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Some properties of a new kind of modulus of smoothness

V. Torx S L

Der Glattheitsmodul : - ' oy
w(j! 6)w,p = sup “Aiq:”Lp ’,
o<hss . : .
tritt bei der Untersuchung positiver Operatoren vom Kantorovitsch’schen Typ auf. Wir zeigen,
daB w,, , ahnlich dem gewdhnlichen Fall ¢ = 1 ist und charakterisieren jenc Funktionen, fur
die w(f, 6),, p = O(6%) gilt. Die erhaltenen Resultate finden Am\endungen in der Theorie der
‘posmven Operatoren. ) s

\lonym, rIagKoCTH

w(f, 8)g.p = sup nAhwnL» R
. 0<

\

TMOABHIICA MPU MCCACHOBAHMH [10103KUTENBHAEIX OMEPATOPoB THIA Hau’roponuqa Mul 110Ka-
weM, 9To o(f, 6)5, 5 nowom Ha 06LIuHBI MOAYIIL C @ = I, M JIaeM XapaKTepHsauuio Tex GyHk-

nufl, K49 KOTOphIX w(f, 8 = 0(6%). lToaydennbie peaynbTaThl HMEIOT MPUJIOHKEHHUA B TEOPHH
p @.p Y

MOJIOMKUTEALHBIX ONEPATOPOB.

The modulus of smoothness

“

w(/s 6)¢ p= .SUP “Aip“L” b
has arisen during the investigation of posmve operators of the Kantorovich type Here we
show- that-w,, , resembles the ordinary case ¢ = 1 and we give the characterization of those
functions f for which w(f, d),,, = 0(6%). The results obtained have applications to posntnve
operators. ,
A

Tn connection with approximation by positive operators a new kind of modulus
_ of smoothness has arisen and it has turned out that this new modulus has an intimate
connection with the rate of approximation, and that it cannot be replaced by previ-
ously used, “ordinary” measurements of smoothness (see (5, 6, 7, 8]). In this paper
we investigate the basic properties of this new modulus of smoothness and apply
the results to approximation by Kantorovich type operators

Let (a, b) be a (finite or infinite) interval, and ¢ a twice contmuously differentiable
positive functlon on (a b) with the properties:

(i) @ is convex or ‘concave to the right (left) of « ®).

(ii) There is a hy > 0 such that z 4+ k() € (a, b) for every x € Aa, b) prov1ded
(@, b). == (— o0, o), and if (a, b) = (—o0, co) then we require ¢(z) = O(|2]) (|| —+ 00).

(iii) Let d(z) denote the distance of x € (a, b) from the nearest endpoint of (a, b)
when (a, b) &= (—o0, 00), and let d(z) = |z| + 1 when (a, b) = (—o0, c0).-Our final

1) AMS Subject Classification: 26 A 15, 26 A 45.
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assuniption is that there isva_. K for which

Wel KD e ISKdz((x)) (¢ € (a,b)

. PO =) S Keln) o y E.(x -2+ 50

are satisfied.
. It is clear that- both z -+ ho(x) and z— hp(x) belong to (a, b) when z € (a, b) and
there is any — of (a, b). .

Let further B be any, of the Banach spaces L?(a, b)’ (1 =p < ), Cla, b], Cla, b),
Cla, b] or C(a, b) with the corresponding L? or supremum norm ||-||. For the sake
of simplicity any of the last four spaces will be denoted by Cfa, b}. The ‘modulus of
smoothness forfe¢ B menbloned is defined by

;o ol O =w@) = sup Rl

0<h=min(h,.0)

__where ‘ —
M@ = f&—h) — @) +fe +h) -

is the usual symmetncal second difference. The 1mportant point in the defmltlon of
w(d) is that in 43, f(x) the distance kg(z) varies together with z. One result-is that '

even the inequality w(26) < Kw(cS becomes non-trivial. -
We list some properties of w in

—Théorefn 1: (i) Defining the so called K-functional by
K@, f) = i.n; Alif — glls + £ lip?9” 16}, T

g
g g'absolutely continuous !

then there vs a constant K 1, tndependent of fand 0 = t =< hy, suck that there holds the
. tnequality .

