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Fredhoimness and finite section method for Toeplitz operators 
in 1P (Z + x Z 1. ) with piecewise continuous symbols II') 

A. BOTTCHER

im 

In diescr Arbeit beweisen wir hinlängliche Bedingungen dafür, daB ein diskreter Toeplitz. 
operator mit stuckweise stetigem Symbol ml Raum IP. uber der Viertelebene noethersch ist 
und ebenso dater, daB auf einen soichen Operator das R .eduktionsverfahren anwendbar ist. 
Dabei vird entschcidend von Bilokalisierungstechniken und vom lokalen Prinzip VOtt DOUGLAS 
und KRUPNIK Gebrauch gemacht. Tell I dieser Arbeit war den Beweisen für die Notwendigkeit 
der entsprechenden Bedingungen, den notigen Definitionen und der Formulierung der Haupt-
resultate gewidmet. - 

B JiaHHOtl paüoTe AoKa3biBa1OTC51 )ocTaTo4Hble YCOBIIH 1H licTeponocTis oneparopon 
TenJ1l!la C Fyco'IHo-l1enpepb1BHb1MH CUMBOJ1aMU B npOCTpai1CT13e 11' ua HBa,pauTe, aTaIose 

JTH npHleHHMocTIl N1eT6,TAa peJyiuiisi K TaHHM onepaTopaM. MeTOjxu HaCTORiqeft pa6omi 
cylllecTBcuuo onupaiorca iia GIuloKaJIbnylo TexllM}y if ua J10HaJIbHI.lfl E1pMll1l1fl ,LVl'JlACA-
HPYHHII ic A. MacTb I paüomi 6blJ1a rIocBnueHa oxa3aTeJ11?crBas1 HeoGxoJusMocTll cooTueT-
CTByIOIIUIX VCJIOIIIIfI, BUM HHil(b1M onpcLeJleIulBM H (I)opMyJ1upoBIe rJlaBHwx peayJIbTaTOB. 

In this paper we prove sufficient conditions for Fredholmness of discrete Toeplitz operators 
with piecewise continuous symbols on the space 1P over the quarter-plane and for the appli-
cability, of the finite section method to such operators. The methods used here are based on a 
bilocalization technique and the local principle of DOUGLAS and Kau psrx. Part I of this work 
contained the proofs of the necessity of the corresponding conditions, the necessary definitions, 
and the formulation of the main results. 

This paper continues the paper [1] and it is devoted to the proof of the sufficiency 
part of the Theorems I and 2 of 1J. All definitions and notations used here and not 
being explicitly explained were introduced in [1]. 

5. Further auxiliary propositions on one-dimensional Toeplitz operators 

With regard to a theory of the finite section method for two-dimensional Toeplitz 
operators some one-dimensional results have to be precised. This is the purpose of 
the present section. 

Set
= {(A 5}.. o : A 5 : mi P, -* Tm P,,	{ A 5 }jI := sup IA nnIl2( 9) < qo}, 

= {{A 5 } 0 € F: jjA 5 Pn I 111 —0	(n 	oc)}.	- 

By A we denote the closure in F of the collection of all sequenCes of the form 

{A5} 
= {  j=l k=1 

Part I appeared in No. 2 (1984) of this journal. 
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where r, s E Z,, afk E PC0. Finally, let I be the set of all sequences {A} E F,, which 
are of the form	 - 

{A} = {PKP + WK 1 W,, + C,,}, 

where K, K 1 € St,, and {C} E G,, (the operators P, and W, were defined in Section 2). 
As in [2] the inclusion I A,, can be proved and then in the same fashion as in 

[8] it can be-verified that I,, forms a closed two-sided ideal in the Banach algebra A,, 
and that A,,!!,, is commutative. Let ,, denote the canonical, projection of A,-onto 
A,,/I, N,, the maximal ideal space of A,,/1,, an' TN9 the Gelfand map of A,,!!,, into 
C(N,,). Note that .{T(a)} € A,, if a € PC(T). 

Proposition 3: Let a€ PC,,(T). If T(a) € 02(I T )/or every r € [p, q], I/p ± l/q= 1, 
then ,,{T(a)} E G(AII,,). 

