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Estimates by Lozinsky's functional improved in the linear autonomous case 

B. M. GARAY and V. KERTESZ 

Mit Hilfe emes von LOZINSKIJ eingeführten undauf Matrizen definierten reellen Funktionals p 
kann eine untere und obere Abschatzung für die Norm der Losungen von linearen Differential-
gleichungen erhalten warden. Dieses Funktional hangt auch von der angewandten Norm ab. 
Es wird gezeigt, daB man durch eine entsprechende lineare Transformation der'Differential-
gleichung die bestmogliche Abschatzung erhalten kann. Im reellen autonomen Fall kann eine 
reelle, von der Zeit unabhangige, lineare Transformation verwendet werden, wenn für die 
Definition von p die euklidische Norm angenommen wird. Es gibt einen engen Zusammenhang 
zwischen dem so definierten Funktional p und den quadratischen Ljapunov-Funktionen. Die 
Abschätzungen konnen im Fall anderer Normen allgemein nichtdurch eine von der Zeit un-
abhangige lineare Transformation zur schärfsten verbessert werden. 
BenecmeHn03Ha4Hua, onpejeJieHHsstl Ha MTH1X 4YHHUHOHaJI lloaHHcKoro p jaev 
HH?ffHse H BepXHHe OUHHH pemellHn H(flIepeHqHanbHMx ypasHeHun. 0yHK[HOHaJ1 
3BUCHT H OT su6opa HopMhI. B came nOlCaBbiBaeTcR, sax MOHO cJe3raTb ouensu TOqHMMII 
c noMorqblo noxoistnero Iipeo6pa3osaxsR nepeMeHsalx. B BenecTseHHoM aBroHoMuoM 
c.ny'iae npeo6pa3oBauue seruecTseHHoe, JIHHeHoe, He aaBHcRrIee OT BpeMeni, ecJnf p 
onpee.nHeTcR eBsJIHJoBofl HopMoü. floxaaaHa TecHaB cB531. me)HAY Talc onpeJeJieHHwM jU 

H lcBaJpaTHqHaIMu lyHxIsnMs JIsnyHosa. AoHa3EJBaeTCR, WO B o6neM c.myae, ann .cnoüoü 
HopMaz, OlHKH He moryT üarrb caenaxw TOq HIJMH JIHIcetlHbIM npeo6pa3osanxeM, He 3aBlf-
CHI1HM OT speMens. 
Using a real-valued functional (denoted by p) introduced by LOZINSEY and defined on matrices, 
lower and upper bounds can be given for the norm of solutions of linear differential equations. 
This functional also depends on the norm applied. It is pointed out that the best possible 
bounds can be obtained applying an appropriate linear transformation of the differential 
equation. In the real and autonomous case this appropriate linear transformation is real and 
does not depend on the time if p is induced by the Euclidean norm. Moreover, close correspon-
dence between p and quadratic Liapunov functions i8 shown. It is proved that in the general 
case (not Euclidean norms) the best possible bounds can, generally, not be obtained if the linear 
transformation does not depend on the time. 

Introduction 

Let . be a norm in the n-dimensional (real or complex) vector space K' (K = C 
or K = R). The matrix norm induced by 1 . 1 is defined as Al = sup jAxJ. Even 

lzI1 
though single bars are used for norms in different spaces, no confusion should arise. 

The following definition makes sense [6] 
I+/iAI — 1 4u(A) = litii

ii 
where I is the unit matrix. z is a special real-valued function on matrices induced 
by the norm J . In some cases, to emphasize the dependence of (A) upon 
we write p(A) =



88	B. GARAY and V. KERTtSZ 

We recall some basic facts about z [3, 4, 61:
(1). 

/A(cA) = qi(A),	c	0,	 (2) 

/A(I)l,	 (:3) 

l(A)l	At.	 (4)


The eigenvalues of A are denoted by 1. ..., 2.,,. Let 2(A) and v(A) denote max Re 2, 
and min Re 1, respectively. Then	 Itfl 

1in

1(A) ;S1z(A).	
0 

Since 2(—A) = —v(A), (5) implies 

—4a(—A):5:v(A).	 (6) 

	

Further, if the norm	= I-Jv is defined by a positive definite Hermitian matrix

V, i.e. lxiv = (x*Vz)lZ, then for p j . jV (or briefly /LV) we have 

IA = sup Re x*	
V+ VA\ 

VAx = I (	 ),	 (7) 

	

IxII	 h' 

where * denotes the conjugate transpose. Obviously,	is the usual Euclidean

norm. 

