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Interior Estimates for Singularly Perturbed Problems 

ID. GOHDE 

Die Losung des Dirichletproblems für cine singular gestCrte elliptische Differentialgleiehung 
2m-ter Ordnung eL 1 u -f- Lou = h konvergiert auüerhalb der Crenzschicht für e –* 0 gleich- 
mäfiig-gegen eine Losung der ausgearteten elliptischen Gleichung Low = h niedrigerer Ord-
hung. Es wird gezeigt, dal3 sich im Fall nullter Ordnung von L0 dieer Sachverhalt uninittelbar 
beweisenlaBt, d. h. ohne die übliche Konstruktion der Grenzschicht, und zwar elementar hei 
geringen Glattheitsforderungen an den Rand des Gebictes. 

Peiiiei-iiie npo61eM1A LEupuxiie jin ciiiiryiipiio 1303Myueii iloro J flMepeHIwaJ1bhl0ro ypan-
Ilellihil 3JlJllInTIt4ec1oro Ti-ma eL 1 u + Lou = ii nopu.u-ca 2m CXOJUITCI!, JIR 0, paBlloMepuo 
umie noi'paiiu'iiioi'o cilon i peiimeuuio Bhipoacteuuoi -o y paimemin OJ!Jillri p Ii q ecKoI - o Titna 
Lou = h 11113 Wel'O nopFlHa. OIa3MllaeTcn, 'ITO n ciyae iiopnaia 0 oriepaopa L0 OTOT qbaNT 
rao+uio IoHa3aTb llenocpej.(cTBehIlIo, T. e. 603 IOlICTpyHlIiIi norpaHu'llIorO cion, H TOMy+e 
aJieMeIlTapilo II C He3lla q uTeJII,11biMit npeLr1oJio?scellh1nMu I'J!31L1(OCT11 rpaHul.(bi o6JIacTfl. 

The solution of the Dirichlet problem - for a singularly perturbed elliptic differential equation 
eL 1 u ± Lou = h of order 2m converges, for e ^ 0, outside of the boundary layer uniformly 
to a solution of the degenerate elliptic equation Low = ii of lower order. It is shown in the case 
of order zero of L. this assertion may be proved immediately, i.e., without the usual construe-
tin of boundary layer terms, but rather elementary and on weak smoothness conditions with 
respect to the boundary of the domain.  

•

	

	As well known, the solution it = u of the singularly perturbed 1)irichlet probleiti 

of order 2in in an n -ditensional bounded domain 0 

0: eL 1u± Lou =h 
Du=0	(l yl m— 0 

behaves — in the case of "regular degeneration" — as follows for 8 -- +0 (cf., e.g., 
[5-7]): Tn every compact siihdoniain 0'	0 we have uniform convergence to the 

solution w0 of the degenerate (reduced) elliptic problem of order 2/c (k < rn) 

-	0: J 0w0 = h,	eG: Dw0 = 0	(I y ;5 k,— I)	 (2)	l 

whilest in.a narrow strip I', along the boundary G of 0 arises a so-called (Prandlt's) 
boundary layer compensating the supernumerary boundary conditions of the 
perturbed problem ( > 0) which the solution of the reduced problem in general 
will fail to satisfy; the width of P. is about some power df E. Usually 'the asymptotic 
properties of it are studied by an expansion 

= W0 ± 8W 1 + .. + 8Wr + V 0 + 6V 1 + + E8V ± 

Here the "regular" part w describes the convergence in 0 \ P, while the functions v; 
are of boundary-layer type: they are smaller than any power of e outside, of the
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neighbourhood P of the boundary (exponential decay). This expansion has to be 
constructed and, after that, one must prove z to be: hounded in all of 0 for some 
positive 1. The main tools to be used for the latter are based, finally, on a-priori 
estimates as shown by AOMON, DouGusand NIRENBERG [1]; for details - farfroni 
being trivial in general - we refer, e.g., to BESJES [2], or to the monograph [3]. 
But it seems that, until now, only in the simplest case 

G:- 2 z1u+-u=h,	ao:u=O	 (3) 

the attempt has been made to prove directly the regular behaviour of u in ON P: 
L. TARTAR derived [5: p. 1311 

f	[-(u - h)] dx :s^ 

with
C' = (x € C: dist (x, G) > e l , 0 < a < 1). 

