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Fredholmness and finite section method for Toeplitz operators in lP(Z ><Z )
with pwcewnse contmuous symbols I')

A. BOTTCHER e

Wir betrachten diskrete Toeplitzoperatoren im Raum I? iiber der Viertelebene fiir eine Klasse
von stiickweise stetigen Symbolen. Diese Klasse wird gewshnlich mit PC,(T?) bezeichnet und
enthilt insbesondere alle endlichen Summen der Form J a (&) b;(n), (& n) € T2, wobei q;
und b; von beschrankter Variation sind. Wir geben notwendige und hinreichende Bedingungen
dafiir an, daB ein solcher Operator noetherisch ist und ebenso dafiir, daB auf ihn das Reduk-
tionsverfahren anwendbar ist. Der vorliegende Teil 1 enthilt die nétigen Definitionen, die
Formulierung der Hauptresultate und die Beweise der Notwendigkeit der angegebenen Bedin-
gungen. Tcll II dieser Arbeit ist den Beweisen der Hinlinglichkeit dieser Bedmgungen gewid-.
met. -

. We consider discrete Toeplitz operators on the space [P over the quarter-plane for a class of
piecewise continuous symbols. This class of symbols is usually denoted by PC,(T?) and it
" contains, in particular, all finite.sums of the form X a;() b;(n), (&, n) € T2, where a; and b;
are of bounded variation. Necessary and sufficient condxt,lons for l'redholmness of such opera-
tors and for the applicability of the finite section method to them are obtained. The present
part 1 contains the necessary definitions, the formulation of the main results, and the proofs
'of the necessity of the given conditions. Their sufficiency will be proved in part 1I of this
work. . .
PacematpuBaoTea IUCKpeTHbIe onepa'ropu TCMJAHMLA B MPOCTPAHCTBE [P HA KBAaJApaHTe MJIA
OJHOTO KIaCCA KYCOUHO-HENPEePHBHEIX .CHMBOJIOB, 0003Ha4aeMoro obnine uepes PC,(T?) u
CONCP/KALUCrO, B YACTHOCTH, BCE KOHEUYHBIE CyMmbi BHiA X ;(€) bi(n), (&, 1) € T®, rue a; u-.
b; — QyHkumnM orpanuyeniioli Bapuaiuu. [losyeHsl KpUTEPHI HETEPOBOCTH I IPUMEHH MOCTH
MeTOola peiyKUMH AIA TaKHX onepaTopon ‘{aC'rb I conepaur-HeobxoauMeIe onpenesncHud,
\popMyNUpPOBKY TJABHBIX pe3yJbTATOB - JI0Ka3aTenLCTBA  HeobXOoAMMOCTH yHaaauHm\
yc.nomm Yacre 11 oToit pa60'r|~.l nocnﬂmeﬂa HOKA3aTeNbCTBAM JOCTATOYHOCTH DTHX YCIOBIII,

!

§1. Introduction

‘With the one-dimensional Toeplitz operator T(a) defined by
(T(a) (P) Z a’x-;‘pr (z=0)

on the space IP(1 < p < co) we associate the function a(f) = Za t (|t = 1) and

refer to a as the symbol of T'(a). Besides the question of Fredholmness and inver-
tibility, the finite section method, as a very natural procedure for the approximate
_solutlon of the equation T'(a) ¢ = f, has been the subject of numerous investigations
since the earliest studies of Toeplitz operators. We say that the finite section method
is applicable to T'(a) in I? if for every f € [P the equation :

Sap®=f (i=01,..,n) o (1)
2w |

1y Der abschlieBende Teil II wird in Kiirze ebenfalls in dieser Zoitschrift erscheinen.

.~ . - . 7
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*

has a unique solution for all sufficiently large » and if ¢(™ = {g;("|?_, converges
in the norm-of I? to a solution ¢ of the equation T(a) ¢ = /. In thls case we wnte
T(a) € IT,{P,}.
o After the fundamental paper {19] of M. G. KREIN a first systematlcal treatment -
of Fredholmness, invertibility, and finite section method for Toeplitz operators was’
given by I. C. GoHBERG and I. A. FELDMAX in the book [15].

It turns out that a one-dimensional Toeplitz operator is invertible on 17 if and only
if it is Fredholm and has index zero. For a Toeplitz operator T'(a) with continuous
symbol a to be Fredholm on I it is necessary and sufficient that a(t) &= 0, ¢ € T.

Then Ind T(a) = —ind a, where ind « is the winding number of the range of @ with .

respect to the origin. Finally, for continuous symbols we have T(a) € IT,{P,} if and
only if T'(a) is invertible on I?. These results may be found in [15, 4, 23, 24, 14, 21, 32].