Let to be a fixed real number and consider the linear differential equation 

= A(t) x(t),	£ ^! £,	 (8) 

where A(t) is a continuous matrix function defined for £ £0. Then, for any solution 
x(t) of (8), the following inequality holds: 

x(to)i exP(_f/s(_A(T))dr)	'l x ( t )l	lx(to)l exp (Jt)	(*) 

t -	to. 
The aim of this paper is to investigate the connection between (*) and trans-

formations of variables inthe autonomous case. By transforming the variable x, 
inequality(*) can be improved. Moreover, in case of I . 1 = . j v ' one can obtain the 
best possible upper and lower bounds for x(t)j, applying special transformations. 
A close correspondence between it and quadratic Liapunov functions is shown as 
well. On the other side, we show by examples that, in general, although we allow 
transformations of the variable z, inequality ('*) is too weak to give strong estimates 
for the norm of solutions of (8). 

Remark 1: By (4), (*) is an improvement of the well-known inequality 

x(()I exp (-J A(r)I dr)	I XMI	lx(t0 )l exp (I lA(r)ldi) 

I	£.	
0 

For example, if A(r) is a nonzero skew-symmetric matrix function, then, applying 
(7), ,zj (A(r)) = ,(—A(T)) = 0, but A(r)l, > 0. Similarly, if A is a real asymptotic-
ally stable diagonal matrix, then uj(A) = 2(A) < 0 but JAI, = Iv(A)l > 0.
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Remark 2: It follows from (*) that the asymptotic stability of the zero solution 
of (8) is implied by the condition: a(A(r)) < ö < Ofor r ^ t0 . However, the converse 
of this statement is not true even for the autonomous case. This is shown by the 
following 

Example 1: Let A be defined as follows: 

[a 2b] A =1	
i
I,	wherea<0,c<0,b2>ac. 
[a 2b],
 

It is easy to see that A is asymptotically stable but 1u,(A) > 0. But, as we shall see 
in the autonomous case, the converse of our statement is true if the variable x is 
appropriately transformed. It is valid that if A is asymptotically stable then (C) .< 0, 
where , = Cy. is the transformed equation..  

Substituting y = Q- 1 (t) x, where Q(t) is a continuously differentiable nonsingular 
matrix function defined for I ^ to, (8) goes over into 

= ( - '(t) Q(t) ± Q- 1 (t) A(t) Q(t)) y = C(t) y.	 (9) 

Applying inequality ,(*) for (9), we obtain 

	

I x(0)IIQ( to)L 1 1Q 1(0I' eap (_i s(—C(t)) dr)	Ix(t) 

Ix(to ) I Q-1(t0 ) IQ( t ) I exp (I is(c(r)) dr)	t	to.	 (10) 

In case of Q(t) being constant, we have C(t) = Q-'A(t) Q, and inequality (10) turns 
into

Ix(to)l IQL' 1Q 1 1-' ep ( -i (_Q- 1A( t) Q)dt) 

Ix(to)IIQ 11 IQI exp (Jii(Q1A(t) Q) dr)	 (11) 

On matrix theory used in this paper, see[1]. Through this papez', excepting Remark 5, 
(8) will be autonomous. The nonautonomous case as well as the case of nonlinear 
perturbations are treated in [5]. 

Estimates for some special norms 

Proposition 1: Let K = C. Let A be an  x n matrix. Then 

inf {j1 (Q 1AQ) I Q complex, nonsingular) = 2(A), 
sup {-1z1 (—Q 1AQ) I Q complex, .nonsingular) =.v(A). 

Further the in/imum is attained 'if and only if 'for any ). j such that Re A = 2(A) the 
corresponding Jordan blocks are diagonal. 

The supremum is attained if and only 
if 

for any';. i such that Re 2 = 2(A) the cor-
responding Jordan blocks are diagonal. 

