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The LaguerreTransforrn of some Elementary Functioiis 

.H.-J. GLAESKE and 0.1. MAIUEV 

In der Arbeit wird die verailgemeinerte Laguerre .Transformation einér Masse elensentarer 
Funktionen berechnet, die oft in den Anwendungen auftritt. Das Ergebnis wird zur Herleitung 
einer Losung einer gewohnlichen Differentialgleichung verwendet. 
B JaHHoft paGoTe BU4IICJIHOTCH 0606luenHoe npeo6pa3ol3aune Jlareppa oiiioro i-iacea 
jyHK[llft, KoTopble 'lacTo acTpe'iaorcn B npIlMeHeHHllx. C noMolublO noiyeuiioro pe3yJlli-

Ta'ra peivae'rcR OJjHO o6blKHoBeIluoe juu0e p eii w t a iiiioe ypaBuelille.	 . 
This paper deals with the calculation of the generalized Laguerre transformation of a class 
of functions, which often appear in applications. The result is used for the derivation of the 
solution of an ordinary differential equation.	- 

0. In [2, 3] an operational calculus for a generalized Laguerre transformation was 
developed, which is of importance for the solution of differential equations of the 
kind

1S-'x1 (0	1(1) .	 (0.1) 

Here k is a natural number,'/ a suitable function and S the so-called Laguerre 
differential operator 

- Sx(t) = e1rD[e tt 1D] x(t),	1.) = d/ds.	 (0.2) 

In [31 the generalied Laguerre transformation 

)[/] (v) =f e'tL)(t) /(t) dt = F(v) 

vas investigated, where	are the Laguerre functions of the first kind 

L(1) = RI	) f(i± ) 
1F 1(—v, ± 1; 0,	> — 1.	(0.4) 

In [3] under suitable assumptions it was proved, that the generalized Laguerre 
transformation of the differential equation (0.1) yields 

X(v)	(v)-k F(v),	 (0.5) 

where X, F are the generalized Laguerre transforms of x and / respectively. 
The inversion formula of (0.3) is given by 

/(t) = f(v)	+	 (06) 
(c)
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(see [2: Theorem 6.1]), where y < C < 0 and y is the order of growth oft if t tends 
to infinity, that is	 I 

At) =O(t),	-l<y<O,	t	--oo. 

Applying this to (0.5) we get immediatly a formally derivation of a solution of (0.1), 
namely	 I 

X(t) = ( i)k vkF(v)	V(l ± v) L,(-)(t)	
dv.	 (0.7) f	P(1 + a + ,P) (e 21" - 1) 

(c) 

In this piper we' derive the transform (0.3) ofa class of elementary functions, 
which often appears in applications and then the resujt is used for the solution of a 
special differential equation of the type (1). 

Here and in the following terms which are standing on equal places inside the 
brackets .. .} correspond each other. The set of natural numbers is denoted by N 
and N0=Nu{0}. 

1. The function, which has to been' transformed is 

bfr 
/(t) = P-1 1'

 Isin 
btr}'	r> 0, b 1>1 0,	 (1:1) 

that is we want to calculate the integral 

I =	e_P'_t sin btr L,( a)(t) dt 
J	 1cos bt" I 

0 

=() 
It

A-1 e'	(v).	 S	 (1.2) 

Because of the asymptotic behaviour of L,(t), (see [1: vol. 1, p. 278, (3)]) 

=	sin vP(1 + ix + v) ett[1 + O(t)]	 (1.3) 

if £ --- > +00 and of the boundness of L,( ) (t) in a neighborhoud of the origin the inte-
gral I converges under the restrictions 

0,Re(p>O 

	

/ OF [Re (p) = 0 and	 (1.4) 

Re () > Re (2)	11,	Re (2)	
.}. 

In the language of integral transformations this is: The generalized Laguerre trans-'-
form of / is an entire function of v if Re (p) > 0 and a holomorphic function in the 
halfplane Re (v) > Re (2) - I if Re (p) = 0 (under the restrictions (1.4) for the other 
parameters).
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Remark: The integral I maybe considered as	 . 

