Let for every $u \in U_0$ there be an $Nu \in C(u)$ s.t.

$$\|Nu\| \leq b \|u\| + c, \qquad b \geq 0, \tag{8}$$

$$|h(Nu, u)| \leq d ||u|| + c, \quad d \geq 0,$$
 (9)

and let $y \in X_0$, $u \in U_0$ with $||y - u||_0 \leq c_1$ and $||y||_0 \rightarrow \infty$ imply

$$\left(\left(A(y, u), y - Nu\right) + h(y, u)\right) / \|y\|_{0} \to +\infty.$$
(10)

Then M is bounded in B_0 for an arbitrary $y^* \in B^*$.

Proof: (Attention: Throughout this proof and for the rest of the paper the letters c, c_1, c_2, \ldots will symbolize "a certain constant".)

For $y \in M$ there is a $v \in U_0$ s.t. $||y - v||_0 \leq c$ and

$$(A(y, v), y - Nv) + h(y, v) \leq (y^*, y - Nv) + h(Nv, v)$$
$$\leq ||y^*|| ||y - Nv|| + |h(Nv, v)|.$$
(11)

We have

 $||y - Nv|| \le ||y|| + ||Nv|| \le ||y|| + b ||v|| + c$

 $\|v\| = \|v - y + y\| \le \|y - v\| + \|y\| \le \|v\| + k \|y - v\|_0 \le \|y\| + c,$ hence $\|y - Nv\| \le (1 + b) \|y\| + c$. Setting this into (11) and having regard to (9) we get

i.e.

and

$$\begin{split} & (A(y, v), y - Nv) + h(y, v) \leq \left(\|y^*\| \left(1 + b\right) + d \right) \|y\| + c \leq c_1 \|y\|_0 + c, \\ & ((A(y, v), y - Nv) + h(y, v)) / \|y\|_0 \leq c \quad \text{if } \|y\|_0 \to \infty. \end{split}$$

-The contradiction means that $||y||_0$ has to be bounded

Remark 1: In the case $B_0 = B$ instead of (10) another possibility for a uniform coercivity condition is

$$((A(y, u), y - Nu) + h(y, u))/||y - Nu|| \rightarrow +\infty \text{ if } ||y - Nu|| \rightarrow \infty,$$

which is used in the second part of [1].

Remark 2 (cf. [4: p. 211]): If

$$h(y, v) \ge -c_1 \|y\| - c_2 \|v\| - c_3 \tag{12}$$

the condition

 $(A(y, v), y - Nv)/||y||_0 \rightarrow \infty$ for $||y||_0 \rightarrow \infty$ is sufficient for (10). Indeed,

 $(A(y, v), y - Nv) + h(y, v) \ge (A(y, v), y - Nv) - c_1 ||y|| - c_2 ||v|| - c_3$ and from $||v|| \le ||y|| + c$ and $||y|| \le k ||y||_0$ we obtain

 $((A(y, v), y - Nv) + h(y, v))/||y||_0 \ge (A(y, v), y - Nv)/||y||_0 - c$

for $||y||_0 \to \infty$.

83

(13)

6*

It should be mentioned that (12) is clearly satisfied if e.g. $h \ge 0$ holds. Further, $h(\cdot, u)$ convex and l.s.c. imply $h(y, v) \ge -c_1(v) ||y|| + h(0, v)$ [4: p. 136].

Remark 3 (cf. [4: p. 211]): If $A(\cdot, u)$ is monotone and

$$|(A(Nu, u), y - Nu)|/||y||_0 \leq c$$
(14)

for $||y||_0 \to \infty$, $||y - u||_0 \leq c$, $u \in U_0$, $y \in X_0$ then the condition

$$h(y, u)/||y||_0 \rightarrow +\infty$$

will be sufficient for (10). Indeed,

$$(h(y, u) + (A(y, u), y - Nu))/||y||_0 \ge h(y, u)/||y||_0 + (A(Nu, u), y - Nu)/||y||_0$$

If one is only interested in some special $y^* \in B^*$ then a sufficient condition for the boundedness of M is given by

Remark 4 (cf. [3]): Let for every $u \in U_0$ there be an $Nu \in C(u)$ s.t.

$$h(Nu, u) \leq c, \tag{16}$$

and let $y \in X_0$, $u \in U_0$ s.t. $||y||_0 \rightarrow \infty$ and $||y - u||_0 \leq c$ imply

$$(A(y, u) - y^*, y - Nu) + h(y, u) \rightarrow +\infty.$$
⁽¹⁷⁾

Then M is bounded. Indeed, for $y \in M$ we have

$$(A(y, v) - y^*, y - Nv) + h(y, v) \leq h(Nv, v) \leq c$$

This contradicts (17) for $\|y\|_0 \to \infty$.