In the present paper we will submit a more general proeedur'e, elementary in the 
main, which enables to prove even uniform pointwise convergence of u in ON I' 
and, moreover, does not claim (for itself) higher, regularity of the boundary as a-
priori estimates do in general. 

0. introduction, in order to give an outline of , the method we will sketch it in the 
simple case (3) (cf. [41). 

Multiplying the equation by u and integrating by parts yield at once 1UII an1 IIDuII 
bounded (in the L2-norm of 0, D any first order derivative); using, e.g., a-priori, 
estimates just mentioned it is possible to extend this result to derivatives of ny 
order 1: el ID'u C (by the way, we cannot expect essential improvements in 
general!). 

Now we introduce "quasi-testfunctions" 99 = (x; e, ) which are equal I for 
= , the generic point under consideration in the interior of 0, and of order 

O(exp (—c[e))'outside the ball of radius e' centred at so that qDu will there also 
be small relative to any power of e. The advantage of T in comparison with usual 
testfunctions is the fact that it is, in some sense, reproducing itself: 

D=!-.C(x)q 

with C(x) smooth and bounded. 
Next we set up the equation for v = D'u, multiply by 992 ' v, and integration by 

parts neglecting (boundary-) terms of order O(exp (_cI&ô)) leads to 

Ii D 'uI < C. 

means of Sobolev's inibedding theorem for 'balls we can conclude the uniform 
houndedness of D'u() for all 1 with distance e' 26 to the boundary ôG, and uni-
form convergence of u and all its derivatives follows immediately via equation (3). 

I. Position of the problem. In a bounded n-dimensional domain C we shall study the' 
i)irichlet problem of order 2m 

2ni 

0: Lu = ' L 1u = h 
iO	 (4) 

laG:Dyu=o (I y I m - 1 ),	 -
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L• being differential operators of order I	 - 

Liu = ' a1D"u  
kIi	- 

with principal parts Li '; a ,.y are the usual multiindices. The ellipticity condition is 
posed in j terms of Grding's inequality for the operators of evenorder I = 2i: For 
u € 112j n R j there is valid	 - 

(L 5u, u) ^ A j j juj j,2 - Bj IIuII_i	(1 = 1, ..., m)	 - 
(0) 

Lou, u)	A 0 IuII2 

with constants A B,, the first ones are to obey 

(

M-1
A 0 > 0,	Am >0, 	'nllfl {A,0})	C. A 0Am,	 (6)


j=1.  

c ,= const < 1. Here the brackets (., .) signify the scalar product in L2 (G), and 1•11 
denotes the norm in the Sobolev space H = W2(i)(G). The reduced problem (c = 0) 
is simply

Low = a0w = h	'	 (7) 

in G - no boundary conditions: 
Coefficients and right hand side h are assumed sufficiently smooth, and the 

boundary 0G to be regular enough in order to guaranty the existence of sOlutions 
U = U € H 2m fl Hm of (4) for small c > 0-which are of class C(G') in each compact 
subdomain G'	0; at least, ao should be piecewise of class C', and Gauss's inte-
gration theorem be applicable in G.	 - 

2. A preliminary estimate. For a solution a of (4) integration by jarts yields 

-	(h, u) = (Lu, u)	

:' 

1u1I 2 - B iu_) + A0 114 112 

	

IIUII11 IluIi1i_,i	 (8) 
=1 )='	W	1-i--i 

with proper constants A 1t , and [x] denoting the integer part of x. In deriving th 
last sum it has been made use of the fact 

(D"u, u)	W (u, Du) = 0	 - 

for ja l odd and, consequently, the possibility to substitute for (a.')Dt, u) terms of 
total order less than I cil. By the help of arithmetic-geometric-mean inequality used 
for j even

1	2 
2 IIu IP[L] IuII[_!]	e llUli] + 7 IIUII[i_1}'	 - 

we5may conclude from (8) 

(h', u)	s2(Aj - eA t' - e2Bj, 1 ) hu11 2	'	 (9) 
j0	 .