Recall that a € PC,,(T) implies T(a) € 9_(1f) V r € [p, q]. 
Proof: Applying the local principle of J. C. GOUBERO and N. YA. KRUPNIK [4] 

with, the method of [8] ,we find that r,,{T(a)} is locally equivalent at t0 € T to 
'r,,{T(a)}, where a10 is defined by 

a, t; - (a(t ± 0), arg t0 < arg 1 <arg to + —.s a(t0—O),argt0--x<argt<argto, 
I E T.-Let £,," denote the closed "lentiform" domain in C which has as its boundary 
the two circular arcs  

{(i - s,,(t)) a(t0 - 0) + s,,(u) a(t0 + 0): u E [0, 1]), 
{(i - sp(a)) a(t0 + 0) + s,,(t) a(10 - 0): u € 

(recall the notation (2.2) of Section 2). According to Theorem 17 of Section 2 we have 
T(a 0) - 21 € H,,{P} for 2 4 *D,,1. 

Now, let 91,, be the Banach algebra playing the dominant part in [8], i.e. 91,, con-
sists of all sequences {A} 	A: Tm P. - Tm P,, for which there exist operators 
A, A, € £(l") such that AP —>A, A*P 	A*, WAW --A 1 , WA*W 	A1* 
(the convergence in the strong sense, the asterisk denoting the Hermitian conjugate). 
I,, again forms a closed two-sided ideal in 91,,. Let us by ri,' denote the canonical pro-
jection of 91,, onto 91,,!!,,.  

The results of [8] now imply that r,,'{T1'(a10) -AP.) € 0(91,,!!,,) if only T(a,,) - Al 
€ rI,,{P}. Then 2 does' not belong to the spectrum of r,,'{T(a1,)} in 91,,!!,,, i.e. 

2	specR,,I (T,,'{'1'(at,)}). 
Hence  

•	' '	specu,j I,, (r,,'{T(at,)}) 

By [7: 10.18] we conclude 

specot ,j ('r{T(at,)}) (I) 

On condition that T(a) € G2(1 1) for every r € [p, q], I/p + 11q = 1, from Theorem C 
of Section 2 follow that 0 J, s ,," for every 10 € T. Thus (1)- shows that r,,{T(a10)} 
E G(A,,/I,,) and application of the local principle of [4] gives r{T(a)} € G(A,,/I,,) I 

Propo'sition 4: Let N € N,,. Then there exist r € [p, q] (i/p ± 11q = 1), € T, 
and € [0, 11 such that. 

(I'çr,,{T(a)}) (N) = (i - Sr(,u)) a(	0), + 8ru) a( + 0) 

for eiJery a € PC,,(T).	 ,
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,Proof: Let W he the Wienei algebra of all functions on T with absolutely con-
vergent Fourier series. Define the map co by 

o: W -	a 

Obviously, co  is a continuous algebraic homomorphism. If 99N is the complex. homo- 
morphism (continuous multiplicative linear functional) associated with N E N, i.e. 
N = Ker WN theno a is a complex homomor'phism on W. Consequently, there 
is a C E T with 

cN(rp{T(a)}) = a()	 ,.	 (2) 
for every. a € W. For 8 € T define £he function a 0 € PC0 by 

0	10, arg 0 — -z < arg t < arg 0	 .. 

and the complex number c by	 . . 
C = N(rP{T(a)})	 .	 (3) - 

given by (2)). From the inclusion (1) we get the existence of an r E [p, q] and of a 
€ [0, 11 such that 

- c = (1 - $( L)) . 0 +Sr(L) . 1 = Sr(IL).	 .	 (4) 

Now, the identity a + a_ = I gives 

= 1 - Sr(/L).	 .	 ( 5) 
Thus we have evaluated	at x{T(a)} and at T, 

I 
fT. (a- c )). Let c(8) be the value of Nat r{T(a0)} for 8 € T, 8 + d, i.e. define c(8) by 

48) = 9N(TP{?n(ao)}).	 (6)
We are going to prove that 

c(8) = (1 - s()) ao( - 0) +Sr(/-t) a( + 0).	 (7) 
For this purpose we choose a function b € W being identióally 1 in a neighborhood 
of 4 and identically 0 in a neighborhood of 8 and —8. Then, obviously,-b a0 € W 
and we have 

ao() = b() ao()	 (since b() = 1)	 ,	. 