Having solved the fundamental problems for Toep]it& operators with continuous .

symbols, the mterest in discontinuous, first of all in plecewlsc continuous, sy mbols
arose.
. The first result in this direction was concerned with the space l2 a Toeplitz
operator 7T'(a) with piecewise continuous symbol @ is Fredholm on {2 if and only if
the origin does not ly on the continuous closed curve a, obtained from the range of a
by filling in the straight line segments joining a(t; — 0) to a(¢; + 0) for each disconti-
nuity (cf. [31, 13—15, 21]).

While for continuous symbols the results concerning Fredholmness dld roughly
speaking, not differ in the.cases p = 2 and p =+ 2, the difference between these two
.cases became appearent when succeeding for piecewise continuous symbols: the’
Toeplitz operator T'(a) is Fredholm on I? if and only if the origin does not lie on the
- continuous closed curve a, obtained from the range of a by filling in certain circular
arcs joining a(t; — 0) to a(t; + 0) for each discontinuity (cf. [14, 8]).

In [15] the problem.of the applicability of the finite section method to Toeplitz
operators with piccewise continuous symbols having -only a finite number of dis-
continuities was solved for the case p = 2: T(a) € Il{P,} if and only if T(a) is
. invertible (which is cquivalent to-04 a, and ind a, == 0): But for p + 2 or for piece-

* wise continuous symbols with countably many discontinuities the problem has been

open for a long time. In [30], I. E. VErBICKI and N. Ya. KRUPNIK obtained a neces-
_sary and sufficient condition for T(a) € IT, »{Pnl if @ has only one discontinuity. This
result was generalized in {2] to the case of a finite number of discontinuities by an
argument which we could call “‘separation of singularities’". But the final solution
of the problem was given by B. SILBERMANN in [26] only recently. He succceded by
developing a method which allows to carry over the local principle of I. C. GoHBERG
and N. Ya. KRuPNIK- [14] (which has been so useful for Fredholmness) to the in- |
vestigation of the finite section method. In this way he reduced the problem to the
case of only onc discontinuity, which had, fortunately, already been considered by
I. E. VerBickif and N. Ya. KRUPNIK. BN

The result obtained in [26] reads: for a piecewise continuous symbol a (with;,
possibly, d countable number of discontinuities) we have T'(a) € IT,{P,} if.and only
if T'(a) is invertible on both I? and 19(1/p 4 1/¢ = 1). Geometrically speaking, this
means that the origin must not lie in the region obtained from the range of a by
adding certain lentiform domains joining a(t; — 0) to a(t 0) for cach discontinuity
and that the curve a,, completely-contained in this region, has index zero.

All the problems considered above are emerging for higher-dimensional Toeplitz
operators as well. The two-dimensional Toeplitz operator W(a) is defined by

o0

(W@ p)is = X e (552 0) R
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¢

on the space I? Q1P = 1?(Z, X Z,) (1 < p < o). Now the function a(¢; )= 2 a;&y

. f.j=—00 .
given on the torus T?is referred to as.the symbol of W(a). Applicability of the finite
section method is defined in a similar way as for the one-dimensional case, only with
(1) replaced by ' g ’

. n : ,
“Z_'o @ik 1987 = [ij 0= = n) '

Instead of T(a) € IT,{P,} we now write W(a) € II{P, ® P,}. »

‘The first deeper results on multidimensional Toeplitz operators were obtained by
I. B. SimoxENKO by mieans of his local principle: if a(£, ) is continuous, then W(a)
is Fredholm on I? & I” if and only if a(&, 7) 3= 0, (£, %) € T2, and ind; a = ind,a =0
(cf. [28]; sce also [5] for p = 2). : ) ‘

A. V. Kozax was the first who realized that local principles can be applied to the
investigation of the finite section method and his approach, based upon an essential
generalization of the local principle of I. B. SIMONENKO, led to a series of remarkable
results on multidimensional Toeplitz operators with continuous symbols (see [16—18],
but also {12]). Finally, in [22], V. S. Pwip1 developed a local method which can
advantageously be used to derive results on higher-dimensional operators from the
one-dimensional situation. ) - o

Two-dimensional Toeplitz operators with piccewise continuous symbols (though
of a special kind, namely, from appropriate tensor products) have been considered as
well. In [10], R. V. Dubpuava solved the problem of Fredholmness for two-dimen- ;
sional ‘Toeplitz operators with piecewise continuous symbols in.[2 ® 2. In (3] &
. criterion for the applicability of the finite section method to such operators was

obtained, again for the case p = 2. . : .

