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Maximal inequalities and Fourier multipliers for spaces 
with mixed quasinorms. Applications 

H.-J. SOHMEISSER 

Es werden Maximalungleichungen und Fouriersehe Multiplikatoren für Systeme ganzer 
analytischer Funktionen exponentiellen Typs betrachtet, die zui Räumen mit gemischten 
Quasinormen gehoren. Als Anwendung werden 4 Typen von Räumenvon Funktionen mit - 
dominierenden gemisehten Glattheitseigensehaft.en eingefuhrt. Beziehungen zu klassischen 

m Räumen von diese Typ (Rhume von S. M. Nikol'skij,T. I. Amanov, P. T. Lizorkin) werden 
behandelt. Als Spezialfall sind die Sobolev-Räume mit' einer dominierenden gemischten Ab-
leitung entha1ten.	 - 

PaccMaTpnBaIoTca siai-ciiiajii,iiiie iiepauecea u MyJIbT11n.1HHaTOphl (Dypbe ia clicreM 
4y11HLWü aHcnoIleIIIjjjajlblloro vuna, npuHa jieaLuxcn npocTpallc'rBaM Co CMCIIIaIILIhIMIL 
HI3aCHHopMaMH. Hai- npu.rioeiiia onpeeJ1nIoTcn 4 THI1bI 4yHHuuoHaJlbtIbIx npocTpallcTn C 
LoMLIHHpyIOI1eft CMewaHIlotl flpOH3BOHoC. I4CC1eyIOTCa CooTiloweHilhi H H3lacdu'IecHHM 
npOCTpa}IcTBaM 'raxoro Tina (C. M. l-lIIxo.ubcxoro, T. H. Aiaiiona, ri. 14. JlI130pxItHa). 
B pacc1aTpuBaeIbIx xiaccax coep?xaTcn, B 'IaCTH0CTH, npocvpaiicvaa Co6oJlena C 
HupyIouefi cMeLpaHuoü nponaBojuIot. -	 - 

The paper concerns with maximal inequalities and Fourier multipliers for systems of entire 
analytic functions of exponential type belonging to mixed quasinormed spaces. As an appli-
cation 4 types of spaces of functions with dominating mixed smoothness properties are intrb-
duced. Relations to classical spaces of that type' (spaces of S. M. NIKOL'SKIJ, T. I. AieANov, 
P. I. LizoaxiN) are treated. As a special case the Sobolev spaces with a dominating mixed 
derivative are contained. 

1. Introduction 

In connection with the study of eigenvalues of integral operators, A. PIETSCH [12, 13] 
introduced the spaces [B, q' of functions, /(x, y) of two variables to describe 
smoothness properties of the kernels of the operators which ensure mappings between 
Besov spaces. This idea was taken up by H. TRIEBEL [26, 27], who described such 
spaces within the framework of Fourier analysis. It was more or less obvious that 
the spaces considered are related to those of S. M. NIKOL'SKJJ[10], T.T. AMANOV 
[2, 3], and H. TRIEBEL [21-23), which are characterized by dominating mixed 
derivatives. Triebel's approach was in keeping with the recent developments in the 
theory of function spaces. However, a systematic investigation by 'means of Fourier 
analysis in the sense of the modern theory of the Besov and Triebel-Lizorkin spaces 
(cf. H. TRIEBEL [24, 251) remained open. The first step in this direction was done 
in the paper [14].	 . 

The aim of the paper presented here is twofold. First we want to establish maximal 
inequalities and Fourier multiplier theorems for various types ofpaces with mixed 
quasinorms. These spaces are found to be the basis for the treatment of the indicated 
unction spaces. Second ,we want to clarify the relations of these function spaces to
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the classical Sobolev-Lebesgue spaces with dominating mixed derivatives in the - 
sense of P. 1. LIORKrN and S. M. NrxoL'sI1J 9 i .	 S 

The paper is organized as follows. Section 2 contains all definitions needed and 
some preliminaries connected with classical Hardy-Littlewood maximal functions 
and mixed quasinormed spaces. In section 3 we state and prove our main theorems. 
Section 4 deals with possible applications td the function. spaces of Besov-Triebel-
Lizorkin type, the comparison with the classical spaces, and remarks concerning 
integral operators. 

Our treatment follows H.-J. SCffMEISSER [171 where the essential: resuIts can also 
be found. 