(i1) ,.’l’here s a constant K for w_hwh
o(f, 20) = K7*w(d)

1s satisfied for all f € B, . = 1 and § > 0.
(iii) If @, and @, are two /unctwns with the aboz,e properties, then o = Ko, zmplws _

o(f, 8)p,.5 = I\,w(/ 0)¢,.5 With a K, independent of { € B and 6 > 0,
(iv) If w(f, 6,) = 0(d,>) for a sequence 6, — O then f 1s linear.

P

1Proof: (i) was proved in [8; Theorem 1}, and (ii}, (iii) are obvious consequences

of (i). Finally, to prove (iv) we can argue as follows. Let [«,, b;] < (a, b) be any finite
interval. Then there is a @, such that ¢,(z) = 1 for z € (a,, b,), and ¢,(z) < Ke(z)
for some K and all z € (a, b). If w(/ 0n)p.8 = 0(6,2), then the comparison assertion

. given'in (iii) yields that w(f, 8,)e,.5 = 0(6,2) is also satisfied and thus, since ¢,(z) = 1
on (a,; b;), we obtain that the ordinary modulus of smoothness of f on (a,, b,) is
0(6,2) as n — oo it is well known that this implies the linearity of / on (a4, b,). Since
[al, b,] S (a, b) was arbltrary, (iv) follows B . :

‘\

0. =<k = hy; furthermore, p(x) tends to zero as x approa.ches -a finite cndpomt —if
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By (1v) w(d) cannot tend to zero faster than §%. Qur next concern is the characteri-
zation -of those funct,lons / for which w(é) has order 0(62) '

Theorem 2: Let f € B. i
(i) If B = Cla, b} then BN )

olf, 85 =0  (5>0) . ‘ (1)

of and only if f has an absolutely continuous dertvative on (a; b) and @' i bounded '
(i) If B = L?(a,b), 1 < p < oo, then (1) holds if and only if | has an absolutely
continuous dertvative on (a, b) with <p2/" € L?(a, b).
(iii) For B = LYa, b) (1) kolds if and only if f is absolutely continuous and 9 2f
comczdes a.e. with a function of bounded variation on (a, b).

- Naturally (ii) and (iii) mean that f coincides almost cvcrvwherc with a function

having the stated properties.

. Tt will be important to extend Theorem 2 to a larger class of the ¢’s, namely,

" assume that (a, b) 3= (—o0, o) and all of our assumptions on ¢ are satisfied e\zcept,

(i), and instead of (ii) we require the following:

(i1)" a) ¢(x) tends to zero as z tends to a finite endpomb of (a, b).
. b) If a(b)is finite, then there is a y < 1 such that o@)/(x — a) ( (x)/(b - x))
decreases (mcreases) as x increases in a nelghbourhood of a (b).
c) If (a, b) is infinite, then ¢(z)/|z| remains bounded as |z| — co. '

. Ronghly speaking, (ii)" allows ¢ to tend more slowly to zero at finite endpoints
than (i) did; at infinite endpoints there is no difference between (ii) and (ii)’. E. g.
@(x) ]/x(l — z) satisfies (ii)’ but does not satisfy (ii) on (0, 1). Clearly, we cannot -

assure any more that the numbers 2 4+ Ag(z) will belong_to (a, b) together with z;

so the definition of w needs some correction. In any case the fact that ¢ is convex

or concave around the endpoints yields that fof sufficiently small positive & there are

a smallest and a largest (possibly infinite) number, say A* and A**, th,h z + ho(z)
€ (a, b) for A* < z < h** (see also [8]). Now for small 6 let '

w(/, 6),,,_3 _oi‘i‘;l"'”"/””""-"“" . N (2)
where B(,,. xee) IS the restriction of B to (A*, h**), i Le.,

"g”B('l‘ no‘) = Sup I ( )I’ when B C{Cl/, }

€A%, h**)

and . ) . -

ligllz 4o posy = 11gllLone,neey,  When B = LP(a,b).

- Theorem 3: If B = C{a,b} or B = L?(a,b) then the assertions of Theorem 2
remain valid for the w defined in (2). In the case B = L'(a,b), however, w(f, d), p
= 0(6%) (@ being as n (2)) tf and only if f is (a.e.) equal to the indefinile integral of a
function v which s of bounded variation on compact subintervals of (a, b) and for which

N

b
[ #%() d ()] < oo.

i

Here |v| denotes the total variation of v.