We give some easy examples in the case $B_0 = B$.

Example 1 (cf. [2]): Let be $A: B \to B^*$, $N: U_0 \to B$ with

$$(Ax - Ay, x - y) \ge \delta(||x - y||), \qquad \delta(1) > 0, \tag{18}$$

$$||Ay|| \leq L ||y|| + c, \tag{19}$$

$$||Nu|| \leq b ||u|| + c, \quad b < \delta(1)/2L \quad (b < m/L \text{ if } \delta(r) = mr^2)$$
 (20)

and $h \equiv 0$. Then the conditions of Proposition 1 are fulfilled.

Proof: Taking into account Lemma 1 of the second part of [1] and $||y - v|| \leq c$ we find for great ||y||

$$(Ay, y - Nv) = (Ay - A0, y) - (Ay, Nv) + (A0, y) \ge \frac{o(1)}{2} ||y||^2 - bL ||y||^2 - c_1 ||y|| - c_1,$$

i.e.

$$(Ay, y - Nv)/||y|| \ge \left(\frac{\delta(1)}{2} - bL\right)||y|| - c \to \infty \quad \text{if } ||y|| \to \infty.$$

Example 2: Let $A = J_{\varphi}$ be the duality mapping corresponding to the function φ , $h \equiv 0$, and let N fulfil (8) with b < 1. Then the conditions of Proposition 1 are satisfied.

Proof: We use $(Ay, y) \ge \varphi(||y||) ||y||, ||Ay|| = \varphi(||y||)$. Then

$$(Ay, y - Nv) = (Ay, y) - (Ay, Nv) \ge \varphi(||y||) ||y|| - \varphi(||y||) ||Nv||,$$

i.e.

$$(Ay, y - Nv)/||y|| \ge \varphi(||y||) (1 - b) - c \Rightarrow \infty \quad \text{if} \quad ||y|| \Rightarrow \infty.$$

(15)

An abstract optimization problem

We now give sufficient conditions for (7) i.e. $G(S) \cap (X_0 \times U_0)$ is w-closed in $B_0 \times B_0$. Generalizing the definition of the "weak A-continuity of C" in [3] we prove the

Proposition 2: Let be

 $A(\cdot, u)$ monotone and hemicontinuous $\forall u \in U_0$,

 $(A(y, \cdot), \cdot)$ w-continuous on $U_0 \times B \forall y \in X_0$ (e.g., if

 $A(y, \cdot)$ is increasing continuous on U_0 ,

h w-l.s.c. on $X_0 \times U_0$ and $h(\cdot, u)$ convex $\forall u \in U_0$. (23)

Let further the following implication be true:

 $\begin{array}{l}
If \quad [y_{k}, u_{k}] \in X_{0} \times U_{0}, \quad y_{k} \in Su_{k}, \quad i.e. \\
(A(y_{k}, u_{k}) - y^{*}, z - y_{k}) \geq h(y_{k}, u_{k}) - h(z, u_{k}) \quad \forall z \in C(u_{k}), \\
and \quad [y_{k}, u_{k}] \rightarrow [y, u] \quad in \quad B_{0} \times B_{0} \\
then \\
(i) \quad y \in C(u) \quad and \\
(ii) \quad \forall w \in C(u) \exists w_{k} \in C(u_{k}) \quad s.t. \\
\lim \left((A(y_{k}, u_{k}) - y^{*}, w - w_{k}) - h(w_{k}, u_{k}) \right) \geq -h(w, u).
\end{array}$ (24)

Then $G(S) \cap (X_0 \times U_0)$ is w-closed in $B_0 \times B_0$.

Proof: We take $[y_k, u_k] \in X_0 \times U_0$, $y_k \in Su_k$, $[y_k, u_k] \rightarrow [y, u]$ in $B_0 \times B_0$. We show that $y \in Su$. Let be $w \in C(u)$ then $\exists w_k \in C(u_k)$ with property (24) (ii). We have

$$0 \ge (A(y_k, u_k) - y^*, y_k - w_k) + h(y_k, u_k) - h(w_k, u_k)$$

= $(A(y_k, u_k) - y^*, w - w_k) + (A(y_k, u_k) - y^*, y_k - w) + h(y_k, u_k)$
- $h(w_k, u_k)$.