2. Preliminaries  

2.1. Spaces with mixed quasinornis	 -	 - 

Let (X i , Si,) (1 = 1, ..., n) be n given, totally a-finite measure- spaces and 
(pa, ..., p, ) a given n-tuple with 0 <p,	o. It is supposed that none of the

spaces (X 1, S, a) admits only the constant functions. A function /(x1 , ..., x) 
measirable in the product space	 I 

X, 5, a) = (a x 1,/j	1) 

is said to belong toL(X) if the number obtained after taking successively the p'- 
quasinorm in x1 , the p2-quasinorin in x2 , ..., the p-quasinorm 'in x, and in that 
order, is finite. The number obtained in such.a way will be denoted by It I L(X)II., 
If 0< pi < oo we have in particular:

	

1S'	 P	 1 

-	I/I L(X)II = ( i
 ... U (•	/(x, ...., x ) I P' dfL i)Th du2 )P ... an).	(2) 

This is the definition of the spacesL with mixed quasinorms given by A. BENEDEK - 
and R. PANZONE [5]. Let us recall that a quasinorm satisfies all conditions of a norm 
except the triangular inequality. That must be replaced by 

It + g1l	c (JI/ft + Ig II) ,	c	1.	- 

For abbreviation we- shall put	 - - 

I	1/ I L(X)II = II!(x i, ..., x) I L(X 1 ) I ... I L(X)j.	*	(2.2)

In the case that p, = _-• we have to modify in the usual way 

It I L,(X)II = ess sup I/(;) I .	 - -	xEX 

- If X = R is the real axis and iAi is the Lebesgue measure we set L,(X1) = LPI 
(1 = 1; 2, ..., n),L(X) = L(R,) = L, and,  

•	•	II! I •	= I/(x, • ..., x) IL 	I ... L.11.	 -	(2.3)
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Our definition also covers the spaces 1 consisting of all systems of complex numbers 
k	1(k..... .k) (k1 = 0; 1, 2, ...) with	 S 

I oo	/ Co /	 \ A!	\	 - 
i!t I 1 II = (. Z( L' ( 27 t(k......k.,)I" )" )' \kO	\k , s 0 \k,0  

= lI/(k ...... k0) 1 1P, I ... I 1 11	 (2.4) 

For Pi = =p,, =p these are'the usual spaces L and I,,. Of special interest to 
us are certain combinations of (2.3) and (2.4). That means.we consider spaces of 
systems k(x), k = (k 1 ,,..., ku ), x = (x 1 , ..., xe ), where k = 0, 1,... and x1 E R,-'_-N--ow 
we.take, in the sense of (2.1), (2.2) successively, L and 1, quasinorms, 0 <p, q	cc, 
in different orders. For n-tuples p= ( pr, ..., p,,). and	= (q 1 , ..., ' q,,) with 0 < p,

• qj cc we define the quasinorms 

II/(x) I s1(L))	 . . ., Zn) IL, I 1qj . . . IL,, ,, lq,jI ,
	

( 2.5) 

•	 II/(x) I SL(1)II = ! l/(k ...... k,,) (x1, . . ., x,,) 1q, I L,,,I . . . I lq,j Tip ,jIf	(2.6) 

II/(x) I .L(1)I =	k,,)(x1, ..., x,,) I lq,I . . .'I lq,, I Lp, I ... I Lp,jI:	(2.7) 

The corresponding spaces are denoted by S1(L), A(1), and L(l). Note that in 
(2.5), (2.6), and (2.7), 1q, is connected with sunimátion to the q .-th power over 

0, 1, ... and L,,, with integration to the pi-th power over R 1 with respect to the 
Lebesgue measure dx;. 

Let us mention that the above spaces can alsO be obtained as iterated cases of 
vector-valued Banach function and sequence spaces. 

Finally for the sake of simplicity we want to introduce some abbreviations. If 
and are m-tuples we write I 

	

<,F=)iff r<s(r1 <s1 ,r=s)	(=1i) 
- 

().r 1 ,	 ( complex),	S 

S	

:= (r 1s 1 , :.., man ),	-	 S	 5 
... r,,n	(r1 > 0; i = 1, . .., n)	 S	- 

(a8'.....a8)	(a > 0)	,.	 S 
- ° =.(r1°, •..;m0)	- (r 1 > 0), 

Further we agree upon 0 = (0, ..., 0), 1 = (1, .-.., I), ...,	= (cc, ..., cc).
denotes the set of all'n-tuples k = (k 1 , ..., Ic,,) with non-negative integer components. 