= )l [-'_

 

Isin
}
 L;,

() (t)] ( +) 

• = r 	etu' {sin bt} L) 
(11/f)] (p) cos-bt  

= r1 {8 [g(A+)/r_1	 (b)} 

where 31, 2,	are the Mellin-, Laplace-, Fourier-sinus and Fourier-cosinus 
transform respectively. 

For the calculation of I we are substituting (under the condition p > 0) 

cos	:= p(b2 .+ p2) 1I2', x:	(p2 + b 2 )-.1 I 2r , 0 :	xli 

K 1(0) := e_O0sP sin (0 sn	•	 (1.5) Icos (0' sin fln)l 

K2(t) := 1	e_tL,()(i).	
0	

S 

With these abbreviations'the integral (1.2) can be written as the Mellin-convolution - 
of K 1 and K2 , that is .	 - 

CO 

I =fK 1(xr') K2 (t) £' di =: K(x), 

with

(s) = )l[K 1] (s) = f t8 'K(t) di,	i= 1,2	.	 . 

and by help of the con volittion theorem for the Mellin transformation we have for 
the Mellin-transform 1 of K 

=	

1	2	 . .

	 . 

By means of the formulas [4: p. 139-140: 3.8(1), 3.9(1), p. 130: 1.4, 1.5 and p. 21: 
10.40 (1)] we have	 . 

= r'f(—s/r)	
"	

fiJ	1/2, Re 
(s) < {} 

and	 •	- 
I	[s++A,1±v-2—s1	 . 

I, 
f' (v + l ) [	1—i.—s 

•	 —Re ( + ) <Re (s) < 1 + Re (v - 2). 

Here (see [4]) as usual	 0	 /	 •	 - — 

r[	
:::] =	f(a) fl P(bi)].	•	 : (1.6) 

The condition P1 < 1/2 can be fulfilled if p > 'O. The case Re (p) > 0 after the 
calculations follows by means of analytical continuation.	 .
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With the help- of the inversion formula of the Mellin transformation we* obtain 

-	K(x) = ( 2.1'r 
ir) fr [_s/r, a	 2 - s] 

(a)

- 1—sin r,89/r1 

	

X	 x8ds,	 (I.e)
cos :rr8s/rj ' 

with the condition for the path ofintegration 

—Re' (oc +) <.a = Re (s) < mm (i + Re (v — 
2), {}). 

As usual (a) denotes, the vertical straight line from a - icc to a + icc. The cal- 
culation of the integral (1.7) is possible by left- or right-shifting of the path (a) 
accordirIgto the convergence of the integral. Using a conclusion-of a 'theorem 'of 
SLATER ([4: Theorem 17, p. 48]) we obtain immediately in the case r > 1 or r	1, 

1 2: 1< 1	 '	 S 

co 
•	K(x)= 	Res [1(s)x8].	

S 

The poles in the points s = —k — N— 2 (k € N0) are simple ones. In the case r < I - 
or r = 1, xl > I we have to shift the path to the right. There we have two series of 
poles in the points s = kr and s = I + v — 2 + I (k, I € N 0). In common these are 
simple poles. Double poles do appear only, if for a value of k € No does exist such a 
I € N, that the diophantic equation 

k'r1±v-2+I  
CO 

is solvable. The corresponding sum of residues we denote by	. The sums of the 
'	 .	 k=O(1) 

residues in the remaining points kr and 1 + v — 2 + I we denote by ,' and ' 
k(l)	l(k) 

respectively. The calculation of the residues in the simple poles is trivial because of 
the' wellknown behaviour of the P-function. For the calculation of Z we develop 

k(31) 
I? (s) with s= kr+e-1±v_2+l+ein the Laurent series inO<Iel<f? 
with a suitable R and look at the coefficient of the power e'. This is the residuum 
which we were searching. After some calculations we obtain the' 