But at present we do not known anything about Fredholmness or the finite
+ section method for two-dimensional Toeplitz operators with piecewise continuous’
symbols in the case p == 2. It is the aim of this paper to fill out this gap.

It should be noted that the problem of invertibility for higher-dimensional Toeplitz
operators is extremely difficult and that its solution is hardly to be expected at the
givén moment (even for continuous symbols). But in general, the problem of the
applicability of the finite section method is considered as solved if it has been
reduced to that of invertibility. ‘ '

Furthermore, note that all the problems touched upon here for (discrete) Toeplitz
operators arise for their continuous analogue, the Wiener-Hopf integral operators, too. ,
See [19,°15, 6, 7, 11, 23, 24, 32, 1] for the one-dimensional case and in the higher-
dimensional case we.refer to [27,17] for continuous and to [9] for piecewise conti-
nuous symbols. - : . . e .

In particular, in {9] a criterion for a two-dimensional Wiener-Hopf integral operator
with piecewisé continuous symbol to be Fredholm on L?(R, X R.) was established.
This problem was solved by applying the local principle of I.C. GorBERG and
N. Ya. KrurNIk [14] with the strategy of V. S! Prpr {22], but making use.
of some features.of integral operators. Due to the latter fact, the method of [91 -
cannot be carried over to the discrete case. ) ' .

In this connection B. Silbermann drew my attention to N, Ya. KRUPNIK’S paper
[20], where the local principle'af R. G. Doucras [4] for C*-algebras was generalized
to Banach algebras. His intuition was right — as we shall demonstrate in the given
paper, the local principle of [20] applied with the method of -V. S. PrLipr [22] is
indeed powerful enough to solve the problems considered here. ' :

The present paper is very voluminous, This is due to the fact that it are not the

7+
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results (formulated in the Theorems 1 and 2) which are of our prlmm‘) interest.
These results are easy to gucss if one puzzles together former results from [26, 9, 10)
and [3]. It is rather a problem of how to prove these results which seems to be of
interest. The main dilemma is that C*-algebra. technlques, playing an important part
in the case p = 2 (see [10, 3]), fail for p == 2. Moreover, everyone who has already
been concerned with similar problems will know how carefully one has to work in
order to pass over from the case p = 2:to the case p = 2. Therefore we were-con-
strained to give all essential details of the proofs, which, consequently, led to a
considerable enlargement of the volume of this paper.

‘T express my sincere thanks B. SILBERMANN, without whose helpful suggestnons
and continuous interest in the subject considered here I would not have been
able to accomplish this paper. I am grateful to V. B. DYBIN R. V. Dupu¢ava, and
A. V. Kozax for sblmuhtmg dlscussnons

§ 2. One-dimensional Toeplitz operators in 1P with piecewise continuous symbols -

For 1 < p < oo let I? be the customary Banach space of all sequences ¢ = {@,}gno.
satisfying [l¢ll, = (2 lga|?)!/P < co. By &(I?), &, = R(?) and P(I?) we denote the
Banach algebra of all bounded (linear) operators onl?, the ideal of compact operators

. in (IP) and the collection of all Fredholm (Noetherian) operators in &(I?), respectively.

Given a Banach algebra % with unit, we will denote by GU.the group of invertible
clements of U throughout the paper. _
- Let T be the complex unit circle and a € L*(T) a functlon with bounded variation
on T. Then the Toeplitz operator T'(a), induced by the semi-infinite matrix
. | .

25

' 1 . .
T(@) = (@ 4lfim0s  an =5 | ale¥) ey,

. R 0 1
is bounded on 7, .1 < p < oo [29: Lemma 10]. The function a is referred to as the
ssymbol of 7'(a). By PC, we denote the collection of all piecewise constant functions
on T having only finitely many discontinuities. Thus for a € PC, we have T'(a)
€ 8(l?) for every p, 1 < p < co. Let PC,(T) be the closure of PCy with respect to .
the norm |all, = ||7(a)|lgu»- Note that PCy(T) consists of all functions a that are
continuous with exception of at most countably many points, where, however, the
limits a(t -+ 0) exist and are finite. Furthermore, we have
: PCy(T) = PC(T) = PC(T) = PC(T) = PCy(T) -
for l<p<r<?2 lp+1l/g=1, 1r +1/s=1, and all i)iece\viée continuous
functions with bounded variation belong to PC,(T), 1 < p < oo (cf. {8, 29]). \

By %, we denote the closure in &(1?) of the collection of all operators of the form

= g IYIT(G’]K)’