2.2. Inequalities for the Hardy-Littlewood maximal function 

In this subsection we want to recall R. J. Baghy's extended maximal inequality [41. 
Let (X, S, i) be a product measure space as defined in the preceding subsection 

and let R,, be the Euclidean n-space. We consider on R,,XX locally integrable 
complex valued functions f(x, t), x = (x 1 , ..., x,,) E R,,,t = (i i , .:., m) E X and define
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the Hardy-Littlewood maximal function with respect to x € II,, by 

(A1f( . , t)) (x) = sup IB(x, r) II I 'i/c, t )1 dy.	 (2.8) 
B(x,r) 

Here B(x, r) denotes a ball with radius r centered at x € R and JB(x, r) I is its Lebesgue 
measure (cf. E. M. Stein [18: Chapter Q. Then we have 

Proposition 1 (R.J.BAGIY [41): Let q = (q,..., q.) be am-tuple with 1 <q1 5 oo 
and let, 1<p<'oc. 

There exists ae.onstant c > 0, independent of /(x, 1), such that 

II(MI(, 1)) (x) 1L1 (X) I Lp(Rn)II	c Jf(x, t) IL(X) I L(R)II.	 (2.9) 

Remark 1: (2.9) is a generalization of the famous vector-valued maximal in-
equality of C. FEFFERMAN and E. M. STEIN [7]. Of course, in (2.9) first the norm 

IH L4 (X)II = H Lq,(X i ) I ... I L,,(X.)Il 

is taken with respect to t .= (t i , ..., 4,,) E X = TI X 1 and the measure =
	

u1. 

After that the norm in L(R,,) is taken with respect to x E R,, and the Lebesgue 
measure. We are especially interested in the cases that L(X) = L(Rm) (and S1(L), 
SL(i), L(l1))	

\ 

2.3. The spaces SH and S'IV 
Let	=(x,,...,x,,) and T9 =(pj,...,p,,) be n-tuples with -	< < oo ap'd
1 < P < 36. F and F- ' represent the Fourier transform in the space of tempered 
distributions S'(R,,) and its inverse, respectively. For f € L 1 (R.,,) we have 

(F/) (x) = (2I2 f /() e<'> d, 
R.

•	(2.10) 

1=1 

Then we define, if it-makes sense, 

111(x) I S'Hll = F-' 11( 1 + x2)iI2 F1  L(Rfl)M	 (2.11) 

and
SB = {/(x) E L(R,,) I jj/(x ) I S'II < óo}.	 (2.12) 

If fi1 = (m 1 , ..., m,,), m 1 non-negative integer, we put	 - 

-	SW	{/ E L(R,,)I D/(x) € L(R,,); 0, = 0, 1; i = 1,..., n}	.	(2.13)
and further 

- 111(x) 'I SWlj = E lID /(x) I L(R,,)II.	 ' (2.14) 
i=1.....n 

Here all derivatives have to be understood in the sense of distributions and	.... 
a i non-negative integer, means	 - 

-	- n 

a	- .	'	II a	 - 
,	x2	. . . x,	 j=I 

If all pi are equal we write SH and S W, respectively.
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Proposition 2: We have 

SW = S'H.	 . /	 - (2.15) 

Remark 2: The proof of (2.15) can be carried out analogously to the isotropic 
case Pi = p (see for example H. TRrEBEL [20: Theorem 2.3.3]) using the. 
Fourier multiplier theorem for Lp of P. I. LIzoRin [8]. 

The spaces'SFFn W and SH generalize the c1asica1 Sobolev-Lebesgue spaces with 
a dominating mixed derivative treated by P. I. LIzortKIN and S. M. NDwL'sKIJ [9]. 
to mixed norms. Now, let us establish an important inequality of Bernstein 
type, which will be used later on. 

and 0 <5 2. If > - + I - 4-, then- there exists a positive constant c, such that 
/or all /ES,H 

11( 1 + x2)d,2 F1 	;5 c j/(x) I S2 I1II.	 .	 (2.16)

Proof: Let I = (1 1, ..., l) be a n-tuple of non-negative integers. We set 

, Q1	X	X It., ..	 .	 I 
where 4 = [- 1, 11, I = [-21 , — 2 1 - 1 ) u (21 - 1 , 2 1 1 (1 = 1, 2, ...). Further let y, be 
the characteristic function of I and 

xi(x) = x1 1 (x1)	Xin(n)	- 

the characteristic function of Q. Using thee notations the equivalence	- 

11 (1 + x 2 )d1I2 F/I	112 	F/I S1(L	.	-	( 2.17) 

can be derived. N'ow, HOlder inequality, for integrals with rspect to -- is succe'ssi-' 
P 

vely applied to the right-hand side of (2.17) from i = 1 up to i = n. Thus, it can be 
estimated from above by	.	.	 -. 