318	D. G6u1)E 

with A' = A 1 '(e) uniformly bounded, Bm+i .= 0. Finally, we omit the terms With 
'A>0(j=1,...,m—l), and ifAQwe use the 

Tnterpolation Lemma: For u € "m '	, 0 <1 = JJ < joc l = m, and

positive e, q it is valid 

IDsu z	± q2(m_)) IID2t !i2 + 
in	2 ± p2i jujj 2 .	 (10) 

•	 in	 -,	 m 

This assertion may be proved by induction based on	 - 
IDuI2 

=(D iv, Du) = —(D' 'u, D''u)	-. 

and the arithmetic-geometric-mean inequality. 
Hence we now have 

I	M-1
(It, u) ^ _m (A m -	m f-!' (A - C)) kLiIm2 

/ 
+ (A - c0 +	(A, - - C/ )) I u U 2	 -. 

. i =l \	'	JI 
where A1 = mm (A 1 , 01, and C, C1 ' proper constants. If we choose q 2 = A m/A WC 

obtain

Arn+qAj>c'Arn,	Ao+1EA1>c'Ao 

with c' = I - J/c> 0 (c the constant in (6)) and, therefore, 
(h, u) a; s21C Iu( 2 + CO (u(	 (ii) 

- for e	o with positive constants Cm, co independent of e and u. A simple application 
of Schwarz's inequality shows	:	

S 

•1jul p	1 1h1j, pm IUIIm	IIh CO 

which maybe extended by interpolation lemma to	
S 

s	:5: c 1 ' (hI ,	j = 0, . . ., M.	 (12) 
•

	

	This result can be further extended to orders of derivation beyond in, and that

without additional supposition of smoothness if we restrict our consideration to 
e-approxiiiiating subdoriiains	 S	 - 

{x € 0: dist (x, G) > s}	 (13) 
of 0. As easily to be seen by Lemma 1 of the appendix (cf. (44)) we canstate: For 

- y> in there exists a constant c' so that for solutions of (4) holds the inequality 
j-m 

E! (u	:!^ c/ Z e' I!h (1	() > n)	 •	 (14) 
1=0	 - 

where I•Ilcj denotes the norm of H5(0.	 - 
Remark: As ' imila result might be achieved too by utilization of the well-know naL 

priori estimates for solutions of elliptic boundary value problem's (e.g. [1: Chapter 15]) 
•	- via homothetic transformation x = x', in the case of smooth boundary even
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with l • IIj instea71 of II•IL; but in order to maintain a self-contained elementary 
treatment as faras possible we establish (14) by integration by parts as done in the 
appendix. 

3. Quasi-test.fuiictions. The desired uniform pointwise estimatesfor the Solution u 
and its derivates shall he set up in the subdomain 

•	G= (x € 0: dist (x, G) > 71 = c .	 (15) 

C, ô given positive constants (cf. (1); of course, 6 < 1/2). G might also be conceived 
as an analogically defined subdomain of 0, (for -0 and a proper constant c); we 
shall onietitiies do. so in what follows. 

Our main tool for analysing it locally will be the "quasi-testfunction" w: 

with r =Jx —I, 71 =1_;

(16) 

Wm(0) 
=' +m,eQ' 

where the point under consideration 1 is any fixed point in G. For k :!E^ rn, we have 

j' O"'B(0) &7m() for	1 
dci'	- 1 G,,() . m()	' for Q, >' 1	 - 

with bounded functions Bk, Gk, whence we obtain for any partial derivative of 
order Ic (with respect to the variables ) 

D,(x)
= 4 C(x, ,) . ,(x),'	= Ic ^ rn	 . (17) 

with bounded continuous C. 
- Instead of vanishing outside some neighbourhood of the function q, will only' 
tend to 'ero exponentially if e - +0, and that will do for our purpose. Especially, 
in a neighbourhood- of the boundary' ao of width d- e (d positive constant) it is 
easily seen from (15) and (16)	 - 

= O(exp (_c/e6)) for  	+0.	 (18) 

• 4. The L2 estimate. By the next step, for all derivatives Dü of the solution, IIDuIl 
will turn out bounded	uniformly with respect to e and the choice of 1 in G. 
Differentiating equation (4) we obtain for any derivative Du = v of order, jai = I 

L,v = Dh + E >,'c(z) Du =: h.	'	 (19)