7,8 € L+, a;x € PC,. We list some propertlcs of the Banach a]gebra B, (cf. [8, 11 13,
14]): we have ®, = B, and &, forms a closed two- sided ideal in %p, the quotient
space B,/®, is & commutatlve Banach algebra with unit. Let o, denote the canonical
projection of B, onto B,/®,, N, the maximal ideal space of B,/R, and ng the
Gelfand map of B,/8, into C(E)? ). Note that R, is homeomorphm to, the cvlmder
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-

T % [O 1}, equipped*with an_exotic topology [13] In what follows we shall often

identify M, with T x [0, 1].
Let a<€ PC,,(’I‘) and N = (¢, u) € |,. Then

. (Foz a,T(a)) ( (M) = (Fm o, (@) (¢, )
o= (1= sy() a( — 0) + s,(u) alt + ). W
Here s,(4) is defined for s € [0, 1) by ) o
Solp) = p, ;
.. sin du - exp (¢fu) Y2\ " . @)
splk) = sin ¢ - exp (¢8) 192”(1 _—;)’ P+ 2.

]f w runs from 0 to 1, then s,(u ) runsin Cfor1 <p <2 (resp. 2 <p < oo) along
a circular arc joining O to 1 and lying on the left (resp. on the right) of the line segment
[0, 1]. Thus for a € PCy(T) by

ay(L, p) = (1—s,,(u))a(c—O)Ts,,(ma(H | .

a continuous, closed, oriented curve is given in C if (¢, ) runs through T X [0 1}.
The fundamental results about one-dimensional Toeplitz operators with piecewise

" continuous symbols are summarized in the following two theorems.

Theorem & (8, 14]: Let a € PC,(T). Then T(a) € ®(?) if and only if a,(t, p) % 0

_ for (¢, u) € T X [0, 1). In this case Ind T(a) = —ind a,,({, ).

Theorem G (8, 14):-Let a € PC (’l‘) Then T(a) € GR(I?) if. and only if T(a) € (1?7

. and Ind T'(a) = 0. y

Here Ind T'(a) = dim Ker T'(a) — dim Cokcr T( ) and ind a,(¢, ) denotes the
wmdmg number of the curve a,(¢, u) with respect to the orlgm o
We defme the projection P, in I? by

V)

P, {%, P15 P25 - < {@o, P15 - Py 0,0,...}

“and set Q,, = I — P,. The operator W, is defined in I? by ¥

o Wa {%,%%w 4 {Pn @uots - 00, 0,0, 005

it will play an lmportant, role later on. .
Fora € PC,(T) we set

n(a') P T(a) P | Im P - {a}—kl; k=0 - ) )
We say that the finite section method is applicable to T(a) in I? (and write T'(a)

* € [],{P,} in this case) if the operators T,(a): Im P, —Im P, are invertible for all

sufficiently large n (say n = n,) and if sup [T, (@) Pylleus) < oo. As a consequence

o . n2ne
of T(a) € [],{P,} we have T(a) € G(I?) [15 1117 and T,"Ya) P, — T Ya),
strongly. The following theorem was proved in [26] A

Theorem [] [26]: Let ac€. PC( ). Then T(a)€ [T, {P.} z/ “and conly if T(a)
€ GQ(I?) and T(a) € G&(I7), where a is defined by a(t) = a(l/t teT.

"
\

14

’
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+§3. Two-dimensional Toeplitz operators in I? ® I* with piecewise continuous symbols

By I? ® I? we denote the projective tensor product of the space IP with itself. Ob-
viously, . ’ ST

PRI =L, x1L,)

. 1 oo' N 1/', .
?»{{P = {@iili5-0t llpll, = ( .20‘ I?’iil”) < °°,}:
o ij=

Let 817 ® I7), ®(I? ® I?), ®(1? ® IP) denote the Banach algebra of all bounded, the

ideal in (7 ® I?) of all compact, the collection of all Fredholm (Noetherian) opera-

tors on I? ® 7, respectively. Note that K @ I?) coincides with the projective
tensor product £(I7) & K(I?).