= 9 N (rP {Tfl (bao)})	(because of (2)) 

N(Tp('1n(U0))) 

= b (C) c(8)	 (because of (2) and (6))	 S 

= c(8)	 (since b(C) = 1). 
Hence  

-	 argO<argC<arg8+c( o) - ao( _ J
O,arg 8 - r <arg C <arg 8 

Sr(fL)) a(C - 0) + 8,(i) ao(C + 0), 
since ao(C -. 0) = ao(C + 0) for 8	+. Thus by (3-7) we have expressed
q N(rP {T(ao)}) for every 8 € P in terms of r, ,u and C such as it is desired. Considering 

':3.
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finite linear combinations we get 

(PN(TP ( Tfl(X)}) = (1	8(/2))	- 0) + Sr(jU) x( + 0) 

for every z E PC0. 
Given an arbitrary function a E PC(T) we can find a1 E PC0 such that 

	

- {Tn (aJ )}IIA 	0	(j 

Hence, first of all; 

IN(xp J n(a))) — N(Tp{Tn(aj)})I	 S 

< I I {T,,(a)} --- (1'(a)) A -*0	(j	oc) .	 (8) 

Furthermore 

lI{T (a)} 4.{7'(a)}I!A9 = sup !IT(a— a)J 

> litn inf 7'(a — a)I = jT(a —	= II'l'(a — a,)1I2(j) 
S	

-	 0 
and	 -	 - 

	

— Sr(iA )) (a — a) (	0) ± Sr(/L) (a — a) ( + 0)1 
^ max ( 1 — s()) (a — a1) ( — 0) + s () (a - a) ( + 0)1 

(.)ETX O.1 
wE(p.qJ 

= wax ( i — s()) (a — a) ( - 0) + s(.) (a - a) ( +0)1 
(E.) E TX (O.1 

wE{p.q} 

= max {IlI 9oT(a — aj )j1c( 91 ) , ['cy QoqI(a — a1)ljc(90)} 

^ max (H T/'(a — a)IJ)3 , T(a - a)I} 

= IT(a — aj)II(,P) = 11 7 '(a — a1)12(1Q ) .	 - 

Thus -
1(1	Sr(U)) (a — a,) (	0) + Sr(/t) (a — a,) ( + 0)1 -*0	 (9) 

as j -* oc. Combining (8) and (9) we get the assertion in full generality U 

§ 6. Some lemmas on Banach algebras 

• The simple facts stated here will be applied in the Sections 8 and 9. 
Let 91 be a Banach algebra with unite and 91 a closed two-sided,ideal. Suppose 

•that 91/3 is commutative. By j we denote the canonical projection of 91 onto 9{/'j, 
by N the maximal ideal space of 91/s and by TN the Gelfand map of 91/s into C(N). 
For concrete examples put 91 = = A, or 91 = A, = I. In what follows ® 
always denotes the projective tensor product. Put 9f2 = 91 ® 91/91 (D I and denote 
by 12 the canonical projection of 91. ® 91 onto 912• Then U2 = {e} ® 91/91 ® is 
naturally embedded in 912 and let cbs U2 denote the closure of U2 in ¶2 

L em ma 4: cbs U2 is contained in the centre of 9j2 

Proof: Ti suffices to prove that 

12(e®a)10(b®c) =12 (b®c)12(e®a)	 -	(1)
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for arbitrary a-, b, c € W. But since 91/s has been supposed to bd commutative, we 
have ac —ca € from what (1) results I 

Lemma 5: Define the map o: 91/s - cbs U 2 by 0: ja - j2 (e ® a), a € W. Then 
(i) g is defined correctly, 
(ii)9 is an algebraic homomorphism, 
(iii) g IS continuous. 