Iy2n  

The proof of our assertion will now be given by multiplying this equation by T2 . v 
and integrating by parts. To this we point out an observation on principle: All 
integrands (and so all norms) will involve functions of kind q, Du. If we, addition-
ally, multiply -by a testfunction ', E 6- (0,,) with ,(x) = I for x € 02, as used in the 
appendix we enforce vanishing at the boundary though we only give rise of an 
error of the integrals of order O(exp (_cIeô )) as to be inferred front the preliminary 
estimates (12), (14), the property (18) of 92 and the fact that the derivatizesof V,also 
grow like powers of lie. Because exp (_c/e6 ) = O(EN) for any N,while'the 4uanti-
ties in consideration in what follows are of orders 8M only, we shall omit the 

0
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boundary terms introducing an equivalence relation	and a weakened order 
relation with meaning "equal (resp., less or equal) up to additional terms of 
order O(exp (—cIeô))". Then we can formally integrate by parts as if the integrands 
were exactly equal zero at the boundary, if we relate the integrals and norms to the 
subdomain G what we will do in this section without special notation. 

Remark: Another way to become aware of this fact is to choose a subdomain 
similaf to G so t,hat its image Ge' under houiiothetic transformation x' = x/e has 
uniformly smooth boundary and then use the continuity of the trace map i: 

—> Rk(F3GJ; (12), (14), and (18) will nowtell that the boundary values are "very 
small ? ' in the sense described. 

Now we will implement the integration by parts of (19) after scalar multiplication 
byq 2. v according to our rule:	- 

(Liv, q 2v) = (v', v)	e2i(Lj(9,v), 9v) 

2m	 (20) 
± '	 f	 dx, 

i—i	I+IPI+h'aI+Iy,Ii 
-	 Iy,I+IyII 

where may be assumed jaj,	ml By means of (17), the integrals appearing here

in the second sum are to be seen majorizedby expressions of type 

q p q + 1, p±q+r=i,' r 1; 

here D, Dq,,denote any derivatives of total order p or q Application of the inequality, 
ub	--- (a+	b2' with = 2p+T leads to bounds  2

	

-C1{e2 P I1 D11vI! 2 +	199Dv2} . .e 	r > 1,	 (21) 
for the integrals imx (20) multiplied by E i (remember 71 =	On the other hand,

the principal terms in (20) — fisrt sum - will obey, in our weakened sense, Gárding's 
inequality (5), i.e.	 - 

(L 1 (qv), v)	A, II v u 12 -, B, jJvJI 
Finally, in order to adapt this estimation to (21), we shall express the norms of 
Dv) here by theof pDv in (21). Using triangle inequality and (17) we obtain 

IuD (v)II	Il DvII —	-  
Cp

 
qDflv 

97 

and therefore, for j	1 
2i(Lj(ç), çv)	 S

7	(22) 
^ 62'A. f 0vII 2 - X L' c,pE2i+2(j)6 IIDvuI2. 

i=OIP=i 

Estimating now the right hand side of (20) by means of (21) and (22) we arrive at 
the desired result 

Ey 
e2i Z C IIDavI1 2	qv)	iiiu 119W 11	 (23)
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for e small (E	€) with positive constants C independent of e and i E G, and 
especially	 . S 

C jjqhjj	 (24) 

for—any derivative v of order 1 of the solution u. Taking in consideration the structure 
of h (cf. (19)) and the preliminary estimates (12), (14) we observe 

MI	 .	,'	 S 

i.e., pv = pD"u obeys a general estimation of type (14), but improved by a factor e 
compared with v itself according (14). Now, in turn, the improved estimate, could 
at once beapplied to h again, for u and its derivatives occur in h only multiplied 
by q. This entails a further lifting of the power of c in the last inequality, and finally 
we can conclude, in this way, 

IDuII	C	 •(25) 

for all derivatives of u in 0, with constants C independent of e (E	r) and E G. 

