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Estimates by Lozinsky;s functional improved in the linear autonomous case

B. M. GarAY .and V. KERTESZ

Mit Hilfe eines von LozINSK1J eingefﬁhrteﬁ und auf Matrizen definierten reellen Funktionals m

_kann eine untere und obere Abschitzung fiir die Norm der Lésungen von linearen Differential-

gleichungen erhalten werden. Dieses Funktional hingt auch von der angewandten Norm ab.

"Es wird gezeigt, daB man durch eine entsprechende lineare Transformation der ‘Differential-

gleichung die bestmégliche Abschitzung erhalten kann. Im reellen, autonomen Fall kann eine
reelle, von der Zeit unabhangige, lineare Transformation verwendet werden, wenn fiir die
Definition von u die euklidische Norm ‘angenommen wird. Es gibt einen engen Zusammenhang
zwischen dem so definierten Funktional 2 und den quadratischen Ljapunov-Funktionen. Die
Abschitzungen kénnen im Fall anderer Normen allgemein nicht durch eine von der Zeit un-
abhingige lineare Transformation zur schirfsten verbessert werden.

BemecrsennoaHaunmii, onpepeeHHHN Ha Marpuuax dynxuuonan JIOBMHCKOro u naer
HIGKHUE M BepXHMe OUeHKH peuleHH#t auddepeHnuanbHbx ypasHeRuit. QOYHKUMOHAT
3aBUCHT ¥ OT BHGOpa HOPMEI. B cTaThe MOKABHBAETCA, KAK MOMHO CHENATh OLEHKH TOYHRIMM
C NOMOMbI0 NORXONAUIEro Hpeo6pasoBaHMA NepeMEHHHX. B BemecTBEHHOM aBTOHOMHOM

. cy4ae mpeo6paaoBanye BEMECTBEHHOe, JHHelHOoe, He 3aBUCAMEE OT BPeMEHH, eClH u

onpenenAeTcA eBKAUAOBO# Hopmoi. Ilokasana TeCHAA CBA3L MEKIY TaK ONpENETeHHBIM
¥ KBaapaTHuHEMI dynkumamu JIanyHosa. JlokasnBaeTca, 4To B o6umeM ciyyae, JIA Mo60H
HOPMH, OLEHKH HE MOTyT OWTEL CHeNlaHH TOYHHIMM JHHEHHHM npeo6pa3oBaHueM, He 3aBH-
CAIMM OT BPEMEHH. ’ )

Using a real-valued functional (denoted by u) introduced by LoziNsky and defined on matrices,
lower and upper bounds can be given for the norm of solutions of linear differential equations.
This functional also depends on the norm applied. It is pointed out that the best possible
bounds can be obtained applying an appropriate linear transformation of the differential
equation. In the real and autonomous case this appropriate linear transformation.is real and

. does not depend on the time if u is induced by the Euclidean norm. Moreover, close correspon-

dence between u and quadratic Liapunov functions is shown. It is proved that in the general
case (not Euclidean norms) the best possible bounds can, generally, not be obtained if the linear
transformation does not depend on the time. . : '

¢

_Introduction

Let || be a norm in the n-dimensional (real or complex) vector space K* (K = C |

or K = R). The matrix norm induced by |-| is defined as |4| = sup |4z|. Even i

jz|]=1 :

though single bars are used for norms in different spaces, no confusion should arise.
.The following definition makes sense [6] :

u(d)y = lim M,
hA—+0 k S

where I is the unit matrix. u is a special real-valued function on matrices induced -
by the norm [-|. In some cases, to emphasize the dependence of #(A) upon ||,

- we write u(A4) = up(A4). :
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We recé.ll some basic facts about x [3, 4, 6]: ' .
WA + B) < p(4) + u(B), - S . (n-

plcd) = cu(Ad), ¢=0, ! - (2)
W) =1, . (3)
, lw(d)] = 14]. - : (4)
- The eigenvalixes of A are denoted by 4. ..., 4,. Let 2(4) and ¥(A4) denote max Re 4;
- and min Re 4;, respectively. Then - ' 1siss
1sise ' ' . ER
_ MA) < p(d). B
Since A(—4) = —»(4), (5) implies .
—u(—4) < s(d). . (6)
Further, if the norm |-| = |-]} is defined by a positive definite Hermitian matrix
V,ie. [z]p = (z* Vz)'2, then for u v (or briefly uy) we have
o ) , * .- . N
pv(d) = sup Rez*VAz = 4 (—[ﬂ—;—_—ﬁ), (7
|z}=1 N