Proof: (i) Let ja = jb. Then a - b E , hence e ® (a - b) E 91 ® , i.e. j2 (e (D a) 
=j2(e®b).	 S 

(ii) is obvious. 
(iii) We have  

•	" lij ( e ® a)J = inf {(e ® a ± cJ: c  91 
,	nf (lie ® a + e 0 k u : k E 3} = inf ( h a 1- k M : Ic E } = il/all I 

Thus cbs U2 is a commutative Banach algebra with unit. Let M be the maximal 
ideal space of cbs U2 \ and FAf the Gelfand map. Then 

991/	C(N) 

91 ® 91 114 912 cbs U 2	C(M). 
Lemma 6: If m E M then n = 1 (m) = (a € 91/s: pa € m) belongs to N. If q 

del 
denotes 'the complex homomorphism on cbs U2 associated with m, i.e.. m = Ker m, 
then 'Pm0 is a complex homomorphism on 91[/j and '(m) = Ker (op. o 

Remark: It is easily shown that, vice versa, for every n € N there exists an m € M 
such that n = o 1 (m), but this fact is not needed for our purposes. 

•	Proof of Lenma 6: Let m  M, m ='Ker Pm, T = 99. o e. By Lemma 5, is a 
continuous algebraic' homomorphism of 91/s into C. From 

= (pm (e) = m(j2(e 0 e)) = I	 - 
we get.	0, i.e. n = Ker q9 EN. The equality Nn = -)(m) follows from the equi-
valences

ja €	(m) z' oja € m 4 (Pm9frL = 0	pja = 0 ' ja € Ker = m I	- 

Lemma 7.: Let a E W. Then for every m € M 

(Tja) (m) = (PM/a) (1(m)). 

Proof: If m = Ker,m , then, byLemnia 6, n = p- 1 (m) = Ker (q' m9 ) E N, hence 
(F11 ja) (m) = 9'mC)) a = (.pm 0 0) ja = (PNIa) (n) • 

7. The local principle of R. G. Boughs and N. Ya. Krnpñik 

Qur 'proofs of the sufficiency of the conditions of the Theorems I and 2 are based 
upon the local principle of R. G. DOUGLAS and N. YA. KRUPNIK (see [3 1 for the case 
of C*algebras and [5] for the case of Banach algebras). This local principle reads 
as follows:	 . 

Let E be the centre of a Banach algebra 91, Wo a closed subalgebrao/ and 91 the
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maximal ideal space o/2I 0 . For M(- 91 we denote b	, the closed two-sided ideal gene-
rated by M in 2t, i.e.	 - 

= cbs { AkXk : A k E 9f, Xk € M}. 
St 

Finally, let , denote the canonical projection of 91 onto 9J/ 1 . Then /or A € 91 
A € G91 t 7 JA € G(2t/,) V M € 91. 

§ 8. Sufficiency of the ëondit.ions of Theorem I 

Put ¶23,,0= ¶23,, ®	®,,, ¶2,,1 = ¶23 ® ¶23,,/S,, ®	¶232_ 93 ® I93,, Ø,, 
and denote by a, all a2 the canonical projections of 58,, ® ¶23,, 'onto 580, 58,,',513P2 
respectively. For. aE PC,,(T2) we have •W(a) € 58,, ® 58,,. In order 'to show that 
W(a) € i(l' ® 11') it is sufficient to prove that cx 0 W(a) € G93,,0 . On the other hand, 
a0 JV(a) € 093,,° follows from a 1 W(a) € G58,, 1 and a 2 W(a) € GZ,2 (cf: 6]). 

Let us, for example, prove that a2 W(a) € G5'8,, 2 . We set U,,2 = {I} 0 58,,158,, 0 Se,, 
and denote by cbs U,, 2 theclosure of U73 2 in 58,,2. By Lemma 4clos 11,, 2 is contained 
in the centre of 8,, 2 and is therefore a commutative Banach algebra. Let 931,,'be the 
maximal ideal space of cbs U,, 2 and Fm the Gelfand map of cbs U,, 2 into C(931,,). 
Finally,, we define the map y: 58,,/,, - dos U,, 2 by, y: a,,A i--> a0(I (D A), A € 58,,, 
(cf. Lemma 5). Thus 

¶23,,	 —+'C(91,,) 

9i p 0 93,, T ¶232 cbs up 2 -4 C(9J1,,). 
For. M € 931,, define JAi to be the closed two-sided ideal generated bv M in 582, i.e. 