We mention that condition (ii) of Theorem 2 does not hold in genera] for (2). E.g.
if (a,b) = (0, 1), ¢(z) = Vx 1 — z) and f(z) = log z, then #*' is of bounded vari- -

.
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ation on (0, 1), but for small . ' o : ’
. ° 1 1
W3 s a—an = R® 1% w2 cik? log 7'
Le., w(/, 6)wL‘ * 0(62)‘

Remark: If  is finite, then we could define, instead of (2) -

(/: )qa B — SUP ”Ahw/“B(ho_*_c(h._a) he*) A | : ) V (2)

’

c>0 being fixed. Theorem 3 would then hold just as well The same applies for
finite b (see [8: Remark 1J). : \

The remark justifies our right to write convenient bounds in the norms (see also
[8: Remark 1}). E.g., if (a,b) = (0,1), B = L?(0, 1) and ¢(z) = Y2(1 — z) then
h* = h¥(1 + h2) and A*¥* = 1 — Ah%(1 + A?), so that (2).defines
@l 0) = up Whofl,y e vy g

T+ TR
but the remark permlts us to put -

w(f,0) = SUP ||An¢/||1,v(n'x s

- and for this last w thc conclusion of Theorem 3 remains valld

. Before proving Theorems 2 and 3 we give an application. Let ‘
FD/mED N ' '
Kaf(z) = )_1, ((n + 1)ff(u) du) (:) 21 — )=k
’ k=o. \ klin+1) - ®

be the so called Kantorovitch polynomials associated with f € L?(0, lj, 1=p <, 00,
These converge.to -f in LP-norm and it was proved by MAIER [2] that for p = 1

1
{K,} is saturated with order O (;), and saturation class
{f |/ abs. cont.,; 2(1 — z) f'(x) is of bounded variation on (0, 1)}.

For p > 1 the saturation order is again O (i) but the saturation class is then

(see (3, 4)) , . ' .
{f 1/ abs. cont., (x(l = z) f'(2)) € L*(0, 1)},

-and it was proved in [5] that this comc1des with ’
{/1/ abs. cont.;” z(1 — z) f' ( € L?(0, D}.

On the other hand Jor0<a<1 thc non- optxmal order of approximation

|Knf — f”Lv(on = 0(n™*) , : (3)
is characterlzed for every' 1 < p < o0 by the Llpschlt/ ‘condition !
143 flzsna—nn = O} (¢(2) = Y=(1 — =) (4)

(see [3, 6,-8]). Now an application of Theorem 3 yields

Theorem 4: Forall 1 S p < ocoand 0 <a <1, except for the case p = & = 1
conditions (3) and (4 are equwalent
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If p =« =1, then (3) and (4) are not equivalent, e.g., for f(z) = log z we have
by Maier’s result (3) but as we have already mentioned (4) is not satisfied. This raises
the fo]lowmg problem: : -

Problem: Find a smoothness condition (snmllar to (4)) whnch is equivalent to (3)
forall < p<occand 0 <o < 1! .

In the same way it can be proved that if

’ I, (k+1)/n . . .
S *f(x) =k§ n’f/(u) d.“\l e-"'(ﬁ% (2zZ0) A
: =0 ~ kin / ’ ) , . 4
and . . ] . . . .
- (k+1)n \
V() Z f/(u)du ("+:_1)x*(1+x)'-"-* (x = 0)
k=0 kin ’ X . .

are the modlfled Szasz-Mirakjan and Baskakov operators (see [8]), respectively, then
for every 1 < p < oo, f € L?(0, oo) andO<aSl excepbforthecasep—a— 1,‘
the condmons S

18:*f — Alzr0.000 = O(n72), HVn*f — Mlzr0.00) = Oln_“)

and /

' 1
llAIw/llL’(M' ) = O(h*) (0 <h S —9:—)

dare equlvalent whcre oz }/z for S,*, and (p(:l: }/x + z) for V*, respectively. *

Proof of Theorem 2 Nece.sszty Let /€ B and w(/, 6) Jo.B = 0(62)
(1) The case B = C{a, b}. Exa,(,tly asin the proof of Theorem 1 (iv) it can be proved
that 1f [a, b 1 < (a,b) and

o, 9) = SUP |432f(=)

> : z€[a b l
is the ordmary modulus of smoothness of / on [a’, b’ 1, then u(f, 8) = (6‘) (6 —0);
it is well known that this 1mplles the absolute continuity of /' on (a’, ") (see e.g.
[1:p.5.)). Since a', b’ € (a, b) were arbitrary, we can conclude that /' is (locally) abso-
lutely continuous on (a, b) But then

