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On the existence of the solution of an abstract optlmlzatlon problem
related to a quasi-variational inequality -~ .

G. BRUCKNER

Es wird ein allgemeines Konzept zur Erlangung von Exlstenz- und Regularititsresultaten fir
ein Optimierungsproblem angegeben, das in einem engen Zusammenhang zu einer Qua.sl :
Variationsungleichung steht. ' ‘

HMaerca o6mu#t mORXOA MOJY4eHWA De3yNbTATOB O CYMeECTBOBARMHM U PEryJAPHOCTH JUIA
HEKOTOpO#i mpo6iieMhl ONTHMHBALMM, KOTOPAA TECHO CBA3AHA C OHUM KBA3H- BapHALMOH-
‘HHM HePaBEHCTBOM. :

Ag genera! concept is given to get existence and regularity results for an optlmlzatlon problem
that is closely connected to a-quagi-variational inequality. .

In this paper a general concept is given to get existence results for the problem .

le — ullp = inf |y — 'J"B , L T (1)
VE X,,0€ 8, . ’ . o

(v.0l€EGLS)

where X, and U, are closed and convex subsets of ‘a reflexive Banach space B,
being continuously imbedded into the reflexive Banach space B, and [y, v} € G(S)
means that y is a solution correspondmg to the pa.rameter v of a certain parametric
- problem in B.

If the mentioned parametric problem is a parametric va.na.tlonal lnequahty (and
this will be assumed later on)

Yy €C(v), veUc B ' @
(A v) — y* 2 — y)s 2 My, v).— hz, )V z¢€ Clv) )
and X, = U, then (1) is. closely connected to the quaéi-vapiational inequality
u € Clu), u € U, o _ o o ' 3
(A(u, u) — y*, z — u)'g = h(u, u) — h(z, u) Vze C(u) 3

(cf. [1]). ‘

The main reasons to mvestngate (1) mst,ead of (3) are the following: .

(i) (1) can be solved under milder conditions than (3); a solution of (1) can be con-
sidered as a generalized solution of (3).

(i) If (3) is solvable then the solution sets of (1) and (3) coincide.

(iit) To solve (1) optxmlzatxon techniques can be used (cf. [1] where approxxma,tlonl
procedures are given).

Compared with the literature on existence for quasi-variational mequalltles (cf.
e.g. [3, 5]) hu‘e the condition .

SU, = UQ : ' : - (4)
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(where § is the solution operator of (2)) is not needed. Further, in the scquel the uni-
“form coercivity condition of [5] is weakened and other conditions are gencralized to
our case. o ' . :
The author is obliged to R. KLuGE for hints and discussions. )

Let B,, B be reflexive Banach spaces, let B, be continuously imbedded into B, B*
the adjoint space of B, (-, -) the pairing between B* and B, ||-| the norm in B and B¥*,’
Illo the norm in B,. Let further U be a w-closed subset of B, X, and U, w-closed

‘subsets of By, Up— U n B,. Let on U a multivalued mapping C be _ defined,
@ = C(u) = B, C(u) closed and convex. Further, let A(, %) be an operator from
. (the whole of) C(u) into B*, k(-, u) an admissible functional on C(u), and y* € B*.

We solve (1) with the help of the following theorem of Weierstrass:

In a reflexive Banach space aw-1.s.c. funclional attaines its inf on a bounded, w-closed
subset. ' :
The functional

f(z, w) = iz — ul |
_is w-l.s.c. on By X By. Indeed, let be z; >z, u; = u in By. Asthe imbedding into B
is linear and continuous it is also w-continuous, i.e. z; =z, u; =~ % in B. Hence
e — || < lim {lz; — u;l| because of the w-l.s.continuity of the norm.
Let G(S) be the graph of S, i.e. '

@(S) = {[y,v] € Bx U such that y € Sv}
and Jet us suppose that ' '
there is an [y, v5] € G(S) with y, € Xo, vo € Up- ' (5)
‘ We consider the (non-empty) set M,'< B, X By, ‘ ) '
My ={ly,v) € G(S):y € Xo, v € U, lly — vllo = liyo — wollo)-
IfM,is o
* ° (i) bounded in B, X B, and
(ii) w-closed in By X B, A . )
then by the Weierstrass theorem f(z, u) will attain its inf on M,. This inf then is

" clearly a solution of (1).
Sufficient for the boundedness of M, in B, X By is that

llf = {y_Eon: Juve U, s.t; [y, v) € G(S) and |ly — vl =c}]’ 6)
) . is bounded in B, for every ¢ = 0. : .
Indeed, let us take ¢ = fiyo — ollo- If ¥ is bounded then also v has to be bounded
since fly — vlho < c. This is (i): : :

Sufficient for the w-closedness of M, is that

Q(S) n (X, X Up) is'w-closed in By X B,. . ' 4 . _ (7

Indeed, let be [4;,9;] € My, [yi,vi] = |y,v] in By X Bo. Since [y,,v:] € G(S)n (X, X Uyp),
(7) implies [y, v] € G(S) n(Xo X Uy). We have further |ly — vllo < lim lly; — willo .
< llyo — ollo- This'is (ii).