Theo-rem: With the abbreviations (1.5) and the conditions (1.4) the integral I in 
(1.2) can be calculated to  

00ITl(_l)kp1rna+2)Irk+ I ±v+a 
-	k=0	L k+1,v+1,k+a+1	

/ 

	

fcos
sin [(k + a+ 2 )17 1 x i

 [,-#(k.+ a + 2)/nj	- '  

i/r>lorr=J,ixl<1•.
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and

I =	( l)k r Ik
r + a + 2, 1 + v - 2 - krl J_sin fl k 1 -kr	 I 8' 

• k(DI)	Lk + 1,v + 1,—kr + I —2]. 1 cosflkJ x 

• S	
+ r1l)1f[(2 - v —1— 1)/r,1 +v ±a +1 

l(k)	L 1+1,v+1,—v-1 
J—sin [#(l + v - A + 1)/r 

cos[rfi(1 ±v - 2± l)/ri 

•	 +	(1)k(+_' 
r-I'k

+ A + kr 
 

k(31)	 +1,kr—v+2,l-2---klTv+1- 

I
—sin k

X 	cosk} 
X-r [(a ± ). +kr) - r'W(k + 1) •W(kr+ - v) 

\+ W(l — A kr) +	-zfl/r cot	- r log xT 

. 
—x8/r tan r9kj	 ' 

r < I or r = 1, lxi > 1 and W = P/P. 

2. With help of the theorem above one can calculate as well tabulated integral 
transforms as new ones. The conditions (1.4) are fit for the Laguerre transformation, 
but they are not necessary for the convergence of the integral (1.2). As an application 
we consider two special cases. 

1.r=A=1/2,b=0:	 S 

In this case the integral I is well known. With the remark of Section 1 and [1: vol. 1, 
6.10(11)] we have	• 

I = 22[P e_tL)(t2)1 (n) 

= 22r [2	 G(a + 1/2,—v + '/2 ; p2/4),	(2°1) 

a> —1/2, Re (p) > So.	 I 

Here G is the confluent hypergeometric function of second kind, sometimes denoted 
by W. We want to sketch a proof of this formula by means of the theorem. From 
(1:8') we get immediately	 S 

•	

•I•_
(_1)kpl(k ±' 1)/2-+a,v + (1— k) /21 k 

— kO	 k + 1, v + 1, (1 - k)/2 j 

+ 2	(1)' 1 v	
21— 1, I +v +a +1 2(t)+1	 (*) 

-	 •1=F0	 I	1+l,v+1,—v—1	j 
Because of f[(1 — k)/2]	op if k is an odd integer we substitute k -* 2k in the first

sum. Using repeatedly the duplication formula of the Gamma function 

S	

P(2z) = 222_11/2f(z) f(z + 1/2)	
/	 5	

•	 (2:2)' 

and the functional equation	- 

P(z) I'(I — z) = 71/sin irz	 (2.3) 

lfj Analysis Bd. 3, Heft 3(1984)	 -

-
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we get after a short calculation  

I = 2-2r[2a
 

l,v + + 1 
 •v+1,+1 

x {r[+1;] 1 F1 (a + 1/6; —v + 1/6; p2/4) 

- + (p2/4)12P [v 
±	] 

ji(V+ + 1; v + 3/2; p2/4)} 

Using the connection [1: vol. I, 6.5 (7)] between the confluent hypergeometric 
functions, of the second and of the firt kind respectively 

Il—c  
G(a,c;x)=1 1 1

 
I F, (a;c;x) 

a	 1;2—c;z) 

wè'have witha =a + 1/2, c = —v + 1/2, x = p2/4 at once (2.1). 