~where * denotes the conjugate transpose. Obviously, |-|; is the usual Euclidean
norm. .
Let ¢, be a fixed real number and consider the linear differential equation

My =A@z, 1=t - o ®)

where A(t) is a continupﬁs matrix function defined for ¢ = ¢,. Then, for imy solution
" z(¢t) of (8), the following inequality holds: '

: .t . t
[z(to)| exp_(— [ u(—4() dr) < |=(t)] < |2(to)| exp ( [ ulA() dr), (%)
- ) . t R [

£,

., The aim of this paper is to investigate the connection between () and trans--
formations of variables in the autonomous case. By transforming the variable z,
.inequality () can be improved. Moreover, in case of |-| = |-y, one can obtain the
best possible upper and lower bounds for |z(t)|, applying special transformations.
A close correspondence between p and quadratic Liapunov functions is shown as
well. On the other side, we show by examples that, in general, although we allow
transformations of the variable z, inequality (x) is too weak to give strong estimates
for the norm of solutions of (8). : x

‘Remark 1: By (4), () is an improvement of the well-known inequality
. t e '

J2(to)] exp '(—, [ 1) dr) < 1) < [z(to)] exp'( J 14 dr),
. t - : &

t=>t,. S
For example, if A(z) is a nonzero skew-symmetric- matrix function, then, applying
(7), pr(A()) = p(—A(r)) = O, but |4(z)|; > 0. Similarly, if A-is a real asymptotic-
ally stable djagonal matrix, then g;(4) = X(4) < 0 but |4]; = »(A4)| > 0.
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Remark 2: It follows from () that the asymptotic stability of the zero solution
of (8) is implied by the condition: u{A4(t)) < 6 < Ofor r = ;. However, the converse
of this statement is not true even for the autonomous case. ThlS is shown by the

'followmg ) :

Example 1: Let A be defined as follows

A:[g fb], wherea<0,c<0,b2>ac.
It is easy to see that A4 is asympbotncally stable but ,u,(A) 0. But, as we shall sce
in the autonomous case, the converse of our statement is true if the variable z is
appropnately transformed. It is valid that if 4 is asym ptomcally stable then u(C) < 0,
where § = Cy is the transformed equa.txon

. Substituting y = Q~(¢) z, where @(¢) is a continuously dlfferentla.ble nonsmgular

: matrlx function defined for ¢ = ¢,, (8) goes over into

§=(@0en+QiwAmeu)y=Ccoy. (O
“Applying inequality () for (9), we obtain ’ :

N

) ot )
lz(to) 1Q(%)1 7 1Q(¢)I~* exp (— J u(—C()) dr) = [z(t)l
) t

- t . ’ .
é 12(£0)1 1@~ (80! 1Q(2)] eXP( [ u(C() d?), b2t (10)

In case of Q(t) being constant, we have C(t) = QA Q, and.ineciuality (10) turns

into
3

2t Q1 [ Q-1 e:ép-( — [(~@4(x) Q)'dr) < l(t)]

. t : , ’ .
< [2(t0)] 1@} 1Q] exp ( [ u(@14(v) Q) dr), =ty ) (11)
- . \'t . ’

On matrix theory used in this paper, see[1]. Through this paper, excepting Remark 5, ‘

" *(8) will be autonomous. The nonautonomous casge as well as the case of nonhnear

_ perturbatlons are treabed in [5]

Estimates for some special norms

Proposi.t,i»on‘ 1: Let K = C. Let 4 be an n X n matriz. Then
inf {,u,(.Q'lAQ) | Q complex; nonsingular}) = A(4),
“sup {—ui(—Q'4Q) | Q complex, nonsingular) =.v(4).

. Further the infimum is attained if and only if for any 2; such that Re 4; = A(A4) the
correspondmg Jordan blocks are diagonal.
The supremum is altained if and only if for any 7; such that Re 2; = v(A4) the cor-
responding Jordan blocks are diagonal. .