~

ilm Ahv(ﬂ/( = ¢¥z) /()

almost everywhere, and so the boundedness of — 4 ,,w)/(x) implies that of .

h2
(i) The case B = LP(a,b), 1 <p < . By Theorem 1 (i) K(t- N = o(?), and-

hence there is a sequence {g,} such that the derlvatlve of each g, is absolutely con-

_ tinuous, and )

If = gnll'L’(a b = 0(1) lp?gn""ll otar = 0(1)

By weak compactness there is a subsequence {g,,} and a function g € L?(a, b) such
that ¢?g,, converges weakly to g. Let & € (a, b) be fixed. For every = € (a, b)

' llm f(x —1 g,.k(‘c) dr —f P ) (T) dr,
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and since the left hand sxde is equal to

klﬂ (9nr(2) — gny(&) = 9o, (8) (x — f)) = /=) — llm (gnk(E + gul8) (@ — &)

* a.e., we can infer that /“has‘.t,he form

”/(x)_cx+d+f r)dr_cx+d+ff 52 drdu. (a.e.)

" Thus / “coincides a.e. with a function having an absolutely continuous derivative;
Aurthermore,.¢%(z) f''(z) = g(z) a.e., i.e., p*f’ € LP(a, b).

(ii1) X'he cuse B = L'(a, b). Jusb as above there ‘is a sequence {g,} and a flmte ’
“Borel measure du on (a, b) such that {g,) converges in LY(a, b) to /, and ¢%,"" con-
verges weakly to du. Let & € (a, b) be ‘a continuity point of s and with a fixed
£1€(u b), $1<§,setforx>£

. i 5(t—5> | Lst<eEr
hott) — E—4&. o _
B N EZSN for bt s !
0o - otherwisg.

Clearly, h,(t.) € Cla, b}, and so

b . b ' : '
Tim ha(t) g (6) dt = f hﬁﬁt) du(t). - o | o

ie., ) - ) -

\ n—sco

'5 z .
Sk Sldﬂ()-*—f e dute)
* &

lim [ w@) = 9a(8) = ga'(8) (& — &) — 5 L (a8 = 0al8) — g0'(6) (& — sl))].

&§—4& ?72(7)

13

Since lim g,(z) = /(x) a.e., we can infer that, for = ¢, / is of the form

_cx—}—d—{—f-/‘d'u(r TR ae.)

Tt follows read;ly that we may consider f to be absolutely continuous, that
. . z ’ . ' .
, du(z) N : .
F@ =o+ f L (e, ()
@*(7) : o v
¢

" and that ¢?%’ agrees a.e. with a function having bounded variation on every finite
interval [£, '], b < b. In the following we identify f° with the right side of (5).
Let b’ be so large that @ is monotone on (b, b), and we distinguish two cascs according
toswhether ¢ decreases or increases on (b', b).,

' /(x)

\
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a) @ is decreasing on (b',b). Let 2y < 2, < -+ < Tpyy < b, o =.b" be arbltrary-
points. Denotmg the total variation of u by |y| we can. write

i§0 I‘P H-l)/(xl-f-l) — 9 (xt)/(x I

d
= ICI 2 (‘Pz(x) — @Ay ) + Z ¥ :+1)f Iézr)

E: F d ()]
+ & o) ?’2(2’;“))5 f e

LT

. o " 4 (o) .]f'd. ()]
S C 2 b . p—
=1 I (b)) + 2 f d |u(7)| +'£ (pz(x')'( f () ; - @¥(r)

\

4 2(h dllu' | "
B ()f e - |
b .

¢ +f d l/t(r)! P2(b') + 2fd|/t§r)| < oo.
va -

Therefore @%" is of bounded variation on (b, b).
b) ¢ is 1ncreasmg on (b, b) By our assumptlon this may occur only when b = oo.
Since

7

(@) — )] = f d’;() <K f d 1u(3)

A

tends to zero as z and y tend to mfmlty, and since f € L(b/, oo), we can conclude that

“m/(“’)=lim/'(x)=0, e, lim c'*‘f d/‘(r = +.[
f

2(t> 0 This last

T—00 T—>00 T—>00

'equelitblr and () show that f'(z) = —f i/:((r).. Henpe we have fot‘ every system
T) - X

z
STy K Ty < vor < Tpyy, T = b’ the estimate

=2"0 i) /) = e @)

o0

s £ f LN $ () — g f d";((f” <2 [ dlutol < oo,
| )

P¥(z) =0
©Zy ' T
so that ¢?/' is of bounded variation on (b’, co).
In the same way it can be proved that @2/ is of bounded variation on (a, &) and so
the first part of the proof is complete.
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Sufficiency: (i) The case B = Cla, b}. Let f €. Cla, b} be such that f’ is absélutely

. continuous with |@%(z) f'(z)] < K a.e. Our assumptions clearly imply that for small -
hand y € (x — hg(x), © + hp(z)) the estimate .