5.-Uniform bounds. Fiorn Sobolev's imbedding theorem for the n-dimensional unit 
ball B1

sup Iu(x)I ^ C1Jj ujI1 ,	10= 171 + i 

it follows
'10	 / 

sup IUWI	CIO-"/2 .' 21 y' IIDtftBe 
Be /	 M=O 

for a ball B with radius . Application to v = D'u, H = 1 1 0 , in B,7 (centred at) 
yields

	

,	 - 
sup Iv(x)	C1'iI2	'	 IyI(+ 

B,?	 .	 IyI=O 

because of (25) and '	
i -'- 

e in B,7 ; therefore 

sup Du(x)!	-=-	 '	 (26), 

XEG	 JI?7	 S 

'for every derivative of the solution of (4). By means of the differential equation 
of (4) and with regard to the reduced equation (7) we see that in G at least 

Iu(x)I ^5 {max _?_ e _ ,	 sup IhI} 

(a0 A > 0). Differentiating (4) we obtain analogous estimates for all derivatives 
of u (of course, h replaced by its corresponding derivative), so that we successively 
can improve the result until we arrive at 

sup IDu(x)	Ce,,	
/	

(27) 
ZEG 

i.e., the uniform boundedness of all derivatives of u in the expanding and, for e -4. 0, 
exhausting subdomain G =	- 

21 Analysls Bd. 3, Heft 4(1984)	 .
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6. Uniform convergence. Based on (27) we immediately perceive the uniform point-
wise convergence of u = ue to w, the solution of the reduced problem (7): After 
division by d 0(x) the equation of (4) reads 

B(x) + u = = W •	 a0	
I 

with B(x) uniformly bounded inG on account of (27). 

Summarizing, we may establish the 

Theorem 1: Coefficients and right hand side of equation (4) shall be smooth in the 
n-dimensional bounded domain 0; the boundary )G is supposed regular enough. (at 
least piecewseC 1 ) in order the problem (4) be solvable /or all positive c eo', the solution 
u = u being smooth in the interior of. G. Then, for e - +0, u converges in each point 

•	x E 0 to the solution w of the reduced problem (7), and so do all derivatives. This con-
iergence is uniform in the sense  

lim sup .Du,(x) - Dw(x)I = 0, 
e—,-O x€G 

i.e., in the set G of all points of G with dzstance at least T1	c . e1 26 to the boundary

G (c, O positive constants arbitrarily, chosen). 

• 7. Extension in the case k = O.o "totally degenerating" problem. in equation (4) 
the operators L1 are multiplied by that power of e which exactly coincides with their 
orders. As easily to be seen, Theorem I also comprehends the situation of additional 
regular perturbations by continuous dependence of coefficients and right hand side 
of e or, especially, if EiLi in (4) is replaced by +k(i)L1 with k(i) 0 for 0 < i < 2m 
(but k(0) _—k(2m) = 0); condition (6) will not be violated. 

But it, is of some interest that our method will work also in-the case of superposing 
singular perturbations,  that i, if the higher derivatives are multiplied by another 
c-power besides c. After some strengthening the premises concerning the ellipticity 
constants A j the proof of the following assertion will run just as explained in 2. to 6. 
above, at least, if we, for simplicity, assume the coefficients to be constant. 

Theorem  2: With notations and under regularity conditions of Theó'rem 1, moreover 
assuming constant coefficients, the solution y, = uE of 

- -	
• 0: LEu:	ekiLiu  = It 

	

- 1=0	 (28) 

	

aG: Dmu = 0	(!I <^ m - 1)	•	 - 

with Ic0 =0, k1,1 1c1 + 1 (i = 0, 1, ..., 2m - 1), and ellipticity , dondition (5) 
sharpened by claiming all ellipticitj constants A, > 0 (j = 0, 1, ..., m), will converge 
quasi-uniformly to the soltition w of the reduced problem (7), i.e., 

lim sup Du€(x) - D'w(x)' = 0 
£-30 XEOc' 

as in Theorem 1.'  
As to the proof, we only mention that the preliminary estimate can be derived as 

shown in 2. but, on account of the more stringent condition A > 0 for all f' without 
use of the interpolation lemma, and with aid of Lemma 2' of the appendix stating 

•	 'I
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that also in this case the derivatives of the solution will grow, for e --^- 0, at the most 
as powers of s 1 , and that will do, because in the constant coefficient case the essential 
step 4. will be finished already at (24). 

8. Remarks to the case  -^ 1. Unfortunately, our simple method will not work 
off-hand in the case k ^ 1 in general where the reduced problem is of positive order. 
Some exemplifications will indicate the range of it rather restricted. Amongst other 
things, additional smoothness conditions of the boundary must be imposed. In the 
following we shall denote by G' a subdomain of G with sufficiently smooth boundary 
G' (corners and edges rounded off), and by IIIk' the Sobolev norms with respect 

to 0'.	 -	- 
We will occupy ourselves with fourth order problems which are (nearly) factorable. 