Proof: We restrict ourselves to the proof of the statements concerning infimum.
By 2(—A4) = —v(A4), the other part of the proposition follows immediately.
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By (), it is clear that u;(Q'AQ) = A(A4) for any Q. 1f (8) has a solution =z, for
which |zo(2)| = t e2t4), it follows from (11) that the infimum cannot be attained.

" We'put 4 into its Jordan canonical form J: T-'47 = J. J is a blocked dlagonal
ma.t,rlx whose diagonal entries are of the form ' )

e 1
Je=| .l k=1, N =),
. . A ‘
_ NG3).
Jeisanr, X1y matrix, 1»2‘1“ = n, A is an eigenvalue of A4. For any real ¢ +0 the

diagonal matrix J, is similar to J i(¢), where
iy € ) ‘

jk(f) = o ‘e

- T

In fact, 8;(e) JiSe(e) = J4(e), where

1

Sy = e

f1,—]

' Thus, S-1(¢) JS(e) = J(e), where S(e) is a blocked diagonal ma.trlx whose dlagonal'
-entries are Si(e). It is clear that 7 M) — A(4) as ¢ — 0. Thus, for Q(¢)

defined as T'S(¢), p,(Q (&) AQ(e)) — A A)ase —0. Ifforany 2; for which Re 4; = 2(4)
the corresponding Jordan blocks are diagonal, it is clear that there is an g9 > 0 such
that for ¢ (0 < |e| < &)

(Q1(e) 4Q(e) = 2(A) B

Proposition 2: Let K = R.'Let. A be an n X n real matriz. Then the previous
“proposition remains true if Q s restricted to be taken real

Proof: Suppose that 1, is a non-real eigenvalue of A and Jis a Jordan block
~ belonging to it. Then J;*, the conjugate transpose of Jy, is & Jordan block as well,
belonging to the éigenvalue ;. Ji(e) is defined as in the proof of Proposition 1.
" Rearranging the blocks of J(e) if necessary, we join J,(¢) and J,*(¢) together as
H (&), where

T
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H,(e) is similar to f,(s), where a; = Re 24, #; = i 2, and

Jie) =

In fact, f,(e) =.Z,

Z, is a 2r; X 2r; matrix whlch is partltloned into fourr, x r; blocks If 7, is real, let
Z, be the r; X 7; unit matrix. Thus,

o e —h
[ B
ﬂl xp &
. e
.ﬂl : Ty
—IHI(G) ZI’ where
1 i
1 i,
1 —1
1 —1

“1J(e) Z = J(e)

91

Itis clear that 2 (M) ~>A(4) as £ 0. Thus, for Q(¢) defined as T'8()Z,

pi(@ ‘(e)AQ(e)) — A(4) as ¢—0. It is a lengthy but straightforward ta.sk to prove
that Q(e) is real. The remaining part, of the proof is similar to  the one of Proposition 1 §

Proposition 3: Let K = C. Proposztum 1 remains true if u is induced by the norms

[-[y o7.]-12, where for z € K* x = (z,, ..
and |z|, = 3 |z;|, respectively.

Proof: It is known [3] that :
.uI(A) = max (R‘e a;; + 2 ,alk')

kk+i

Ho(A) = max (
k

ik

Without any modlflcat,lon the proof of Proposmon 1 can be repea.ted 1

Example 2: Let 4 be the following'2 x 2 real matnx

A'#.[ll—i]..

1
Then, fori =1, 2

but

inf {u(@714Q) | @ real, nonsingular) ='2

inf {#,@"14Q) | @ complex, nonsingular} = 1,

Re (2798 + Z |a|k|

- Za), |l and |z, are defined as |z], = max |z;|
A ) : i

Since 4(A4) = 1, inf {u;(Q~14Q) IQ complex nonsingular} = 1 by Proposition 3. The
infimum is attained if Q = 7.
- I C is a real matrix similar to 4, then C has the form

C=[l+a b.

Cc

1—a

],' where 1 — a? — bc = 2.
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'Il‘henA' ' 1 _ e . v

#(C) = max (1 + a + |b], 1 —a+|c|)g(1+a+ b + 1 —a + |c])/2
Ibl+|c|__1+]’_bc_1+a2+ .