As $(A(y_k, u_k) - y^*, y_k - w) \ge (A(w, u_k) - y^*, y_k - w)$ we have further

$$(A(w, u_k) - y^*, w - y_k) - h(y_k, u_k) \ge (A(y_k, u_k) - y^*, w - w_k) - h(w_k, u_k)$$

Going over to lim we get

$$\begin{aligned} -h(w, u) &\leq \overline{\lim} \left\{ \left(A(w, u_k) - y^*, w - y_k \right) - h(y_k, u_k) \right\} \\ &\leq \left(A(w, u) - y^*, w - y \right) - h(y, u). \end{aligned}$$

This is equivalent to (2), i.e. $y \in Su$

A sufficient condition for (24) of Proposition 2 is given by Remark 1 (cf. [1, 3, 4]): If

A is bounded as a mapping from $B \times U$ into B^* , (25)

 $h ext{ is } [s, w] ext{-u.s.c. on } B \times U,$ (26)

 $u_k \in U_0, u_k \rightharpoonup u \text{ in } B_0 \Rightarrow w_{B_0} \text{-Lim} (C(u_k) \cap X_0) \subseteq C(u),$ (27)

$$u_k \in U_0, \, u_k \rightharpoonup u \text{ in } B_0 \Rightarrow C(u) \subseteq \text{s-Lim } C(u_k), \tag{28}$$

then condition (24) holds.

Proof: Let the assumption of the implication (24) be true. Then $y_k \in C(u_k) \cap X_0$

(21)

(22)

and (27) gives $y \in C(u)$. Further, let be $w_k \in C(u_k)$ with $w_k \to w$ in $B, w \in C(u)$ arbitrary. As $[y_k, u_k]$ is bounded also $A(y_k, u_k)$ is bounded, consequently $(A(y_k, u_k) - y, w - w_k) \to 0$. Then

$$\overline{\lim}\left\{\left(A(y_k, u_k) - y^*, w - w_k\right) - h(w_k, u_k)\right\} = -\underline{\lim}h(w_k, u_k) \geq -h(w, u)$$

as $h(w, u) \ge \lim h(w_k, u_k) \ge \lim h(w_k, u_k)$, because of (26).

In the case where the imbedding of B_0 into B is compact a sufficient condition for (24) is given by

Remark 2 (cf. [3]): If

A is continuous as a mapping from $B \times U$ into B^* , (29)

 $h ext{ is } [w, s] ext{-u.s.c. on } B \times U,$ (30)

 $u_k, u \in U_0, u_k \to u \text{ in } B \Rightarrow s_B \text{-Lim} (C(u_k) \cap X_0) \subseteq C(u),$ (31)

$$u_k, u \in U_0, u_k \to u \text{ in } B \Rightarrow C(u) \subseteq w_B \text{-Lim } C(u_k),$$
(32)

then (24) holds.

The proof goes like the proof of Remark 1 if we use the fact that $[y_k, u_k] \rightarrow [y, u]$ in $B_0 \times B_0$ implies $[y_k, u_k] \rightarrow [y, u]$ in $B \times B$ and that $A(y_k, u_k)$ is converging strongly in B^* .

REFERENCES

- [1] BRUCKNER, G.: On abstract quasi-variational inequalities. Approximation of solutions I II. Math. Nachr. 104 (1981), 209-216; 105 (1982), 293-306.
- [2] DOLCETTA, I. CAPUZZO, and M. MATZEU: Duality for implicit variational problems and numerical solutions. Numer. Funct. Anal. and Optimization (to appear).
- [3] JOLY, J.-L., et U. Mosco: A propos de l'existence et de régularité des solutions de certaines inéquations quasi-variationelles. J. Functional Anal. 34 (1979), 107-137.
- [4] KLUGE, R.: Nichtlineare Variationsungleichungen und Extremalaufgaben. VEB Deutscher Verlag der Wissenschaften: Berlin 1979.
- [5] Mosco, U.: Implicit variational problems and quasi-variational inequalities. In: Nonlinear Operators and the Calculus of Variations. Bruxelles 1975, Lectures Notes Math. 543 (1976), 83-156.

Manuskripteingang: 18.06.1982

VERFASSER:

Dr. GOTTFRIED BRUCKNER

Institut für Mathematik der Akademie der Wissenschaften der DDR DDR-1080 Berlin, Mohrenstr. 39