Let zJ andL be elliptic operators of second order with smooth coefficients in G so that 

(—ziv, v) > c 11V11 1 2 - CO 11V11 2 ,	(—Lv, v)	d1 Iv i2 - d0 IIv lI	(29) 
for v vanishing at dO, with positive constants c 1 , d 1 . The formal adjoint operatqr 
J* of zl will obey such a Garding's inequality too. 

Proposition 1: Let bee0 =.0 in (29). The solution u = u of

- , dO:u=Lit=O	 (30) 

converges to the solution of the degenerate problem 

G:—zlw=h,	.dG:w=0 
in the sense of Theorem 1: 

lim sup ID"u(x) - Dw(x)I = 0 c-i. XEG' 

for every x (G' is the subset of x € G' with distance to the boundary dO' more than 
= 
If n = 2, andz1 = L the Laplacian operator, the problem could be considered as a 

model for a supported membrane with small stiffness.	- 

Proof: As e2 LI Lu - zIu = —L1(—C, 2Lu + u) we shall, of course, set — 2Lu ±u =

and this function w must then be the solution of the degenerate problem. Bebause 
of co = 0 (29) implies liw ili	C 1 1h1j, and by the well-known a-priori estimates for 
subdomains 0' we obtain-.for any I I wIi.,	C lih i,. We now pass to the "interior"

problem 

JG:—e2Lu+u=w	
S 

laG:	.u=0	 -	-	 (. 

and derive first, using (29), lu + s ui1	C lw	C' lih il and, according to the

appendix, ju,,, . -_ (p = 0, 1, ...). -All derivatives of the right hand side w 
are bounded, and preliminary estimates of type (12), (14) for the solution u of (31) 
are valid, so that the procedure leading to Theorem 1 pursuant steps 3. to 6. may. 
work with respect to problem (31) in 0' too g 

Proposition 2: 1/u = u, is th'e solution of 
E2LJ 	 S 

laG:u=LI*z=0,. -	.-	 5	

(32) 

21*
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c = c(x) L> co' > co (c/. (29)), then the assertion 0/ Proposition 1 holds with respect 
low given by the degenerate problem 

G:—w+ cw= h,	aG:=O.	 S	 (32) 

Proof: At first we must look for preliminary estimates as set up in 2. We multiply 
by u, integrate by parts, and use (29): 

2 14*u!1 2 + c jjUIi2 - co IIi1I 2 ± CO, JU)2 	IhIl Ij ull 

and therefore	 -	- 

jujj	C 11h1j,	e A*uJJ -s- C jjh.	 (33)


The last inequality gives rise to 

11 U112 :E^ C{ 4*UH * I uII} <	C IIh I	 - 

in G'. Since 44* is elliptic too, the premises of Lemma 2 of the appendix are satis-
fied, hence

(p = 0, 1, ...)	 (34) 

where " is to be taken over G or, for p ^ 2, G' -2),, respectively;	= max {x, o}.

As easily-to be seen, the same result is valid for the solution i of the slightly atered 
problem	S	

- 

±ci=h	 (3o) 

• But this problem proves factorable, for L,u = (—A + c) (_24* + 1) U. As in the 
first case we set	 -	 - 

	

24* + IL =w /	 (36) 

which is the solution of the degenerate problem (32). The conditions or -T A and c 
let us obtain	 5 

IIw ^	C jh	 (37) 

and, consequently, for the solution Ii of equation (36) the assertion of theorem will 
hold .- we remember the fact that its proof dont make use of boundary values 
immediately, but only of a preliminary estimate as (34) here. Thu 

lim sup 1D91(x) - Daw(x)I = 0.	 (38) 
t—,O	 •	 - 

Yet we have to become sure the additional regular perturbation by _ 82cLl*IL does 
not affect this property of u itself. To this end we shall, of course, set u - = 
so that

	

	 S	

- 

JG: Lz 1 := e2AA*z I - /i Zi a -l-- cz1 = -62cA'9i 
laG:zi=J*zi=0. 

We replace z1 by I which is defined as the solution of 


JO: L = —e2cA9l -	 - 
laG: i=A*i=o	

S
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• with I_e2cJ*iI EC IhIl according to (33), and therefore this estimate will be true 
also for but with e 11hIl instead of 11 h1 j . Apparently obeys the assertion of Theorem I 
with 0 as solution of the reduced problem. 