~ Suppose b;, ¢; € PC, (j =1,...,n) and let R -

P eem=ThEa,  (En et | (v

Then the operstor W(a) defined by W(a) = 3 T(b;) ® T(c;) is bounded on I? &) I7.
: = , i

We define PC,(1%) to be the closure of the co]llection of all functions of the form (1)

with respect to the norm |lajl, = W (a)llewsm). Then PCy(T?) consists of all functions
" a(&, n) € L®(T?) which have finite limit values a(§y £ 0, 79) and a(&, 5, + 0) in the
uniform norm at each point (&, 7,) € T2 Furthermore,

PO,(T?) = PC,(T?) = PC,(1%) = PCT?) = PCy(T?):
for 1<p<r<?2 1/p+ 1/g=1, 1/r + 1/s = 1,.and each function of the form
.Z"' bil&) cily), (£, ) € T2, wiéh b;, ¢c; € PCp‘(Tz) (t=1,...,n) belongs to PC,(T?. All
‘ ;,71:3 facts stated here one can find in [9, 10]. . ' ‘

Let a € PC,(T?) and ' . :

'

23 2a . :
1 [ ot _
Qo —_—(2_n)2ff ai(ew’ e|0)e'mwe 'mo.dwdﬁ . . . .
0 0 .

(n, m € Z) be its Fourier coefficients. Then the operator W(a) defined by

(W(a) ¢)s.; =, ;ZO Tiskj-tpr (67 = 0)
is bounded on I ® I?. Moreover, W(a) belongs to :the .projective tensor product -
B, @ B,. The operator W(a) is called two-dimensional Toeplitz operator and a. is
referred to as the symbol of W(a). ' . '
-For a € PC,(T?).and (£, u) € T x [0, 1] we define two functions a;, and a? , from-
PC,(T) by (recall the notation (2.2)) - : ~

atdt) = (1= s,(w) alt, ¢ — 0) + 5,(u) alt, € + 0,

. (2)
a? () = (1 — sp(w)) a(t = 0, ) + sp(w) @t + 0, ¢) ,
(t € T). Several times, in order to emphagize the dependence on p, we shall write a}, , ,
and a2 : ' ' '
' D.Lus

One main result of the present paper is the following theorem.
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Theorem 1: Let a.E.'PC,,(Tz).' Then W(a) € P(I? R I?) if and only if o
M@,y € GRUP) and T(a},) € GRWP) T - (3)

" for each (¢, p) € T X [0, 1]. In this case Ind W(a)-= O.

- This theorem was proved for the case p = 2 in [10] andits integral analogue was

. proved in [9] for general p.

Thus, recalling Theorem G of section 2 we find that the operator W(a) is Fred-
holm on I? @ I? if and-only if for each flxed (¢, uy € T x [0, 1] the ongm belongs

- neither to the curve {ag,,)p (#, 2) nor to the curve (@3,)p (¥, A) (9, 4) running through
- Tx[O, 1]) and if both these curves have the winding number zero. Note. that

(@b, (8, 2) = (1 — 5,() (1 — sp(w)) a(® — O, 't~ 0)
' + (1 — sp(2)) sp() a(® }— 0,8+ 0)
+ s5(2) (1 — sp(w) a(® + 0, —0)
+ 50 sy a® + 0,0 +0) @

- and that we nught write down a similar expression for (a3 ), (¥, 4).

The equality Ind W(a) = Ois mvml it follows from the conditions (3) by a snmple\
homotopy argument. '
Let now P, be the projection.defined in section 2. Then P, & P, acts in l" ® I»

by bhe rule i
. : _ q)t30§7"7.§n' -
(Pa @ Pr)gli; = {O,] otherwise.
For a € PC,(T? we set . ,
Waa) = (Pa ® P,) W(a) (P, ® P) | Im (P, ® Pr). (5)

" We say that to W(a) the finite section method is appllcab]e inlr@ 17 if the opera.-

tors Wy(a): Im (P, ® P,) — Im (P, ® P,) are invertible: for n large enough (say
n = ng) and if sup IWa (@) (Pn @ Py)llgdsem < oo, In this case we wutc W(a)

€ [, {P. ® Py} From W(a) € [[,{Ps ® Py} follows the invertibility of W(a) (cf.

. [15: p. 111]) and that W, Y(a) (P, ® P,,) ~ W~Y(a), strongly.

For a 6 PC,(T?) we define a,, a,, a,, € PC,(T?) by

Q‘I(E’ 77 = a’(l/f’ 77)» az(‘f’ 77) = a’.(Ey 1/"7): .
a12($) 77) =a(1/£, 1\/??)) . (5, 77) € Tz‘. . . . N
\ The following theor‘em is the second main result of the- paper.

Theorem 2: Let a € PC,(T?). Then W(a) € J[;{P, @ P,} if and only if the /our‘

' opemtors W(a), W(al W(a,) and W(a,,) are tnvertible in (P Q) I7).