J, = cbs {E AX: A j € 58,, 2 , X i € M},. 
p1 

Let 1M denote the canonical projection of 58,, 2 onto 582/J,. In Proposition 5 below 
we shall prove that 

0'2 W(a) - 0'2(T(a,;,,,) 0 1) € J,, 

where (to, /"o) € T x [0, 11 has to be chosen in accordance with the identification of 
531,, with T x [0, 1] as that point on T x [0, 11 which corresponds to N = 
(cf. Lemma 6). Finally, in Proposition 6 it will be proved that	 - 

7T if a2(I(a , ,,.) ® I) € G(58,,2/J,) 
is a consequence of T(a,) € 03(l"). Application of the locyl principle of R. G. 
DOUGLAS and N.YA. KRUPNIK (kith 91 58,,, 'and ¶2t = cbs U,,2) then gives 
a2 V(a) € 093,,2 , if only T(a,,) € G(l) for all (, i) € T X [0, 1]. 

Proposition 5: Let a,€ PC-,,(T 2 ), Al €931,, and N = y' 1 (M) €91,,. Let ( 0 ,uo) be 
the point on the cylinder T x [0, 1] which corresponds to N € 91,, via the homeolnorphi8m 
53l,,	T x [0, 11. Then 

a 2 W(a) - cx2(T(a,,,,) 0 I) € JM.	 (1) 

Proof: At first we consider the case that'a is a finite sum of the form 

a(, ) = E b($)	(, ) € T2 ,	'	 -	(2)'
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where b1 , c i E PC(T). Then W(a) = ' T(b) 0 T(c). By formula (4.2) 

= ' (Fn9o,T(c1 )) (co, 1u 0) bi (t),	t E P. 

Thus (the subscript p will now be dropped for the sake of convenience) 

a2 W(a)— a 2(T(a,,) 0 1) 

= 0'2,f T(b1 ) ® T(c,) - a2 Z T(b1 ) ® (P9 T(c1 )) (co, /to) I 

= E a2 (T(b1 ) ® 1) 012(1 0 [T(c1) - (FaT(c1)) (, ) I)). 

Because c 2(T(b 1 ) 0 1) E 8,,2 , it remains to show that 

a2(1 ® [T(c)— (P91aT(c 1 )) (Co, yo) I]) E M. 

This on its hand is in view of a2(I (D A) = yaA equivalent to 

•	ya(T(c1) - (rT(c1)) (co, ) I) E M, 
i.e; to

(PyaT(c))(M) - (1jc(P91aT(c1 )) (N) I) (M) = 0 
or to

(TuiyaT(c)) (M) = (I'sicxT(c1 )) (N). 

But the latter equality immediately follows from Lemma 7. Thus, for functions of 
the form (2) the relation (1) hasbeen proved. 

Foran arbitrary function a E PC(T2) we can find functions a 5(, ,) = ' bQ) c15)(), 
) € T2, of the form (2) such that	 * 

IIW(a) - W(aj)IIZ(lPØjP) -±0	(j - oo).	 (3) 

From (3)weget  

Iia2 W(a) —'cx2 W(aj)I8.	0	U	00) 

and in order to prove (1) for the general case it remains to show that 

•	I!T(aL,) - T[(a5);,]I 	0	(j	oo).	 S 

This follows by an argument used already in the p roof of Lemma 3: with the help 
of Lemma 2 we can show that {T((a1),,4j)J1 forms a Cauchy sequence in 0, and 
then from (3) we can conclude that its limit is just	I 

Proposition 6: If T(a) € G2(1) then 

1.•	7r.x2(T(a.) & I) € G(5^32/J1) 

• Proof: First of all, we, show that T(a) belongs not only to £(1), but even to 
93,,. indeed, the spectrum of o,,T(a,) E 58,,/	is in virtue of (2.1) just tIie curve 

•	 {(i	s,,(#)) a,' , .'(' —0) + spCu) a ' ,* (t + 0): t E T,	€[0, 

Since T(a , ) has been supposed to be invertible in S3(IP), Theorem 0 of Section 2 
shows that the origin cannot lie on this curve, i.e. aT(a) € G(,,/St,,). Thus there, 

9
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is a reularisizer R € 93, (modulo Se,,). From T'(a ,, ) - 1? € ,,	93,, we get
T'(u) E 93,,. Now (T1(a) ® I) (T(a,,) 0 1) = 1 ® I implies 

® J) . t j x 2 (T(a,,) 0 1) = i2(1 ® I), 

i.e. ,x2('J'(a,,) 0 I) .E G(93 2/J) I 

§ 9. Sufficiency of the conditions of Theorem 2 

The Theorems 0 and G of Section 2 and a little geometrical consideration give the 
following result. 