C I? 1	'2'iF/ I 
Using Holder's inequality for series, and because of the assumption ej=xi 

- (d 1 + -- - -- > 0 (i, '= 1,..., n) we obtain from (2i7)	. 
\	p1	2	 .	.. 

JJ (1 + X 2 )di/2 F/ I Lp	c 11 2 1 Xi(x) F/ I S1(L)Il 

= c 112'i(x) F1  L(i)II. 

it is easy to see that the last expression is an equivalent norm in S2 5H. Hence, the 
Proposition is proved I	 - 

Remark 3: For 91 = 1 the Proposition follows from H. TRIEBEL [23, Lemma 
1.5.5].

I1
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'I 

3. Maximal inequalities and Fourier multipliers 

•	

- 3.1. Definitions 

In view of the desired applications to function spaces, let us introduce the analytic 
counterparts of the spaces with mixed quasinorms from (2.5)—(2.7). (2.5)—(2.7). In the following 
definition 9t is said to be the set of all systems {/}e,,- of tempered distributions 
'from S'(R) with 

suppF[/(	)1	{ I Ixd ^ 1	(i = 1, ..., n)},	i E. Z.	(3.1) 
Then by the Paley-Wiener-Schwartz theorem each /i is an entire analytic function 
of exponential type. 

	

Definition 1: LetO < 	We put	
V 

r	 S1(L) = t fl S1(Lp ),	-	 (3.2) 

= Wñ SLp (lq ),	 -	'	/	 (3.3) 
jA(j) = { n L-(1).	 (3.4) 

These spaces are equipped with the quasinornis from (2.5)—(2.7). We are interested - 
' in the following maximal function.	 - 

Definition 2: Let  > 0 and let {/(x)}Ez+ € 21. Then we define 

/*(x)_	/(x	)I 	 (3.5) 
uER.. 17 (1 + 21y1 1)( '	 V	 V V 

Remark 4. This construction of a ma'ximal function is analogous to J. PEETRE 
V	 [11] and H. TRIEBEL [25, 2.2.3]. V 

The aim of this subsection is the proof of some inequalities for the maximal 
function (3.5) in the spaces (3.2)—(3.4) and of Fourier multiplier theorems. That 

V means we prove inequalities of the form 

V	 • '•	

'. 	 IIF [) FIE ] (x) 1 . J :E-̂ c .IIf(x) 1 •JJ,	
V	 V 

whee {(x)}j€z+ is-a system of infinitely differentiable functions on R.. Here the dot 
denotes one of the spaces from Definition 1.	 V 

3.2. The fundamental Lemmata 

-	We follow some ideas of J. 1EETRE [ii] and H. TRIEBEL [25, 2.3.31. In the sense	V 

o((2.8) we put 

V	 -	 •	 (M1/) (x) = (M/(x1,....,	) ., x 1 , ..., x)) (x1 )	(i = 1,...., n)	(3. 6) V 

for a,locally integrable function /(x), x E R. Further we denote 

V	 V	

•	 (V/) (x)'= (
	

(x) ..•,_ (x)),	J(V/) (x)I	 (x),	-	V 

V if /(x) is a continuously differentiablejunction.	 •
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I em ni a 1: Let &) be a continuously di//erentiable /unct ion on R. and let 0 < <, 
a = . Then we have for 0 < ô 1 

- sup	1 g (X -	 S 

vERa fl (1 + IyI)°' 

	

(Vg) (x +	+	(	(... M2 (MI giy . .	 (3.7)
vER 

11( 1 ±1y11)°' 

Proof: Step 1: Let Q = [-1, l]x	X[- 1 11 and let us put' 

- 1g (X) I C I (Q)11 = sup 1 g (X )1 + sup (Vg) (x)I. 