1 : S
% ) = oly) = Kiplz) (K, >0) ' (6)
1
holds. But then for small 2 and z € (a, b) we have
: : hol2)/2 - hpi2)j2
" 2 . X ' ' ) 1
* N S5 k < —_——
(B @) fff (@ + st o) dud =Aff (x+u+@)dud”
—hpz) : —hol2)
T2 2
hgiz)j2 ®
: . .S KKp? dudv < KK 2h?,
. ) y; . ' = 1 ) (pg(x) f 1

‘—hp(z)

- and this is what we wanted to prove. .
* (ii) The case B = L?(a,b), 1 < p < oo. Let f € L?(a, b) with absolutely continuous
derivative and with ¢%"’ € L?(a, b). Using the Hardy-Littlewood maximal function
M(-) and the ma.xxmal inequality we obtain for small 4 (see also the above consnde—

ration) .
hopl2 N

. 1 \ \ N . ..
143 lranr = |- f f T u Ty Pttt o) dudy )
. —hpl2 g - L7
hof2 X '
SK 22 [ f g% + u +v)/"( 4w+ )| dude
| Thel : LP(a.b)

K Zh? “M(S’l’ /")”Lv(a b= K2h2 ”‘PZ/””L’(G )

and ‘we are through with: the proof.
- (i) The case B = L‘(a, b). By assumptlon / has (a.e.) the form

(£ € (a, b)) - (7)

flx) =

with a function » having bounded variation on {a, b). We shall need another repre-
sentation for f and to this end we first prove that (¢'/@) v € L'(a, b). Clearly, (¢'/p) v
€ L\(a’, b") for every finite interval [a’, b'] S (a, b). So it is sufficient to show that
“{@'/p) v € L&, b) for some £ € (a, b) (therelation ((p /(p) v € L'(a, §') for some &' € (a b)
can be proved similarly). .

First let us consider the case b = oco. Let £ > 0, & € (a, o0) be arbitrary, and let

0. . . CoL

g(x) =fi;ldr (x> 0).

z P

- Since (7) holds with this &, we obtain b); integration be ﬁarts .

\

o(2) =f"’2(’). X0 ge = T oy — f il AU A ULYR PR

T
z
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']f, @{r) A 00 as T — oo, then (1) = »(z)/p*(z) = O, and so f(tr) >0 as T - o0
(/ € LYa, c0) !). If, however, @(z) decreases, or increases to a finite limit, as T — oo,

then we have by (7).|f(7)| = K + K;;(-—tj. Since we assumed @(7) = O(zr) (v — oo),
* we have in any case ((p2(r)/r2) f(r) = o(1) as T — oo. By our assumptions on ¢

20(z) ¢'(7) 1% — 2g%(1) T
4

21 - 1
P RAEY

h.en'ce. lg(z)] = K, |/ fl/(l')| 7, and in v1ew of the'inequality» 3

ff '/(r dr dx Sf]/r)ldr we have gEL‘(E 00) But then

~

f u)du_f(T r—§)¢r+(x—§f”(’)
&
| —f & + f(’ sf”") ~ ®)

is of bounded variation on (&, oo) An mtegratlon by parts now glves tha.t,

"xf%')‘dtzx(—%v(r))m_{..xfdﬂ) ) + 2 fdv

The argument used in point (111) of the necessity pa,rt of our proof shows that the

function zf »(7); is of bounded variation on (£, co); and since » also has this property
. N . z

we can conclude (see (8)) that A(z) = fwdr is of bounded variation on (£, co).
. . T _ ‘

\

_ . : R .
" Since £ is absolutely continuous this can happen only if »(z)/r € L'(§, o). Thus,

v(t)/tv € LY{£, 00), and if we multiply this function by the bounded function L () p(T)
we obtam (¢'/p) v € L*(£&, 00) as wags-stated above. . ,

Now let b be finite, and let te (a, b) be so close to b that

d(z)‘g—e—i,min (x—a,b—z)= b— = ) o

is satisfied for all € (&b). T

z 7

o (@) .- \
o) Zf o *
&
_ )y 2 2p(2) ¢'(2) d(z) + 2d(z) A(2)
= g fer =T e = [ i f(e) d,

4 3
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then we can show as above that ¢ € L‘(§ by (notice that ¢(z) = O(d(t)) as r — b).