"This_theorem was’ proved for contmuous symbols in [16, 18, 12] and for piecewise

" continuous symbols in the case p = 2 in [3]

The necessity of thé conditions given in Theorem 2-is trivial. Indeed, with the
operator w, defined in section 2 we have »

Wa(a,) = (W ®P)W(a)(W & Pn),
Wn(a2) = Pn ® Wn) Wn(a’) (Pn ® Wn)’ .
Wn(dlz) = (Wn ® Wu) Wn(a) (Wn ® Wn)": ' . '~ R !

~



104 A. B6TTCHER

-

and if W(a) € H,, {Pr ® Py,) then the invertibility of W o(@) lmplles that of W (al)
and from

IWaHailll = (W, ® P,) W, Ya) (W ® Pl = |W, Y(a)|
we get sup||W, “(a1)|| < o0, ie. W(a,) € [[o{Pn ® P,). Thus W(a,) E«Gﬁ(ll’ ® l”)
Analogously can be shown bhab Wia,), W(a,,) 6 Gﬁ(l" ® I?).

§4. Ne}zessity of the conditions in Theorem 1

Under the assumptlon that we have alread) proved the sufficiency part of Theorem 1,
we are going to prove the necessity of the conditions. The sufflclency w111 be shown
in Section 8 contained in part II of this Jpaper. o

In what follows & always denotes the projective tensor product :

Let the maps 8, #,, &, be defined by L

0:%,,@53,, - B,/R, ® B,/N,, LA QB> Y 0,4, ® 0,B;,
$:8,® B, > B,/ DB,, S A,QBi> To,d;,QB;,
9B, ® B, > B, ® B/, T4, ® B> X4, ® 0,8
Lemma 1: 9, &, 4, are continuous algebraic homomorphisms.
) Proof For finite sums we have (
192 4; ® Bl = |.Z 0p4: ® 0, Bil
= inf (X ll0,Cill lopDill: £ 0pd; ® 0,B; = 5 0,0: ® D)

< inf (£ ICH 1D £ 4,® Bi= £ C,® D = IZ 4, @ Bi|

and now it is clear that ||§C)| < ||0]] for cvery Cé % ® B,. Analogously we may
prove the assertion for ¢, and 9, #

Lemma 2: Let A be a Banach . space and 9 bea lmear functional on A wzth H(p]] =1
Suppose that for:

~

Z’B@C_ZF ®GeARA K

always .
=2 ?(C) B{=j§m1 @(Gy) F; € A |
holds. Then . : : o
):w(C)B” S”ZB ®c” B

ARA ~

Jor every ZB,»@ C,ie AR AU o . ’ . 3

Proof In accordance with the definition of the norm in the pro]ectwe tensor

product we have

12 Bi ®0|I—mf {2 IFIG: ):F ®G; = X B ®C’l
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Thus given an arbltrary ¢ > 0 we can choose By, C;' € U such that on the one
* hand . -

. -

‘ " SB/®C = Y B®C .
- and on the other hand ‘
 ZIBNIC IS (1 + &) 18 Bi ®CH.
Hence . ) ~ o
Y S (0 Bl = 115 el Byl < X 19(C)] - 1B

I

In view of

Hence = - . . ‘

< Xleyi- 1Byl < (1 +€)I]ZB ®@cin

Lenima 3i Suppose a € PC,(T?) and N = (¢, u) € R (Z € T, p e [0, 1]). Then
* W(a) — T(a} },) & I can be approximated in the norm of Q(l" ® IP) as closely as deszred
by a,fzmte sum of the form 3 D; @ Z;, where D; € B,, Z; € B, and 0,Z; € N. :

. Proof: Suppose for a moment that d is a finite sum of the form

s,y = Zb{&eln), (&) eT?, ' RN ¢ §
where b, ¢; E PC’,,(’I‘) By (3.2) and (2.1)we have :
B «m(t) = (1 — sy(w) alt, £ — 0) + sy{w) alt, ¢ + 0)
= 2 [(t — sp(w) ci(& — 0) + sp(x) el ¢+ 0)] it
=X (I»,0,T <‘))<c, wbiD). .

W(a) — T(a},) ® I S . \
= X T().® T(c)) — X (Tn0,T(c)) (& 1) T(b) @ T
= T ® [T(e) — (I, a,.T(c D& 0 1)
"and becausc
(T, a,,[T (nn o,,fz'(c. 1] (& 1) \
= (I, opT(c.)) (& (Fm 0, T(c:)) (2, 1) - (T D) (L) =0

we obtain that W(a) — (ac SR isa f1mte sum of the form 2 Di ® Z;, where
D, Z; € B, and 0,Z; € N. Thus the asertion is true for functions of ,the form (1.
Foran arbltrary function a € PC,(T?) we can choose functlons a'ME, n) = 3 biNE) ¢
(n) of the form (1) such that .

||W(a) W(a(’))llmlx’@gg) -0 (§ = o0).
!