	

XEQ	ZEQ 

Then we prove 

Iq(x) I C'(Q)Ij '' sup 1(Vg) (x) -f- 11g(x) I L(Q)II .	 (3.8) 
XEQ 

If w € Q is chosen, such/that Jg(w)I = min g(x)I, we obtain as a consequence of the 
mean value theorem	 xQ 

WO 	c (Ig(w)I + sup JVg(x)I"1	c (iIg(x) Lr(Q) j I + sup Vg(x) 
-	-	 xQ	/	•	 XEQ 

for arbitrary v € Q. The other direction is obvious because of IQI < oo.	 I 
Step 2: Let v € Qo = f-6, 61.  x	x [—O, O] c: R and let g(x) be continuously 

differentiable. Then it follows from (3.8) 

WO
1	1 

= cô r,	r 11g(y) I Lr(Q)I! + cô supI (Vg) (y)I,' 
ZEQã 

where c is independent of ô. This estimate applied to the function g(x - z - v),with 

•	fixed x and z, and v € Q yields for v = 0 

g(x - z)j	câ	iIg(x - z — . )I Lr(Qo)II + cô sup (Vg) (x —y - z)I. 
(39) 

vEQa 
•	The substitutions z + y = u1 (i = 1, ..., n) give 

•	 I(x_z—.)IL(Q)IIIIf(x—.)ILr(ZiX ... XZ) 

with Z1 = [—(1 ± 1 z11), 1 ± I z i ll. it holds that	 S 

(f f( ... x - u, . . .)' du)",	+ IzD (M I g I T	(;) 

and thus 
S	 n	 I	I 

Ilg(x - z - .) j L(Qo)II	c JJ (1 + zI) Lr kM k... (M 1 gI)r' .. .)rni)rn (x). 
i=1 

Together with (3.9) this inequality leads to(3.7). Hence, the Lemma is proved I 
Lenuna 2: Let {/(x)} € t and let {(x)}Ez* be asystem o/ infinitely differentiable 

functions. If	a + 21 then we have 

(x) ^5 c II(2y) I S2 HI1 f_*(x)	
5	 (3.10) 

where c is independent of k €	and x € R.
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Proof: We choose a function (x) E S(R) wil 
= 1 if lxii 5 1 (i= l,...,n), 

(1= 1,...,n)} 
and put (x) = 9,E (X) (2x). Recall that 2x 
that

(F:'q)F/) (x - )i	cf i(F 1 ) (x - 
Rn

h the properties 
supp (x)	(xj Ix	2 

= (2"x 1 , . ., 2_"nx,,). Then it holds 

- y — z)I i/(z)ldz 

c/-(x)f i(F- 1 ) (x - y - z)i T[ (1 + 21(x 1 - z)J0l dz 

JJ (1 + 2y0,) f i(F- l ) (x - y —i- z)i 
i=1 

x 11 (i + 121(xj	Yi - Zi)i)H dz. 

Division by 	(1 + 2y1)ai yields	 S 

(FF/)* (x) ;5 c/*(x)	(1 +. z i)°' (F 1 ( 2 . )) (z) i 

The right-hand side can be estimated with the help of Proposition 3, (2.16). This 
gives

(F-qF/)* (x)	c/*(x) Ii(2y) V(y) i S,Hii, 

with > d + 2 1 . Furthermore it holds that 
11 §9j(2iy) (y) i S2 H 11 5 c()	(2y) I S2Hli. 

This becomes clear for .Tc for, with integer components by means of Proposition 2, (2.15). 
The general case follows by the interpolation theorem of H. TRIEBEL [21, p. 239/ 
formula (49)]. Thus the proof is complete I 

Lem rn a 3: Let {/(x)}E , € 21 such that sup Iih(x) I L,(R)li < oo , br all k E Z,,. 
If d F', then we have 
/ 

/_*(x) ;5 c IM k... (M 1 1 /El"	 (x).	 (3.11) 
Proof: From Len-in-ia lit follows, with g(x) = fj(2x), EZ, 

•	 "	 /a'-\" /*(2_kx) ^ c5 E 2' (_!) (2 -x)	-	 -	- (3.12) 
-	i=1	\tiXj/	•	 S 

S	 /	/	 I	\r,\1	 - 

- + 	 M1 f_ (2_ k. ) ty ... )n-) " (x). 
it is easy to se that	- 

(.Mg(..., 2', . ..)) (x) = (Mg) (x 1 , ..., 2k1x, .., x,,) 

and hence by iteration	 - 

' (Me (...(M1 I f j(2-1 -)	. .	(x) 

= (Jkr (...	f.)Jr1)r1
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This identity applied to (3.12) implies  

/*(x)^ c	2- () (x) + C3- ii (M 	 tv)	(x).