Now we construct recursively z1, by z+ = zi- 

t

G:
ao: j+1 =	= 0 

beginning with z0 = u, 2 0	 l, and we obtain successively	- 

•	 C 11hIl ei ,	ii4*ii	C 1 1h Il 

and this is valid also for the z themselves (they satisfy the problem with the original 
operator L, instead of L,, but with the same right hand side), while for the E i even 

J i m sup iD 1 (x)i = 0	 (39)

c-O ZEG' 

for every a. Thus we have obtained	 S 

U = ± +	+ r + Zr+i	 '.	(40) 

with (38), (39), and, by (34),. 

S	

iiz+il'+,	Ce'_P4' 

	

- whence the assertion for r sufficiently large I	S 

Appendix. As just inducated in Sections 2 and 7, we will complete the discussion 
there by the proofs of two lemmata concerning the rough basic estimates (of. (14)) 
affirming the derivatives of the solution to grow at most as (negative) powers of S. 

L e in m a 1: Let u = it, be a solution of the elliptic equation of order 2m = 2k -1- 21 

21	 2k 

L,u =	&L2, +1u + ' Liu = h	 (41) 
-	j=0	 1=0 

in the domain C (Lr denoting a differential operator of order r) with the property 

h) for 0	I	m	 S	 S	 (42) 

or

lulli ! for 0 :5^ I ^ m	 l')	(42') 

([xJ = max (x, 0)). Furthermore the operator L, is assumed positive in the sense 

(L,v, v)	s21(A JIVI I M2 - B IIv112),	A > 0,	 •	 (43) 

for all v with compact support in C. 
Then, for p	0 it is valid 

•	 1	1	p-I -I	 S	 -. 

II uH,,	c +,.	hi +E -- MhuI7	v)}	 (44) 

where	denotes the usual Sobolev norm of order q in the subdomain G' =	of 
all points of .G with distance at least vde to the boundary aG (cf. (13)); Cm+p is indepen
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dent of E (but may depend on the - arbitrarily chosen - positive constant d). In the 
case (42') the denominator 5m±p in (44) may be replaced by 5m+p-1 

For p = 0 the sum in (44) is to be set zero, of course. 

Proof: For p = 0 the assertion (44) coincides with supposition (42) (resp. (42')), 
I = m, and we will assume it to be valid for all p <q for some q	1. 

We shall use test functions tp 1 (I = 1, 2, ...) which are equal to Lin	vanish 
outside G'?,' and have the property Da q 1 (x)J < C . e	with appropriate con-
stants C.	- 

A remark concerning the construction of such p =	The homothetic transformation 
= xk will take the domains G and Gd, to G",and Ga" = {x" E 0": dist (x", G") > d}. 

We choose a finite covering of the closure of G," by balls B1 (i = 1.....n; m = n(a)) of dia-
meter d/2 so that the concentric balls B" constitute a covering with order bounded indepen-
dently of E. If 77i are the usual local test functions which are equal 1 in Bi and equal 0 out of 
B1 ", then

VJX) = 1 —[7(1 - 

will possess the claimed properties concerning U = G) and 0(1). 

In order to prove now (44) for p = q we first set up a differential equation for 
v where, for simplicity, denotes any derivative of 'order q, and apply D 
to equation (41):.... 

DqL = L,v + ... = Dqh, resp. 
21 

Lv = Dh ± ' e '	 + 5 E Da,Du. 
i =1 kJ'= j+ 2k	 2k

Ifll1 

Secondly, with V=ip,we have 
2!	 -. 

L,(pv) = pL,v + !' s E	E a,D"pDv	' a,, ' D'ipDv , 
i -I kH2k+j v	 lI2k 

-	 lylI 

and here we can substitute 'Lv by the previous equation. After that we shall 
multiply the last equation by Vv and integrate by parts in such a manner that the 
derivatives of u appearing in each scalar product are of minimal orders, i.e., they 
differ in order at most by one. Thus we will attain to 

(L,(vv), vv) = (pDh, v) + E21 '	(a,, + DpDv, pDv) + 
o=IPI=k+I 
lyI=l. 

plus lower order terms. Applying Schwarz's inequality and, additionally in the case 
of different orders in a scalar product, the arithmetic-geometric-mean inequality 
with appropriate weights, we are abel to estimate the right hand side by 

e2k II Dh II 2 +.6	1IO 2 + 21	jDvII2 + a21C Z lIDvII2 2 IPI=k+1	.	lI=k+i 
21 

+ Z e	 E .	 IID"vD'vII IID"t'D'vII 
j=I I,I+I,t+I y ,I +Iy,I'=2k+j 

I y ,I+ I>',l	1. lI,I —t,Il1 

	

2k	-	- 
•+	',	' .	,,,.,,,,, 11DY1VDa1vjj ID'pD'vII ± . 