7

W@ = T,y @ 1 , | |
. W@ — W@ + [W(@) — T[] @ 2l +IT(eh,) — T,

“the dssertion will follow if we only prove that

IT(at,) — T@MLI =0 (j — oo). . G

But from the expression (2) for (aP);,, and Lemma 2 we can easily conclude that

* {T[(a("))é'“]] forms a Cauchy sequence in B,; then standard arguments glve 3y 8

’
’
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Since C*-algebra techniques fail in the situation considered here and a theorem
like [25: 10.18] seems not to be applicable, we shall make use of arguments having
to'do with joint topologlcal divisors of zero. The following theorem we have found
m (33}

Theorem Z [33: 15. 12] Let %[ be a commutative Banach algebra with unit, X be
tts maximal ideal space, and let N be a maximal ideal belongmg to the Shilov boundary
9sX. Then

\

inf{ T2V U € %, 0] = 1} =0

/or every fzmte subset {Zl, v Zy =N’

It is not hard to show that the Shilov boundary of the maxmlal ideal space N,
of B,/R, coincides with the whole space %, i.e. with the whole cylinder T x [0, 1]
For p = 2 this follows immediately from Im I'y, = C(R,) (cf. [13]). Thus let p == 2.
By [33:15.3] it suffices to show that for each point (¢4,.%0) € T X [0, 1]and for each
neighborhood U of (&, pe) (with rcspecb to the topology [13] of T x [0, 1]) there_
exnts a 0,4 € B,/R, such that

sup |ng o] < sup | Iy apAl
B\

A little thought shows thatsuchan 4 may in fact be found among the collectlon of
Toeplitz operators T'(a) with a € PC,. .

Now, in Proposition 1,,we shall prove that W(a) € d)(l” ®1?) implies the Fredholm-
ness of T(a},) for every ({, x) € T X [0, 1] and then, in Proposition 2, it will be
shown that T'(a; ) is even invertible in Q(I?). Smce Lhc same can be done for T'(a? #),
the necessity part of Theorem 1 follows.

Propos1t,10n 1: Let a € PC (TZ) and W(a) €97 ® l”) Then T(a(‘,) € d)(l”) for
every (§, u) € T'X [0 1}.

Proof: Suppose that there is a ({o, po) € T>< [0, 1] such that TY(al,,) is not,
Fredholm. This implies the existence'of an M € N, such that o,,T(aCW.) € M. From’
9sN, = N, and Theorem Z we: obtain _

inf {llo,T(a}, ,.,) - a,,BH: B¢ %,,, llopBll = 1} = 0. i (4)
Due to- Lemma 3 there exist two finite sequences, Dy, ..., D,-and Z,, ..., Z,,
(Di, Z; € B,) such that (I'e 0,Z;) (o, o). = 0, and

A4: _T(aw)®1+};1) ® Zic O(l° ® I9) . ' - (5)
(notc that @(l» ® I7) forms an open subset in r ® i")) Again by Theorem Z.

inf{zua,, o Ull: Ueszs,,,ua,,Un—l}—o | G

Because of (4) there are B; € B, |lo,B;ll = 1 and K; € &, ( =1,2,3 ...) such
that . '
T(a}, ) B; — K, = Cy, ICi'llgus =0  (j — o0)

and (6) yields the existence of U; € B, llo,U)Jl=1, and K;; € &, (1 =1, n;
7=1, 2,(, )suchthat

ZU; — K,; = C,

ICTHlieus 0 (j — o0, Vi).

-

ij?
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Let P, be the pro]ectlon introduced in Section 2 and put Q,, =71 P, Obv10usly,
Q. — 0, strongly. Now, given an arbitrary R ¢ By, lloyB|| = 1, there exists an

Ny = no(R) such that [[RQ,||.< 3 for all » = n,. Indeed, because of |lo,,R[| =1 there . . -

' 1s a K € ®, with ||R + K|| < 2 and, consequently,
1BQull = (B + K) Q. — KQull < (B +, K) Qll + IIKQ,,H

’
H

S B+ KNl + 1K@ =21+ 1=3, : BN G)
since ”KQn” - 0 (n — o0). Now, we have (with 4 defined by (5))
(Ban ® U;Qa) , N

= K,@u® Ui + C/0n ® U,
'+ZDB%®&M+ZD&@®OQ 4 - (8)