1f G(8) is w-closed in B x B then clearly (7) holds.

In the sequel we will assume that [y, v] € G(S) means y is a solution corresponding
to the paramecter v of the parametric variational inequality (2) and give sufficient
conditions for (6) and (7). -

Let us begin with (6).
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'If one of X0 and U, is bounded M is clearly bounded. In the case where both X,
and U, are unbounded we have

Prop_osxt;non 1: Let for every w € U, there \be an Nu € C’(u) s.t. :
IVull Sbjull +¢, b20, (8)

W(Nu,w)| S dfull +¢, d=0, (9)
and let y € X,, u € U, with |ly — u,’l;) = ¢, and ||yl — oo imply )
. ((A(y w) y — Nu) + kly, w)/liyllo — +o0. . (10)

Then M is bounded in B, for an arbitrary y‘* ¢ B*,

Proof: (Attention: Throughout this proof and for the rest of the paper thelett,ers '
¢, €1, Cg, ... Will symbolize ‘“a certain constant’.) .
ForyEMtherelsa.vé Uost||y—v||03cand ‘
(4(y, v), y — Nv) + h(y, v) < (¥*, ¥ — No) + b(Nv, v) .
= lly*il ly — Noll + [A(Nv, v)|. (11)
We have: ' '
lly — No|| = Iyl + 1Nl = llgll + & Il + ¢
and ‘ .
ol =1lo —y + 9l < lly — ol + llyll < loll + & lly — vllo < iy}l +c,
" hence [ly — No|| < (1 + b) |lyl|'+ c. ‘Setting this into (11) and having regard to (9)
we get

) - (A(y, »), y — Nv) + h(y, v) (I!y*ll (1+4b) +d) gl + ¢ < e ligllo + c,
Le. ) .

(4@, 0)y — No) + k(y, v)[liyllo < c - if Jiyly — oo.

\V -The contradlctlon means that llyllo has to be bounded §

Remark 1: In the case B, = B instead of (10) another. possxblht\ for a uniform
coercivity condition is .

(4w, w), y — Nu) + k(y, w)ly — Null & +o0 if |ly — Nufj -
which is used in the second part of [1]. 4 ‘ , T
Remark 2 (cf. [4: p. 211])): If - : o .

kY, v) = —c Yl — o fill — ¢5 (12)
’thé coqdit,ion . . ( ' o .
(4(y, v), y — Nv)/llygllo — oo for |jylly — oo ' .8y -

is sufficient for (10). Indeed,
(A, 00y — No) + h(y, v) = (A(y, v), y — Nv) — e ligll ~ ez fioll — g
and from |jv|| < ||yl + ¢ and ||y]| = kllylly we obtain
(A, v), y — Nv) + h(y, v))[ityile Z (Aly, v), y — No)/liyllo — ¢

for |lylly = oo.

6*
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It shoﬁld be mentioned i,hat (12) is clearly satisfied if 'c.g. h = 0 holds. Further,
h(-, u) convex and l.s.c. inply Ay, v) 2 —c(v) llyll + k(0, v) [4: p. 136].

Remark 3 (cf. [4: p. 2H1]): If A(:, ) is monotone and )
[(A(Nw, u), y — Nul|/llgll < ¢- , : (14)

for lyllo — o0, fly —ullo =¢, v€ U, yE€ X, then the condition
| by, wiylo =400 | , (15)

" will be sufficient for (10) Indeed
(Aly, u) + (Aly, w), y — Nu))ligle = by, u)/llyllo + (A(Nu, u), ¥y — Nu)fllyllo-

If one is only interested in some special y* € B* then a sufficient condition for the
boundedness of M is given by '

Remark 4 (cf. [3]): Let for every u € U, there be an Nu € C(u) s.t. .
h(Nu, u) Sc, 4 . . . ©(16)
and let y € X,, u € Uy s.t. ||y||° —odband [ly — u||° <c 1mply
(A(y, w) — y* y — Nu) + h(y, w) > +oo. S (17)
Then M is bounded. Indeed, fory € M we have '
(A(y, v) — ¥* y— Nv) + h(y, v) < h(Nv, v) <ec.

V Thls contradicts (17) for |lylly — oo.
We give some easy examples in the case Bo =B.

Example 1 (cf. [2]): Let be 4: B—»B* N: Uo—>B with

(Az — 4y, z —y) 2 d(ilx — yil), é(1) > 0, ' ' o (18)
4yl < L gl + e, ; (19)
C INull <blul+c, b<&1/2L (b <m/L if 8r)=mr?) (20)

~and b = 0. Then the conditions of Proposition 1 are fulfilled.