Lemma '8: Let a € PG,,(T). If T(a) € G2(l) and T(a) E G2(l) then T(a) € GP-(I") 
for every r € [p, q 1. Furthermore, T(a) € G2(l) if and only if T(ã) E G2 (1q), where 
I /p + 11q = 1 and ã(t) = a(1/t), t € T. 

Before proceeding to the subject of this section itself, it is necessary to prove 
still one auxiliary fact.	 - 

Proposition 7: Let a € PC,,(T2) and suppose that W(a), W(a 1 ), W(a2), W(2) 
€ '(lP 0 lu ). Then 'T(a , ) € G2(lT) and	€ GP-(l') for every r, v €. [p, q] 
(I/p + 11q = 1), € T and u € [0, 1]. 

Proof: In accordance with Theorem 1, from W(a), W(a 1 ) € c(lP ® l) we get 
T(a,c,), T((a 1),) €G(l). Since (ai),c = (a')- (recall the notation ã(t) = a(1/t), 
I € T), we get T(a,), T((ayj € G2(l). Applying Lemma 8, what results is 

T(a) € G(lv) V viE [p, q] V (C, y) € T X [0, 11.	 (1) 
Furthermore, W(a2 ) € J(lP ® l) implies by Theorem I T((a2 ),,) € G$(lP ) for every 

u) € T . X [0, 11 and from' (a2), =	we obtain 

T(a,,) € G(lP) V (4, a) € T X [0, 1].•	 '(2) 

Due to W(a 12) € (lP (D ii') we have, again by Theorem 1, T((a i2),) € G(l). But 
(ai2),, = (a 1_,), thus by Lemma 8 

T(a.,,) € GP- yq) V (,'u) € T X [0, 1].	 (3)

From (2), (3), and Lemma 8 we get 

T(a) € G3(1v) V v € [p, q] V (C, y) € T X [0, 1].	 (4)

Analogously one can prove that 

T(a) € 02(1V) V v€ [p, q] V (C, y) € P x [0, 1],	 (5) 
T(a) € G2(lv) V v € [p,q]V (, 1u) € TX [0, 1].	'a	(6)

Now, recalling (3.4), it is easy to show that the following equivalence holds 

'T(a'M) € G(lV) V V € []9, q] V (, u) € T x [0, 1] 

'J'(a , ) € G$3(l) V V € [p, q] V (, u) •€ T x [0, ii. 

Thus from (1), we get 

T(a,,) € G(lP) V v € [p, q] V (, ) € T X [0, 11 -	 .	(7)
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and from (4)	 - 

T(a2 . 	E G(1) V V E [p, 41 V (, ) € T x [0, 1].	 (8) 
Combining (7), (8), and Lemma 8 we arrive at 

T(a,,) € G(1') V r, v € [ p, q] V (, z) € T X [0, I]. 
Similarly, (5) and (6) give 

T(a) € 0(1) V r, v E [p, q]V (,a) € TX [0,1] I 
Now we are in position to proceed in analogy to the Fredholm theory considered 

in the preceding section. Put	 - 

A,,° = A,, ® A,,/I,, ® I,,,	A,,' = A,, ® A ,,!!,, ® A,,, 
A,,2 = A,, ® A,,/A,, 0 I,,, 

and denote the corresponding canonical projections by flu , , respectively. Note 
that {lV(a)} € A,, ® A. for a € PC,,(T2) (W(a) are the "finite sections"'of W(a) 
defined by (3.5)). In the same way as in [2] we can prove that W(a) E TI,,{P ® P,,} 
if only { W(a)} € GA,,° and IV(a)*,W(a1), W(a), W(a 12 ) € 03(1 ® 1). The usual 
standard trick [6] may be applied to derive 0{W(a)} € GA,,° from fl,{ W(a)} € G AP' 
and fl2 {W(a)}€ GA,,'. 