Now, we choose a function i(t) (t E R 1 ), infinitely differentiable, with (l) = 1 if

I E [-1, 11, supp (I) [-2,2]. Clearly, by definition /(x) = (F- 1 n* (2- k yj)F1 jJ i 	 ) (x) 

	

- and therefore	 j=1 

2k, a/-\	 n 

	

- 

-I	= F'2'y1 J-J (27ky.) F/i) (x). 
(exi	(  

Setting a 0(y)= 2'yJ7 p(2-kiyj) it follows with the help of Lemma 2 that 

2.(-) 
(x) ,^ c y [1 V(Yj) I S2 11, /-*(x) 

-	.	xii  

where ? > d + 2_1 . The first factor on the right-hand side can be estimated by a 
constant. Next we use the inequality (3.13) and obtain 

/_*(x) ^ c31j*(x) + C3-5 M. 	(M1 I/I'Y . . .) (x),	0 < 6,< 1. 

/ If we choose ó sufficiently small this gives the assertion of the Lemma, taking into 
account th'at sup I/(x)! < :_- I 

k.x 

3.3. Maximal inequalities 

Theorem l: Let O<<,O<.	 . 
(i) If a1 >- nun ( p i, . . ., p q1, . . ., q1_ 1 )', then. 

I/_*(x) ISl(L	;Sc J/(x) I Sl(L)II	-	 -	(3.14)

for all {/(x)} E Sl(L_A). 
(ii) 1/ a > nun (pj, . . ., pi; q1, . . ., q1) -1 ; then 

Ik*(x) I SL(l)jj	c II/(x) I SL(l)I1	 (3.15) 

br all {h(x)} E SL(i).	- 
- (iii) If a > mm (pt, ..., p; q1, ..., qn', then 

I1/*(x) I L(l)lI ^S c If(x) I L(l)II	 (3.16) 

for all {/(x)} E L(l).	 .	. 

Proof: We use Lemma 3. All assumptions are satisfied because of the Nikol'skij 
inequality for mixed quasinorms of B. STöCKRT [19]. Threfore (3.11) yields 

Tn	 .	1 
iIf*(x) I L(l)I1 .	c M(... 111 1 I/I . . .)'•n- (x) I L (l\ Tn 

	

= c M5 (... M 1 fJ' . . .)n- (x) L (l 4 L	n• 

T,, \ r,,F I	r,, 

11 Analysis Bd. 3 Heft 2(1984)
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Here' = (Pi, ..., p,,—,). We have r1 = a' and by assumption 

co > > 1 00 >

	

	(i=i,	- 1), r, 

co	>1  

Therefore we can apply Bagby's maximal inequality from Proposition 1 to the 
right-hand side. This yields 

Iif(x) Ii(l)Ip	c (M_ 1 ... )J1 jfjr . . ..._i,(x) I L	(l) rn 

-	 = c KM1(... M 1 /Ir1	)r, )rn (x) JL-(l) I L Nil. 
Successive applications of this procedure lead to the desired inequality (3.16). In 
the same way we can prove the othercases (3.14) and (3.15) I 

3.4. Fourier multipliers 

First let us introduce some notation. If 0 < < , 0 < ^ we set 

1 '(p, q) = mm (Pi, ... p1; q1 , ... q1_ 1 )- ' + 

q) = mm (pi, ..., p1 ; q 1 , ..., q1 ) 1 +	(i =	..., n) 

•	xj(, q)= mm (p,, '.... p i ; q 1 , ..., q ' + 
and F1 	(, 1P, ..., xn') etc. 

Theorem 2: Let 0 <i < , 0 <	and let {q(x)}z+ be a system of infinitely
differentiable Junctions. 

(i) If5>,then 
•	j(FF/) (x) I Sl(L)j	csup q(2Cy) I S2 RI II/(x) I Sl-(L-)jj	(3.17) 

kEZ 
for all {/(x)} E Sl(L?). 