Proof: We restrict ourselves to the proof'of the statements concerning infimuni. 
By 2(—A) = —v(A), the other part of the proposition follows immediately.
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By (5), it is clear that u,(Q'AQ)	2(A) for any Q. If (8) has a solution x0 for 
which xo(t)I = t	it followsfroin (11) that the infimurn cannot. be  attained. 

We put A into its Jordan canonical form J: T-'AT = J. J is a blocked diagonal 
matrix whose diagonal entries are of the form 

2k 1 

Jk =	.	(k = 1, ..., N(J	n). 

N(3) 
1k is an rk X rk matrix, frk n. 2k is an eigenvalue of A. For any real e 4 0 the 

k=1 
diagonal matrix Jk is similar to Jk(e), where	 - 

t 1tk '.

: 

In fact, Sk 1 (e) JkSk( s ) = Jk(e), where 

I 

=	. 

Thus, S-'(e) JS(e) = i(s), where S(e)is a blocked diagonal matrix whose diagonal 

entries are Sk(s). It is clear that2 (
	

*)) 
—s- 1(A) as s .- 0. Thus, for Q(s) 

defined as TS(s), uj Q'(s) AQ(s)) —s A(A) ass —>0. If for any), i any), for which Re l = 2(A) 
the corresponding Jordan blocks are diagonal, it is clear that there is an s > 0 such 
that for s (O. < lel < co) 

p(Q'(e) AQ(e)) = 2(A) U 

Proposition 2: Let K = R.' Let. A be an n x n real matrix. Then the previons 
proposition remains true i/ Q is restricted to be taken real. 

Proof: Suppose that 1, is a non-real eigenvalue of A and J1 is a Jordan block 
belonging to it. ThenJ1*, the conjugate transpose of J,, is a Jordan block as well, 
belonging to the éigenvalue J 1 (e) is defined as in the proof of Proposition 1. 
Rearranging the blocks of J(e) if necessary, we join J1(s) and J1*(e) together as 
Hj(s), where

l 

Hi(s) =
.0

0 

,i. 5.

41
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H t(e) is similar to J,(s), where a 1 = Re ,,,	= un ). and 
a t e	—fir 

at 
J,(e) =

fig

•fll 

In fact, J,(e) = Z,H,(r) Z,, where 

I

- 

I •• i	••-
Z is a 2r 1 x 2r1 matrix which is partitioned into four r1 x r1 blocks. If 2 1 is real, let 
Z1 be the r1 x r1 unit matrix. Thus, Z-'J(e) Z = J(s). 

It is clear that 2 (7 as s—SO. Thud, for Q(,-) defined as TS(e)Z, 

,ii(Q(e)AQ(e)) -->- 2(A) as e—>O. It is a lengthy but straightforward task to prove 
that Q(s) is real. The remaining part of the proof is similar to the one of Proposition 1 I 

Proposition 3: Let K = C. Proposition 1 remains true if u is induced by the norms 
or. 1I2, where for x E K's, z = (x 1 , ..., xe ), lxii and 1 x 12 are defined as 1 x11 = max ixd 

and 1z12 = ' ix, respectively.	. 

Proof: It is known [3] that 

u i (A) = max (Re a,, + E la Ik ,	.u2(A) = max (Re akk + X laid
I '	k.k+i	/	 k '	 i.i*k 

Without iny modification, the proof of Proposition 1 can be repeated I 

Example 2: Let A be the following2 x 2 real matrix 

A= I1 - 

Then, for i=1,2 

inf {,z'AQ) i Q complex, nonsingular) = 1, 
but	 . 

inf La(Q'AQ) I Q real, nonsingular) = 2. 
Since 2(A) = 1, inf {1i 1(Q 1 AQ) I Q complex, nonsingular) = 1 by Proposition 3. The 
infimum is attained if Q = T. 

If C is a real matrix similar to A, then C has the form 

f1+ab 1	 .	.	 .. I, wherel—a2—bc=2. 
V	l — aj
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/	Then
1z 1 (C) = max (1 + a + Ibi, I - a + c i)	(1 + a + Ibi + 1 - a ± cj)/2 

Similarly, z2(C) 	2. For C = A we have j1 (C) = u2(C) = 2. 