	

1	I,I +lI+Iy,I+Iy.Ii 
I,l — lv,I1. II	I—1,II1	 -
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where the terms omitted are formed analogously by those of the expression for Lv - 
above; compared with the corresponding ones indicated here they are of minor 
order (because v is at least ' a derivative of order one). Taking into account JDI 
^ v,,e1v 1 and v = DqU we shall see	

0 

	

/	
' IP'v'D II IID'aDviI 

1.

 C 2k+j28 
IuII 1)2 for	I2I = S 

C rk+i- (s Iu II	+	 for ICO	I2I + .1 = S ± 1


with s = 0, 1,..., k + [4]i = 1,..., 21-1, and, for the second sum, 

JD'.iD'vlJ 

O	huh	ui2 
for hiI =	2I = 

•	

-s-I 
(e hInI;s12i + . IIu iii) for II = 2I + I = s ± 1 

• with s=O,1,...,[+]i= 1,	2k. 

Summarizing we obtain 

(L,(ipv), Vv) — 2 1 -

	

	 ftPDvJJ2 
IPI=k+1 

rn 

C 
I 
-i 1	2	i ^	2k_28 hIUhI+	+ 2k 

Ujqq 1)2, + 2k 

and, due to (43), 
11VDqUJIM ;5 

C m-i	 C' 

	

±	 (45) 

Using now the poposition (44) for the norms of u here and (42) we have 

	

-	 C rn—i	 c	rn — i	8 3±q—n-1	 - 
1 1U11 (q)

q	80 -	Ih 1 hl +	
8in—q+I eo	

IIhhIZ1' 

•	?	hIh1h	u, 

whence

-p--. h	.2_. v' ._!. 1 (q——I) 
rn+q - m+q	 i—k -'	 ' q— i	 '	

0 

S	• 

•

	

	the assertion (44) for q , instead of p < q. In the case of (42') instead of (42) the rele-




vant assertion will be reproduced in the same way I 
Remaik: it might be conjectured that in the case where in (42) the order e 

could be replaced by et1* (e.g. if for u are given homogeneous Dirichlet data) in 
the assertion (44) likewise, 5rnp 

hhhII could be replaced by e	hhhh; but our proof

will fail forthe first k — 1 steps of induction. 

L em ni a 2: Let u = u, be the solution of the, problem of Theorem 2 

	

-	 / 2m	 - 
• ' 'C: Lu = E ek Lu = h,	3G: DVu =- 0	(tI < ni - 1)	(28
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with coefficients and riht hand side sufficiently smooth and ellipticity constants of all L2 
positive. Them there is valid a preliminary estimate 

HUN`- MN < S	(i = 0, 1, ...)	 (46) 

where Ci may depend on h and d but not on e; k 0 = 0, and 
r = max, {k - k_ 1 } > 1.	 (47) 

We remember the norm Ill" refers to subdorain G. The proof starts with 
establishing the inequality 

Mu <Ci iJ i 1	 - 

for i = 0, ..., m, by scalar multiplying the equation by u and integration by parts. 
Then, for i = h + p, p > 0, we follow up the induction argument of the proof of 
the preceding lemma, replacing E J by A. The essential inequality (45) will then read 
(observe k = 0)

C Jrn_i 2rn—I -  

± IhIIq -'}	 S	 - 

/	 V'	I /.__............  
-	If -	q+s
j=28 V

/ 
C (rn—i 

r	lu l l '
 

TM	 + Jhii51)} - 
3=0 

if we pay regard to the fact that sd,/si28 is maximal for j = 2s, and L. ? k2m 
- 2(m - s) r. Now the assertion (46) is at once to be seen reproducing itself. 
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