Sxmllarly, #a(C) = 2. For C = A we have u,(C) = p,(C) = 2.

=1+

Proposition 4: Substituting u; by py, Proposition 1 and Proposition 2 remain true.

Proof: By (7), - :
: ‘ Z*(A*V 4 VA4)- . : o

pvid) : i:g - 2z*Vzx

Let W be a matrix for which ¥ = W*W. W is nonsingular and can be taken real
- if V is real. By elementary operations and (7) .
WA (WAW-1)* + WAW- 1 Wz
”V(A) - :,z*o } 22:‘W‘ Wz N

= w(WAW-1).

Since A(WAW h= A(A) and Y WAW™') = v(A) Proposmon 1 and Proposition 2
can be applied directly. We have to use the fact that {Q‘IWAW 1@ | @ nonsingular}
= {@7'4Q | @ nonsingular}, too §

Corollary: Recall that for any V the expression A*V + VA is the derivative of
the quadratic form v(z) = x*Vx with respect to the differential equation (8). Let V be
positive definite. It is immediately seen from (7) that V is a quadratic Liapunov function
with respect to (8) — i.e. the derivative of V(z) with respect to (8) is negative definite —
tf and only tf uy(A) < 0. For any A such that A(A) < O there extst quadratic Liapunov
functions, since inf {uy(A) |V positive definite} = A(A). For example, W*W is a
quadratic Liapunov function. if |e| is sufficiently small and W-1 = TS(¢) Z.

Remark 3: The Corollary above is implicitely contained e:g. in [7].

Estimates for arbitrary norms

Lemma: Let K = R and let || be an arbitrary norm on R2. Let P be a,.ﬁrojec;ion
of RZ onto a one-dimensional subspace. Assume that |P| = 1 + «, where x > 0. Then

o —2
uP)y =1 + g(a), where ¢(a) = sup ! ) —_—
Ag(0.1) In (1 +_) —In32

Remark 4: A straightforward but somewhat lengthy calculation shows that
: g(a) is the unique solution of the equation

3

lng+—=l+]n(l+—)

x

1.
1=1.

In — .
&

in the (0, 1) interval. It is easy to see that lim g(x)
a—0

Proof of the Lemma. Assum(, that our two- dlmensmna] real normed space is
represented on the usual Euclidean plane, i.e. vectors of our two-dimensional real
normed space are identified with points of the usual Euclidean plane. The unit
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. sphere {z € R?| || = 1} is repreéentcd as a convex closed curve I" symmetri.cit,o the
origin. .

Pick a point M on I' such that |P(M)] = 1 + «. Without loss of generality we
can assume that the coordinates of P(M) are (4(1 + ), 0), 4 > 0, and that those
of M are (A(1 +.a) + vy, v2), v, > O (see Fig. 1). The intersection point of I" and the

A\ T M
y : R
. 4 E N .
F p4
o] D U P(S) . 'P{M)l

N

Fig. 1
ray OP(M) is denoted by D, the shorter arc on I between D and M is denoted by y.
y can be parametrized as .

e + s(8) vy, 8(6) v) | 4 gt < (14 ) 4},

where s is a continuous, monotonically increasing convex function, s(4) =0,

s(A(1 + a)) = 1 and — if M is properly chosen —, &, the left-hand derivative of s,
satisfies 0 < §(t) < oo, t € [4,(1 + ) 4). - =~ R

~ Pick a point S on y. The coordinates of S are (t + s(t) vy, s(¢) vz), and those of
* P(8) are (t, 0). The opposite of M is denoted by N. By convexity, the line passing
through the points N and D intersects the segment SP(S) at a point Z. The first

coordinate of Z is ¢ 4 v, ‘therefore

t— A4
2+ a) 4’
1

TFaA (12)

s(t) 2 (¢ — 4)

Let & > 0. For brevity, S -+ kP(S) is denoted by E. The left-hand tangent of the

arc y at § cuts the ray OF in a point F and the segment DP(M) in a point U. The -
coordinates of U are (t — s(e)/s(t), 0).‘Cons¢quen§ly, :

3(t) . -

By convexity of I, F = 1. As |E|/|F| is the quotient of the first coordinates of E
and of .F, a direct computation shows that v '

|E| t
T CECE
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Therefore, using (13) as well, -

SRS~ 1 (Bl —1_ BRI —1_ &
h Tk = h t — s{t)/s(t)
_ s()/3(t) s(0/3(0)
~ T roam = T AT e
| . -
Therefore /4(P =1+ m B, where

. B =sup {s(t)/s(t) | A< t'S AL + ).