(ii) If > TF , then 

!J(F ' Ff) (x) I SL(l)I1	c sup 1I(21y) I S2 HIJ IIf(x) I SL(l	(3.18) 
k EZn-

for all {1(x)} E SL(l). 
(iii) If > p.", then 

II(F ' F/) (x) I L(l)I1	csup I9,(2ky) S2 HI! IIh(x) I L(l)J1	(3.19)

for all {f(x)} € L(l). 
Prof: The proof is an immediate consequence of emma '2, Theorem 1, and 

I(F'F/) (x)J = (FçF/)* (x) I	 •
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4. Applications 

4.1. Spaces with dominating mixed smoothness of the Besov-Trieb1-Lizorkin type 

Let b he the class of systehs 4p = {(t)}	of infinitely differentiable functions, 
having the properties: 
supp 90 c 1-2, 21, supp q: c [-_211 , — 21-1 1 u [211 , 211 1	(1 = 1, 2, ...),	(4.1) 
dm

,(t) :!E^ c2- 11n	0, 1, 2, ...),	 (4.2) 

-	2:; ç2,(l) = 1 . -	
0	

-	

(4.3) 

These are the systems of test functions widely used in the theory of function spaces 
(cf. H. TRIEBEL [20-25]). If {q,(t)}	€ 0 we put 

(x) = flk4 ( x I),	x  R, k €Z+. 

-

(i) SB = If € S'(R) 13 92 E 0, such that 

II! I SBjI = II 2 (F- ' F/) (x) JLpj l <oo,.	 (4.4) 

(ii) SB = {/ € S'(R)I 3 q' € P, such that 

II! I	 q2 = II2(F'F/) (x) I S1(LII <oo},	 :. (4.5) 

(iii) SF= (/ € S'(R) 13 99 € 0, such that 

11/.1 SFlI = II2 li(F_ 199Ft) (x) I SL(l)I < 00),	 (4.6) 

(iv) S" jF = / € S'(R.,,) 13 92 € 0, such that 
• •	 Il/I s;.FII = 1I 2 ( F qF/) (x) I L(1)I1 <ç'o}.	 (4.7) 

Remark 5: The spaces (i)—(iv) are spaces of functions and distributions with 
dominating - mixed smoothness properties. All spaces are quasi-Banach spaces 
(Banach if 1 :5: , fl. For different 's the quasinorms (4.4)—(4.7) are equivalert 
to each other. This and the other basic properties can be derived from Theorem 2. 
We refer to [14-17]. 

Remark 6: The spaces SB generalize the spaces SB (1 :!g p, q ^ co, 0:5: F <) 
I	

P.
of T. I. AMANOV [2, 3] and the spaces B	(0 <p, q	co,g(x) = 11 (1 ± 

;2)Tti)

of H. TRIEBEL [21-23] to mixed quasinorms. For the details we refer the reader to 
H.-J. ScImiEIssER [16]. The spaces SB weie introduced by H. TRIEBEL [26] in 
the case n = 2. They are investigated together with the spaces SK' 4 , which are the 
counterparts of the Triehel-Lizorkin type, in H.-J. SCRMEISSER [14, 15]." These two 
papers deal with the main properties such as Fourier multipliers and representation 
theorems. For imbeddings we refer to a forthcoming paper (see also [171). The spaces 

SF generalize the spaces F' (0 <p < co, 0 <q	co, g(x) =JJ(1 + X12)r;)2) 

of H. rrRIEBEL [21-23] to mixed quasinorms. The relations to the spaces SH (see 
2.3, (2.11)) are considered in the next subsection.	.	 ••	S 

11*
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4.2. Sobolev-Lebesgue spaces 

Looking at the theory of the isotropic Triebel-Lizorkin spaces_Fr . , q (0 <p < 00, 

0 <q ;5 ,- — 00 <r < 00) and at the definitions of 81F, SF, it is natural to P'q
ask about connections to mixed Lu-spaces and to Sobolev spaces. The answer is 

	

•	given in the following theorem.  