We shall prove that 2 {W(u)} € GA,,2 by means of the local principle of R0.
DOUGLAS and N. YA. KRUPNIK. Lemma 4 yields that the closure cbs U,,2 of IJ,,2

{{'P}} ® A,,/A,, 0 1,, in A,, 2 is contained inthe centre of A,,' and is therefOre a 
commutative Banach algebra. Let M,, denote ,the maximal ideal space of cbs Up 2, 

the Gelfand map and ô the map of A,,/I,, into cbs U,, 2 defined by , ô: r,,{A} 
20'n	A,,)) (cf. Lemma 5). Thus 

A,,	-#	A,,/l,,	--# C(N,,) 
;	 Jr6

1M 

A,, ® ,,	A,,	cbs U,,'-2-4 C(M) 

For M. € M,, let 
= cbs {IA,X5: A 5 € A',,2,XJ € M}. 

A 9'	 , 
Then J., is a closed two-sided ideal in A,, 2 . We denote by , the canonical projection 
of A,, 2 onto A,, 2/J,. For M € M,, we have, by Lemma 6, N = '(M) € N,,. Due to 
Proposition 4 there exist r € [p, q] (lip + 1/q = 1), u € [0, 11 aiid € T such that 
• ,	(P9r,,{T,,(a)}) (N) =(1 — Sr()) a(—. 0) + 8r() a( + 0) 
for every a € FC,,(T). Now in the same way as Proposition 5 was proved, one may 
show that 

j921 W. (a)) —	 ® F,,) € J, . 

Combining the just proved Proposition 7 with Proposition 8 proved below, we 
obtain that under the conditions of Theorem 2 

r,,,{'J',,(a) (3 F,,)	G(AP'/JA,) 

for every r.€ [p, q], € T, a € [0, 1.1, ME M. Applying the local principle quoted in 
Section 7 (with 91 = A,,', 9t, = cbs U,,') we get ,{W,,(a)} € GA,,2. 

t	 -
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Proposition 8: Let a E.PC,,(T2),M EM,, and (r;4,a) be the triplet corresponding 
to M by Proposition 4. If T(a) € GP-(l') for every v € [p, q] (lip + I /c' = 1) 'then 

v,j92 {T8 (a) ® F,,) € O(A,,2/J,) 
Proof: By Proposition 3 we have	 S 

r,,{T,,(a,,)} € G(A,,/I,,). -	 S	 (9)
Furthermore, T(a.c,) E GP-(I') for every v E [p, c'] and Lemma 8 gives that 

T(a), T((a)j E G2(l).	 (10) 
From (9) and (10) we may with the method of the proof of Satz 3 in [8] derive that 

• there exists a {R,,'} E A,, such that R,,'T,,(a) = P8 + C,,', where (C,,') € A,, and 
IC,,'II —0 (n—oo). 
Thus	 '	 • 

'fi2 {R,,' ® P,j 92{ Tn(ac,,) ® F,,) 
•	 =2{(P,, +C,,')®P,,} — PP. ®P,,} +2{C,,'®P,,}.	 ' ( 11) 

in case IIC,,'I > 0 we have C,,' 0 P,, = C,,' c'II 112 ® IC,,'111/2,P,,. Put 

0. D -	•	IflII	0 
- 1 C,,'	IC,,'JJ > 0,  

E
 =1

0, 	IIC,,'II =0 
 11C8'II"2'P,,,	1c8111 > 0. 

Similarly as in [2] the inclusion 0,,	A. can be proved. Consequently, {D,,-Ø E,,} 
€ A,, ® A,,. Since, moreover, (D,, ® E,,} € I,, ® I,,	A,, ® I,, and C,,' ® F,,
= D,,.® E,,, we get 2 {C,,' ® P,,} = PD,, ® E,,} = 0. Now (11) gives the invert-

• • ibility of fi2 {T,,(a) (@ F,,) in A,,2 , implying, of course, the invertibility "of 
M192{ m n(ar,C.) 0 F,,) in	I	 • 
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