Proof: Taking into account Lemma 1 of the second part of [1}.and jly — o]l = ¢
we find for great |jy]|

(Ay, y — Nv) = (Ay — A0, y) — (Ay, Nv) + (40,9) =
— bL llyl? — ¢, llyj — ¢,

' 8(1 , |
g,y — Nl 2 (25— L) I — o~ o0 i 1ol 0.

A tyie

1e.

Exa mple 2: Lot A = J, be the duality mapping corresponding to the function g,
h =0, and let N fulfil (8) with b < 1. Then the conditions of I’roposmon 1 are
satisfied. o

Proof: We use (4y,y) = @(llyl) Il 1431l = (lyl)- Then y
(Ay, y — Nv) = (4y, y) — (4y, Nv) 2 ¢llyll) Iyl — eyl INvll,

(Ay, 7 — No)llgll = ¢(llylh (1 — &) — ¢ =00 if iyl — co.
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We now give sufﬁcicﬁt conditions for (7) ie. G(S)n (X, x Uy) is w-closed in
By X By. Generalizing the definition of the ‘“‘weak A-continuity of C* in [3] we
prove the . : .

Proposition.2: Let be ' o . v
O A(, ) m’(;nétone and hemicontinuous \/ u € Uy, - ) (21)
(A(y; 9, ) w-continwous on Uy xBVye X, (efg.,'i/ '
A(y, -) is increasing conﬁnuous on U,), L . . (22):
h w-lsc.on Xgx Uy and (-, u) convex \Su € Uy.- =~ (23)

Let further the following implicaﬁon be true:
If [yew)€ Xox Us, ' g€ Su,, ie.
(A(yt' uk)' - y*.' z _ yk) = h(ykv uk) - h(z! uk) Vze¢ C(uk)r
and (Yo, w) > [3,u] in Box B, B
then ' . : ‘
(1) y ¢ Clu) and .

@ Y w € C(u) 3 w, €0(wy) st , _
hm ((A(yh ul’)- —‘y*: w — u’k) - h(wkr uk)) Z —h(w: u)'
" Then G(S) n'(Xy X Uy) is w-closed in By x B,. : .

Procf: We take [y, u] € X, x U,, Ye € Sy, [y ug] — [y, u] in By X B,.- We
~show that y € Su. Let be w € C(u) then 3 w, € C(w;) with property (24) (ii). We have
02 (Alye w) — ¥,y - w) + ..’?(yk» ) — h(wy, w)
= (A(!/k: %) — y*, w — wk) + (A(!/k» u) — Y%, Y — w) + h(y, _uk)

(24)

— h(we, ). o o .
As (A(y,,, u) — y*, Yy — w) = (A(ﬁ), ug) — Y*, Yo — w) we have further
(A(w, w) — y*, w — 3/1:).‘ R(Yir ) = (A(Yer we) — y*, w — w) - h(wy, )
Going over to lim we get : _
_h(wy Au) é h—m {(A(w’ uk) - ?/‘, w — yk) - !‘(.’/h‘“k)} ‘
, < (4w, ) — y*, w — y) ~ Ky, u).
This is equivalent to (2), i.e. y € Su @ -
A sufficient condition for (24) of Proposition 2 is given by
‘Remark 1 (cf. [1, 3, 4]): If :

A is bounded as a m#pping from B x U into B*, ' T (25)
k is [s, w]-u.s.c. on Bx U, o . _ (26)
u € Up, e = uin By = wp,-Lim (C(w,) n X,) S Clu), (27)
“uy € Uy, 4 — u in By => C(u)  s-Lim Clus), ' A o (28)

then condition (24) holds. : ' . B ,
Proof: Tet the assumption of the implication (24) be true. Then y, € C(uy) a X,
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and (27) gives y € C(u) Further, let be w; € C(uk) with w, > w in B, w€ C(u)
arbitrary. As [y, %] is bounded also A(y., u;) is bounded, consequent]v (A(yk, uk) :
— ¥, w — w;) — 0. Then ,

lim {A(Ys, w) — y*w - wy) — h(we, w)} = — lim h(w,, ) = —h(w, u)
as h(w u) = 1im A(wy, %) = lim A(w;, u), because of (26). v

In the case where the lmbeddmg of B, into B is compact a sufficient condition
for (24) is given by . :

‘Remark 2 (cf. [3]) ¥ :

. 4 is continuous as a.mapping from B X U into B*, v (29)
h is [w, s}-uss.c.on Bx U, ] o _ - (30)
U, % € Up, w, — u in B = sp-Lim (C(u,). n Xo) < C(u), . (31)
u, u € Up, up ~uin B = Clu) & wB-le C(u‘,), : . ’ ‘ (32)

then (24) holds.

The proof goes like the proof of Remark 1 if we use the fact that [y, ¥} — [y, %]
in By X B, lmplles (e, we) ->[y, u]in B X B and that A(y,, u,) is convergmg strongly
in B*.
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