But then the functlon

fmzw—w—>/' +ffﬁ(

V(f) dv(u v(u)
(§)+(b< fb—u+fd(u

‘ = v(x) —(b—2)

is of bounded vana.t,lon on (&, b), and we can deduce exactly as above that »(u)/d(x)
€ LI(¢, b). Since ¢'(u) = O(p! u)/d (w)) as u — b, we can again conclude that (¢'/g) »

€ L'(£, b).
’ So far we have proved that (¢'/e) » € Ll(a, b); hence the functlon

z

ulz) = v(x) — 2[ ?'(7) v(7) dv ~‘
o ¢

o(7)

. is of bounded variation on (a, b) (£ € (/1,, b) is fixed). Clearly,

W@\, [ L )
]f 7 f[(zu) _J o 92@
from which it follows that / has the form ' ’\.

fle) =z +d +ffd"(t)dy cx+d' +f ° du(z).

This is the desired reprcsenta,tlon . -

From here on the estimate of the Ll-norm of

2 he(x)

o o L
Bhualte) = jﬁi%%g—i@mw—ff—jg%—lom

z z—he(z) '

is easy: for smg-ll h, say for h < h;, T € (x — ho(x), 2 + Iup(x)) implies tho.t

RS | -
= #(@) < g(r) < Kolz)

" for some constant K. So for < hy/K we have
v — Kho(v) + hp(t — Kho(r)) <z,

v + Kho(t) — holz + Kho(z) > ©

’ .-

\
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‘

-

These results lmply at once the estimate

b hw(:i)l ] b z+hw((ri)| '( )I
A2 Iu' T S K :u’ T
f /(@) 4z S b f ?(2) f Ll [ [ 2L
. z—heo(z) " a, z—ho(z)

el L

T.x—-hplz)S¢ Sz+hw(x)

b
2Kh :
< Kb f ) 4o = 2k [ 4 o)

a a
for all sufficiently small A, and the proof is corﬁplet-e !

Proof of Theorem 3: (i) The case B = Cla, b}. It was proved in [8: Theorem 7]
.that Theorem 1 holds for B = C{a, b} cven for the more general functions @ of Theo- *
rem 3; so the necessity part can be proved as in Theorem 2. Again, the above-
mentioned proof shows that if ' is absolutely continuous and (¢?/’| < K, then

1A mf(@)] < K2 - . 9)

for z € (k* + (R* — a), A** — (b — h**)) (notice that the assumed monotonicity of
@(z)/(d(z)) around the endpoints obviously implies (6) for z € (A* + (A* — a),
h** — (b — h**)) and y € (z — hp(z), = + hp(2)). By the analogue of [8: Remark 1]
for the continuous case, this alrecady implies (9) for all z € (h*, R¥*). .

(i) The case B = LP(a,b), 1 < p < oo. By [8: Theorem 2] for the ¢’s under con-
sideration the relations w(/ 0) = 0(6%) and K(£%, f) = O(¢?) are equivalent, so the
proof of Theorem 2 work almost word by word (see also point (i) above and [8:
Remark 1]).

(iiiy The case B = L'(a, b). Here we have. again the equivalence of w(f, §) = 0(6?)
and K(#, f) = O(t*), so by the proof of Theorem 2 w(f, d) = 0(62) 1mp11es that f-
has the form .

v

. z Yy . Lo
fo = vd+ [[ ey ey (10)
, : Ee‘wm

v
= du(r)
‘“+f¢m’

we obtain the necessnty of our condition. Conversely, if f has the form. (10), then,
exactly as at theend of the- sufflclency part of the proof of Theorem 2, one can show
that for small R .

Putting'

”Anq:/”L‘(h‘-}-(n‘—a).h‘;—(b;h“)) = Kh?,
and this already implieé w(f, 8) = 0(6%) (see [8: Theorem 2])

12 Analysis Bd. 3, Heft 2 (1084)
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