2. A = 1, r = —1, b = 0:  

In this case we want to ,calculate the integral 

1 =	3t--2 e_hItL()(l/t)] (p),	 (2.4) 

which is not tabulated yet. Here we will not use our theorem, but calculate directly 
the integral with help of the method of the proof of the theorem (because or r 
The integral (2.4) may be written in form of a Mellin-convolution 

1 00 

I =fK 1 (p/t) K2(t) t-' dl 
o 

with K 1 ( 1 ) = e' 1? ,K2(l) = L,(a)(t) e tl"'. Using [4: 3.1 (1)] we have 

1'(s) = f'(s),	Re (s) >0 

and using [4:'10.40 (1)] and the multiplication theorem of the Mellintransform we get


	

[S+a + 11V_81,	
—a-1<Re(s)<Re(v). 

Because of the convolution theorem of the Mellin- transform we get with (1.7) 

I = —(2i)- fr[8,S  + ± 1,v 6] p
8 ds,	0< a <Re (v). 

(a) 

Left-shifting of the path of integration yields 

- k1	 k+1,k,v+1 ]p 
l,v + a + 1 + 1 )t+a+i 

1+a+1,1+l,v+1 P
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Analogous to the first example by substituting k - k + I and using (2.3) for P(a - k) 
and P(—c. - 1 - 1) we get after a short calculation (because of (2.4))	- 

£[t -2 e'I'Ii,(')( 1/1)] (p) = P(cc) 1F2 (v + 1; 1 - ; 2; p) p 
+ r [-0,, V + a + PA+I lF2(V* + a + 1; a + a + 2; p), 

Re (p) > 0.	
5	

-	 (2.4') 

Here, as usual	 -	 -	- 

00	
.

,F,(a; b, c; z) =	(a)	
_	zi <oc	s	 (2.5)
(b) (c) n. 

and'-: 

(a) o .= I,	(a)	P(a+ n)	
N	 -	 ( 2.6) 

are the Pochhamrner symbols.	
S 

3. Finally we look for a particular solution of the inhomogeneous Laguerre diffeential 
equation (of order = 0) 

•	Soy(t) = &D(etD) y(t) = e29	 (3.1) 

in the interval-0 <t < oo. Taking the transformation	) (see (0.3))on both sides 

of this equation and using the result (0.5) with k = 1 and a = 0 for the calculation 
of the °)-transform of the left hand side and the formula (1.8) for the calculation -. 
of the °-transform of the right hand side (with a = 0,;. = l r - 1, p = 2, b = 0) 
we obtain immediately ((1.5) yields cos fln = 1, that is fi = 0 because of fij < 1/2 
and x=1/2):

00 I kv1 1 
—v Y(v) = 2-' ' (- 1) 1'	 =	( S\	

) 

2—k-1, 
k=o	[IS+l,V+lJ	k=o\	k 

that is	 - 
Y(v) = —(2v)' (2/3)".	 S	

(3.2) 

Using (0.6) with oc = 0 we obtain a solution of (2.1) as the inversion of the image Y 
with respect to the transformation	-	 - 

	

= 3'sf v1(2/3)'E,(t) (I - e'') dv,	- —1 <c <0.	(3.3) 
Cc) 

By means of right-shifting of the path of integration we get •	 S 

y(t) = — (2i/3)	Res [v1(2/3) L,(1) (1 - e 2 ' 1 1.	 (3.3') 

The poles in the points v = n € N are simple ones. Only in the point v = 0 we have 
a pole of second order. Developing the integrand of (3.3) in a neighbourhood of v = 0 
we obtain with	 2	- 

-	

L,(t)	Z ( — V)k (k!)' lk = - (1) v + 0(v2) ,	 - 

16*	
5	

-	 S
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/ 
/ where

(l)k1(1tk= Ei (1) ' — C -, log  

(see [6: 1;3.2, 33.]), C is the Euler constant, after a short calculation the result 

y(i) = —3 1 log (2/3)1 + 1 + C — 'Ei (b) + En'(2/3)" L(t)].	(3.4) 
-	 ,,	 11=1 

Here Ei (1) is, as usual, the exponential integral 

Ei'(t) =f 1-' e t di,	I	0,	 (3.5) 

where the-integral takes its Cauchy principeiA value, when I is positive. One quickly 
verifies, that (3.4) indeed is a particulary, solution of (3.1). 
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