Proposition 4: Substituting 4u,byz, Proposition 1 and Proposition 2 remain true. 
Proof: By(7), 

•	 x(AV + VA) 

	

= sup
	2x* X X 

Let W be a matrix for which V = W9V. W is nonsingular and can be taken real 
if V is real. By elementary operations and (7) 

x*W*[(WAW)* + WAW'l Wx 
u(A) = sup	 = 1u1(WAW ) 9. 

	

•WX+O	 x	x 

Since (WAW-1 ) = A(A) and v(WAW') = v(A), Proposition 1 and Proposition 2 
can be applied directly. We have to use . the fact that (Q 1 WAW-'Q IQ nonsingular) 
= ,(Q- 1AQ I Q nonsingular), too I 

Corollary: Recall that for any V the expression A*V + VA is the derivative of 
the quadratic form v(x) = x*Vx with respect to the differential equation (8). Let V be 
positive definite. It is immediately seen from (7) that V i8 a quadratic Liapunov function 
with respect to (8) - i.e. the' derivative of V(x) with respect to (8) is negative definite - 
if and only if uv(A) <0. For any  such that A(A) <0 there exist quadratic Liapunov 
functions, since inf (is(A) I V positive definite) = 2(A). For example, , W'W is a 
quadratic L4apunov junction, if 1J is sufficiently small and W = TS(e) Z. 

Remark 3: The Corollary above is implicitely contained e.g. in [7]. 

Estimates for arbitrary norms 

Lemma: Let K = R and let 1 .1 be an arbitrary norm on R2. Let P be aprojection 
of R2 onto a one-dimensional subspace. Assume that J PJ	1 + a, where a> 0. Then 

u(P) S^ I + a
	

(a),	where	x ) = sup	1 1 
a + 1	 2(O.1) in (i __ .!.) - In 2 

Ct 

Remark 4: A straightforward but somewhat lengthy calculation shows that 
p(a) is the unique solution of the equation 

•	 Jn+--=1+ln(l±) 
cc 

in the O, 1) interval. It is easy to see that lini (a)  1 In -. 
a 

Proof of the Lemma: Assumethat our , two-dimensional real normed space is 
represented on the usual Euclidean plane, i.e. vectors of our two-dimensional real 
normed space are identified with points of the usual Euclidean plane. The unit
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• sphere (x € R2 I JXJ = 1) is represented as a convex closed curve I' symmetric to the 
origin. 

Pick a point M on F such that IP(M)I = 1 + a. Without loss of generality we 
can assume that the coordinates of P(M) are (A(1 +	0), A > 0, and that those 
of Mare (A(1 +.) + v 1 , v4, v2 > 0 (see Fig. 1). The intersection point of Fand the 

M

Fig.! 

ray OP(M) is denoted by D, the shorter arc on F between D and M is denoted by y. 
y can be parametrized as 

{(t + s(t) v 1 , s(t) v2 ) IA	t	(1 + x) A), 

where s is a continuous, monotonically increasing convex function, s(A)	0, 
s(A(1 + )) = 1 and - if M is properly chosen -, ., the left-hand derivative of s, 
satisfies 0 < .(t) < cc, t E [A, (1 + x) A]. 

Pick a point S on y. The coordinates of S are (t + s(t) v,, s(t) v2), and those of 
F(S) are (t, 0). The opposite of M is denoted by N. By convexity, the line passing 
through the points N and D intersects the segment SF(S) at a point Z. The first 

coordinate of Z is t ± v 1	- 
(

2+ )A ,therefore 

s(t)(t—A) (2+)A	
•	(12) 

Let h> 0. For brevity, S + hF(S) is denoted by E. The left-hand tangent of the 
are y at S cuts the ray OE in a point F and the segment DP(M) in a point U. The 
coordinates of U are (t — s()/a(t), 0). Consequently, 

At—A(l+).	 •	 (13) 

By convexity of I', F	1. As IEI/IFI is the quotient of the first coordinates of E 
and of S, a direct computation shows that	 S 

El1	h 
1F — 1	

+	t • s(t)/(t)
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•	Therefore, using (13) as well, 

IS + hP(S)I	I	J EJ - 1 > E l/IF ! — 1 -	t 
h	 h	=	h	- t - s(t)/.(t) 

	

— 1s(t)/.(t)	^	s(t)/,(t) 
— + I - s(t)/(t) — + A(l + a) 

Therefore fL(P) 	+ A(1 ±	, 
where 

= sup {s(t)/(t) I A 5; tS- A(1 +'a)). 
As a corollary of (13), 0 <j9,< cc. 