Theorem 3: Let I <i < , - <F < . Further let Wi be a n-tuple of non-
negative integers. Then we have 

F =L,	 (4.8) 

	

•	
S!F = s'w	 (49) 

p.2	 - 

	

,SF=SH.	/	 (4.10) p.2	- 

	

•	Further it holds that 

• SF°-	Lpc SF°	--	 ..	 (4.11) p.mln(p.2)	 p.max(p,2) 

8 min()	SW	 (4.12) 

SKY min()	SI•i	SF" ac_.>,	 (4.13) 
where	 V 

mm (

, 

2) = (2, mm (p,, 2), .. ., mm (p,, . •, Pa-b 2)) 

max (, 2) = (2, max (Pj', 2), ..., max (Pi, •, Pn-i, 2)). 
- Proof: The Littlewood-Paley theorem '(418) is a consequence of P. 1. LizornuN 

[8, Theorem 2 and Lemma 21 (see also [3, Lemma 15.2]). Formula (4.8) and Definition 
3 (iv) give	 V 

V	

a	 .L'	 a 
F' JJ (1+ .2)2 F1  Lp	F-' 11( 1 + 2)2 Pki(i) F1  L-(l) . (4.14) 

V	 1=1	 1=1 

We put	
V	 . 

-	
- 

V	

?Pk,( i) 

= 2-Tiki(l + 2)2 

ti	 . 

k(I) = 2nikt(l + 2) 2 Pk(e1)	(ki	0, 1, 2, ...; i = 1, . . 
a. rf 

/(x) = F 11( 1 + 2)T 91k, ($0 Ft.	 V 

	

1 = 1	 S 

Because of (4.1) and (4.3) the following two inequalities hold: 

jj/(x) I L(i)II	F-'JJ k F(2 T	+1F/) (x) I L(l) M	•	 V 

and	 V	 V 

II( FF/) (x) I L(l)II	' jF'e,iF/) (x) I L(l)II, 

where the sum overt E Z 1 is finite. Now we apply Theorem 2 (iii) to both inequalities 
with ip and e instead ofq,, and considering (4.14), we obtain formula (4.10). Then 
(4.9) is a consequence of Proposition 2.
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The imlieddings (4.1l)—(4.13) follow from the more general ones 

SF mI() S'F SF- max(_) , •	 - 

min 	) = (q, ..., nun (pi, ..., pi-1, q 1 ), ..., mm (ps, ••• Pn— i, qn)),	(4.15)

max (, ) = (q j, ..., max (P I , .. .,p, q1 ), ..., max (Pi, •.., Pn-1, qn)) , 

which are a.consequence of elementary imbedding properties of the spaces 
and from the just proved formulas (4.8)—(4.10). Thus the proof is complete I 

Remark 7: The theorem states that the Sobolev-Lebesgue spaces SH with 
dominating mixed derivatives are contained in ST F as a special case. However note 
that this is not true for the spaces SF. This s personal information from Prof. 
A. PIETSCH, Jena, who has constructed a counterexample. in fact he has proved that 
Se- , = Lp if'and only if = 2. We can only prove the useful imbeddings (4.11 to 
4.13). 

Let its further mention that LittewoodPaley theorems for mixed LT-spaces in 
the sense of (4.8) are not new. We refer to P. T. LTZORIUN [8], BESOY, TL'JrN, NIK0L'-
sw [6], and S. I. AGALAROV [1] (weighted case). 

•	4.3. Remarks on integral operators 

H. TRIEBEL [26, 27] found that the spaces SB and also SF are very suitabl for 
the description of smoothness properties of kernels of integral operators (see also 
[141 for the F-case). But this is also true for S F ,, and SF. 

Let B;, q(R i ), F q( R i ) be the usual Besov and Triebel-Lizorkin spaces, respectively 
(cf. [25]). Here — 00 <r < oo,	p, q ;E^ cc. if K(x, y) E S u' (V .q)B ( R l X R1) 
(1	it, p:!^co, 1	v,qoo,—oo<t,r<cc) then 
S.	 I- S:B(Iti) *Bp.q(It i ).	-	 (4.16) 

If' l't(X,y) € S. ( vs,q )F(R l XR1) (1< u	cc, 1 ^p <00, 1 _^v, q	cc, 
—oo<t,r<co)then	 . 

•

	

	it: F(Rj) - Fr(R1).	•	 (4.17)P.
 Here it,

(it/) (y) =fK(x,y) /(x) dx

 is the corresponding integral operator. Of course - + -- = 1. The proofs of (4.16) 

and (4.17) are obvious modifications of Triebel's proof in [261, see also [17, 8.11. We 
omit the details. 

•

	

	As a corollary we obtain from (4.17) and Theorem 3 mapping properties of integral 
operators between La-spaces and Sobolev-Lebesgue spaces. 
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