As a corollary of (13), 0 < . < co.
~ By the definition of 8,
w1
8(3) - ff

Let A be a fixed number- satisfying 0 << 2 < 1. Integrating from A(1 + a2) to
A(1 4+ «), we obtain '

In s(Av(AlA—i— «)) - In s(4(1 + zx).)) = Aa(l — 2)B.

te(d, 411 + aj].'

By (12), , , , o
. o ; 4+«
— = > — > —
| }n2+a 240‘(1 ?.)/3, ﬂ=4a(l - A)/In —
Therefore o -
’ 1 1-—-2
W(P) 21+ & —— sup > :
+axe(onl ( +——)—ln/‘.'
' &’ !

which was to be proved 8
Propos:tlon5 Let K = Cor K = R. Let |- |bea7wrmonK3 The set -
{P: K3 — K3 | P is a projection, rank (P) = 2}

ts denoted by P. Then the following conditions on the norm |-| are equivalent :
(i) ForanyPE 2,|P| > 1.
- (ii) There is a Py € P such thatinf {u(Q 1P,Q) | Q nonsingular] > 1.

Proof: It is obvious that {Q-1P,Q | @ nonsingular} = £ for any P, € 2, therefore

inf {u(Q1P,Q) | @ nonsmgularl = inf {u(P) | P € ). We make .use of this fact in
' both parts of proving our proposition.

(i) — (ii): Suppose that Condition (i).holds. Then, by a compactness argument
there exists an & > 0 such that |P| = 1 4 « forany P € . Let P ¢ & be arbitrar-
lly chosen and let z, € K3 be such that- |Pzs| = (1 + &) |z,|. Consider the set

= {4z, + #Pzy | A, u real). Let P’ be the restriction of P on X and |-|' be the
restriction of [-| on X. It follows directly from definit-ion that X is a two-dimensional
real vector space and |-|’ isanorm on X. Further, P’ is a projection of X onto a one-
dimensional subspace, |P’|" = 1 4+ o« and p(P) 2 uy(P’), where, using the lemma,
P 2 1 + aga) > 1, which was to be proven. , '

(1) — (i): This is evident by mequallty (4) L

Thus we have proven that — in general — inequality () cannot be essentlally
'1mproved by transforming variables. In fact, in Example 2 and Proposition 5 we
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have shown the existence of norms || and of matrices 4 such that A(4) < inf
{n11(@14Q) | @ nonsingular}. On construction a.nd some properties of norms satisfying
Condmon (i) see [2].

- Remark 5: If the transition matrix Q is allowed to be dependent on ¢, then —

transforming the variable z — the best estimation can be achieved by (#). This
remark holds as well in case of (8) being nonautonomous. In fact, let Q(t) = X(¢),
where X(¢) is the fundamental matrlx Then (8) gocs over into ¥ = 0; y = 0. Since
u(0) = 0, (10) implies

1 X ()7t | X1 Iz(to)l Ix(t)l 1X(6)] 1X~2(to)] J2( ), =t (14)-

In case of (8) being autonomous, the transition matrix functlon can as well be -
chosen in the following manner: '

For ¢ + 0, let Qt) = J (&) U(t), where U(tyis a blocked dlagonal matrix function
with diagonal entries U,(f) = exp At — b) - Iy, k=1,2,..., N(4); I, being the
7y X 1, unit matrix, J (¢) being the same as in the proof of Proposmon 1. Since

Qi_l(t) Qt(t) + Qx_l(t) AQ,(t) = ¢k, ’ ’ ’ (15)

wh'ere.E is a blocked diagonal matrix with diagonal entries E; = J, — A1y, it is
easy to show that the best lower and upper exponentml bounds on norms of solutions
of (8) are assured by inequality" (10) ase — 0. . -
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