By the definition of fi, 

tE[A,A(1+a)1. 

Let A be a fixed number , satisfying 0 < A < 1. Integrating from A(1 ± a).) to 
A(1 + a), we obtain 

Ins(A(1'+ a)) - lns(A(1 + a).)) ^ Aa(1 
By (12),

In tXA >Aa(1 —2)fl,	^Aa(1 _A)/1fl2+a. 
aA 

Therefore

(P)	+ a 1 sup	1 - 2 
1 + alE(o fl 	2\ 

In 	+	 In A ' 
\	a'/ 

which was to be proved I 

Proposition 5: Let K C or K = R. Let 1 . 1 be a norm on K3. The set 
{P: K -> K3 I P is a projection, rank (P) = 21 

is denoted by 91. Then the blowing conditions on the norm )•) are equivalent: 
(i) For any P E.9, I P 1 > 1. 

(ii) There is a P0 E .9 such that inf (u(Q 1P0Q) I Q non-singular) > 1. 
Proof: It is obvious that {Q-'P0Q I Q nonsingular) = .9 for any P0 E'.9, therefore 

inf {4(Q-'P0Q) I Q nonsingular) = inf {u(P) I P € 91. We make use of this fact in 
both parts of proving our proposition. 

(i) (ii): Suppose that Condition (i)..holds. Then, by a compactness argument, 
there exists an a > 0 such that IPI	I + a for any ' P €.9. Let P € 9 be arbitrar-
ily chosen and let x0 € K3 be such that Px0 1 (1 + a) Ixol. Consider the set 
X = (Ax0 + 1zPx0 I A, ,u real). Let P' be the restriction of P on X and Il' be the 
restriction of . 1 on X. It follows directly, from definition that X is a two-dimensional 
real vectorspace and j . j' isanorm on X. Further, F' is a projection of X onto a one-
dimensional subspace, P')' Z^ 1 + a and uj.i(P) ^ 1u. 1 .(P'), where, using the lemma, 

-u 1 . 1' (P')	1 + a(a) > 1, which was to be proven. 
(ii) -> (i): This is evident by inequality (4) I. 

Thus we have proven that - in general — inequality (*) cannot be essentially 
improved by transforming variables. In fact, in Example 2 and Proposition 5 we
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have shown the existence of norms 1 . 1 and of matrices A such that A(A) < ml 
{z 1 . 1 (Q 1AQ) I Q nonsingularj. On construction and some properties of norms satisfying 
Condition (i) see [2]. 

Remark 5: If the transition matrix Q is allowed to be dependent on t, then - 
transforming the variable x - the best estimation can be achieved by (*). This 
remark holds as well in case of (8) being nonautonomous. In fact, let Q(t) = X(t), 
where X(t) is the fundamental matrix. Then (8) goes over into 9 = 0; y = 0. Since 
a(0) = 0, (10) implies 

IX(t0 )I-' 1 X_ 1 (01 - 1	;5 I XMI .X(t)j X-(t0 )1 IX(to)I ,	t ^ to.	(14): 

In case of (8) being autonomous, the transition matrix function can as well be 
chosen in the following manner:	- 

For e == 0,. let Q(t) = J(e) U(t), where U(t) is a blocked diagonal matrix function 
with diagonal entries Uk(t) = exp ).k(t - t0 ) . 'k' k = 1, 2, ..., N(A); 'k being the 
7k X rk unit matrix, J(e) being the same as in the proof of Proposition 1. Since 

' t ) Q(t) ± Q1-'(t) A- Q,(t) = eE,	 (15) 
where E is a blocked diagonal matrix with diagonal entries Ek = Jk - AkIk, it is 
easy to show that the best lower and upper exponential bounds on norms of solutions 
of (8) are assured by inequality (10) as e -*0.	 - 
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