On account of (5) there is an R € 53(23’ & IP), such that RA — I ® I € R(* ® l")
= ], ® ®. Thus R4 ¢ 55,, ® B,. From Lemma 1 we get #(RA) = o, @ o,1.
P, ¢ S’?,, gives @, =1 —P ¢ %,,, consequently, B @ ® U,;Q, 6 B, ® SB,, and,
agam by Lemma. 1, ’

0wmmBo®U@wwwmmo®U@»
Thus - ! A .
oyBi@i ® 0, U@l : ,
= W(opI ® 0,) (5,800 ® 0,U; Q)| _
— [I9(RA) 3(B,@n ® U@l = [[#(RA(B@. ® U@l
< |RA(B,Q, ® U@ (Lemma 1)_ | : |
<IRIABQR UM 7 | O

_From B P, € S?,, we obtain . - - o A - /
53B,@ull = ll6pB; — 0,B;P: = llo, By = 1
and analogously we can derlve ||a,,U,Q,,|] = 1. Hence .
1 = [l6,Bi@ ® o,U, @nll - - ~ (10)

for every j, n > 0. Now we are going to prove that for a suntable chonce of § = 7,
and n = n,

1 4(B;,@n, ® Ui.Qm)” <e= 1/IIRII

"Then (9) and (10) are contradictory, and our assertion will therefore be proved. .

First choose jo large enough, such that ;

oA < e12,  IDIICHI <e/12m  (i=1,...,m)

and t-hgn choose n, such that . ,.
IKi@ull <12, 0@l S 3, I1BuQull 3,
1D K, @ul) < e/12m. (i =1,...,m)

N
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(cf. (7)). Consequently, . ’

1K1Qne ® U, Qull = I3l 10300l < /12 -3 = e/,
1520 ® Us00l) S ICIIU, Q0 < /12 -3 =sefa,
) ”Z D; BIoQﬂo ® KlloQ"a

= Z \D; II ||B,°Qn.,ll 1K 3@l < Z e/12m - 3 = ¢/4,
- ”Z D B;.Qno ® C,]‘,Qn.‘,

< Z Il 1B, QalHICHI < X e/12m - 3 = ¢/4.

’

Taking into account (8) we arrive at ||A(B,°Q,,n R U@l <e i

, Propomtmn 2: If a € PCy(T? and W(a) € ®(I? R I?) then T(a,“) € G(I7) and
T(a},) € GY(P) for every (¢, u) € Tx [0, 1)

Proof: By Proposition 1 we have T(a( «) € P(I7) for every (L, u) € T x [0, 1]. It
follows that T(a1 .«) 18 homotopic through Fredholm operators to both T(at o) and
T(a“) Thus, in partncular .

inda(, & ~ 0) = “Tnd T(aky)
teT . '
= —Ind T(a},) = ind a(t, ¢ + 0) o o
teT : .'

(cf. Theorem @ in Section 2) and it results.that‘

ind a(t, r+ 0) = » = const (Le).
€T . ‘ .
Lt f \ .

Equally ; - L ' \ C
inda(l 4 0,¢) = 2 = const - (L €T). ‘ ,
teT : S ' » ]

_ Thus we have a(&, n) = & ‘:‘ao(E 7), (£, n) € T2, where a, satisfies the -conditions (3)

" of Theorem 1. In case x =0, 2 2.0 we get W(a) = W(a,) W(&*p*). For supposing

that the sufficiency part “of Theorem 1 is already proved, it follows that” W(a,)

€ @(I? @ I?). Then W(a) € PP Q1P) glves W(&*n?) € &(1? ® IP), but since, obviously,

dim Coker W(¢*n!) = oo if x > O or £ > 0, we deduce that x < 0O and 4 < 0.

Assume at Jeast one of the mtegers » and 1 is negatlvc Let x < 0, so that

(a¢.y)=T(s.-'*') ), B ‘

with f} , € PC,(T)and T(f} ) € GQ(I?). Obviously, dim Ker T(£-/x) T(f:,) = % > O.
Take ¢, € Ker T(&-1xy T(fc ) and F e (IP)*, |F||=1, and define H ¢ &(I?) by
Hy = (Fy) gy, yp € I7. S0 '

HeQ,c®B,, IHI=1, - T(EW) T(f},) H = 0.
With the operator 4 defined by (5) and the operators D;, Z;, U, K,,, C:" introduced

in the proof of Proposition 1 we obtain

| AH®U) = 5 DH ®KyQu+ 5 Dl ® C40n.
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'
]

Now, analogously as in the pfoof of Proposition 1 (with & replaced by 9,) we can
derive .

IH ® o,Us@Qull < IR | A(H @ U@l

what as above leads to a contradiction. Thus "= A=0 and the assertion follows
from Theorem G in Secblon 2 1
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