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Interior Estimates for Singularly Perturbed Prohlems

D. GOHDE

’
> Dié Loésung des Dirichletproblems fiir eine singulir gestorte elliptische Differentialgleichung
2m-ter Ordnung eLyu + Lyu = h konvergiert auBerhalb der Grenzschicht fiir ¢ — 0 gleich-
ma,Blg gegen eine Losung der ausgearteten elliptischen Gleichung Lgw = kb niedrigerer Ord-
nung. Es wird gezeigt, daB sich im Fall nullter Ordnung von L; dieser Sachverhalt unmittelbar
beweisen 148t, d. h. ohne di¢ iibliche Konstruktion der Grcnzsclnchb und zwar elementar bei
geringen G atthentsforderungen an den Rand des Gebietes.

. Peulenue npoﬁuemu Hupuxae aan CHUTYJIAPHO BO3MYUIEHHOTO ADOHEPCHINATLHOrO YpaB-
HEHNA JJANATINECKOro THNA eLyu + Lou = h nopsuKa 2m CXOMMTCA, N\aA £ — 0, paBHoMepHo
BHE MOrPAHUYHOIO CJOA K PEUICHHI0 BLIPOMIEHHOI0 YPABHEHUA ODJLANNTHYECKOrO THOA
Lyu = kb unswero nopanka. OKa3bIBACTCH, YTO B cayuyae nopaaxa 0 oneparopa L, 9ToT QakT
MOKHO JIOKA3aTb HEeNoCpPeiCTBEHHO, T. €. 603 KOHCTPYKIII [IOIPAHHYHOTO CI0H, K TOMY e
_QJIEMEHTAPHO 11 C HE3HAYNTETLHBIMI NPENONOHKEHIHAMU FIAIKOCTH FPpaHiubl o0aacTi.

The solution of the Dirichlet problem for a singularly perturbed elliptic differential equation
eLyu + Lgu = h of order 2m converges, for ¢ — 0, outside of the boundary layer uniformly
. toa solutlon of the degenerate-elliptic equation Lyw = & of lower order. Tt is shown in the case
of order zero of L, this assertion may be proved immediately, i.e., without the usual construc-
tion of boundary la.yer terms, but rather elementary and on \\041\ smoothness conditions with

respect to the boundary of the domain. ) -

As well known, the solution u = u, of the singularly pcrturbcd Dirichlet problem
- of order 2m in ‘an n-dimensional bounded domain G

'G': sLlu—l—Louzk T
oG : Dry =90 (lyl=m—-1 o . :

behaves — in the case of * regnlé,r degeneration” — asfollows for e - +0 (cf., e.g.,
- [3—=T]: In every compact subdomain @' S @ we have uniform convergence to the
. solution w, of the degencrate (reduced) elllptlc problem of order 2k (k << m)

GiLgwo=h,' 9G:Dwy=0 (y<k—1) (2)

whllcst in a narrow strip I, along the boundary 2@ of @ arises a so- called (Prandlt s)
boundary layer compensating the supernumerary boundary conditions of the
perturbed problem (¢ > 0) which the solution of the reduced problem in general
will fail to satisfy; the width of I', is about some power of &. Usually the asymptotic
properties of « are studied by an expansion P
. L, = W + ewy + -0 o EMwy, ;}— vy + &, + + ey, 4 &'z

D =w+uw L oetz, . ?
Here the “‘regular’ part w describes the convergence in G \\ I',, while the functions z;
are of boundary-layer type: they are smaller than any power of ¢ outside of the
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neighbourhood I, of the boundary (exponential decay). This e\pansion has to be
constructed.and, after that, one must prove z to be hounded in all of @ for some
positive {. The main tools to be used for the latter are based, fmally, on a-priori
- estimates as shown by Aamox, DovucLis.and NIRENBERG [1]; for details — far-from
bemg trivial in general — we refer, e.g., to BEsJEs {2], or to the monogra,ph {3].
But it seems that, until now, only in the simplest case

Gi—Edufu=h, G:u=0 . - 3

* the attempt has been made to prove dlrectly thc regular behaviour of » in G\ I;:

L. ']ARrAR derived [o p.131] |
fz[ , c—m]—digoukuﬁ

with
: G ={xe@:dist (z,00) = ¢,0 < « < 1}.

" 1 In the present paper we will submit a more general procedure elementary in the

Y

main, which enables to prove even uniform pointwise convergence of w in G\ I’
and, moreover does not claim (for ltse]f) hlghcr regularity of the boundary as a-
priori cstlmates do in general. - ,

0. Introduetion. In order to give an outline of the method we will sketch it in the
simple case (3) (cf. [4]).

Multiplying the equation by « and lntegratlng by parts vield at once ||u|| an;i € HDuII
bounded (in the L,-norm of G, D any first order dcrlvatlve) using, e.g., a- prlorl
estinmates ]ust mentioned it is possible to extend this result to derivatives of a.ny
order {: ¢ ||[D'u]| = C (by the way, we cannot expect essential improvements in
generall). - ’ : _ i

Now we mtroduce ‘quasi-testfunctions” ¢ = ¢(z; ¢, £) which are equal 1 for
w =&, the. generlc, point under consideration in the interior of G, and of order
O(exp (—c/e%))  outside the ball of radius 1-¢ centred at & so that @D=u will there also
be small relative to any power of ¢. The advantage of ¢ in comparison with usual
testfunctions is the fact that it is, in some sense, reproducing itself:

~ with C(x) smooth and bounded.
‘Next we set up the equation for » = D'u, multiply by ¢?- v, and integration by

~ parts neglecting (boundary-) terms of order O(exp (—c/e?)) leads to

lipD'u < C..

By means of Sobolev’s imbedding theorem for balls we can conclude the uniform
boundedness of D*u() for all £ with distance = €72 to the boundary oG, and uni-
form convergence of » and all its derivatives follows immediately via equation (3).

Ay

1. Position of the problcm. In a bounded z-dimensional domain G we shall study the
Dirichlet problem of order 2m

boom -
G:Lu = eLiu=nh h C : ‘
Z(‘) . (4)

3G Dru = 0 (|y|§m—jl), -
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L; being different,ia-l operators of order ¢

Lu = Za"’D“u .

la|=d

with prmmpal parts L, ; &, y are the usual multundxces "The ellipticity condition-is
posed in terms of Gfxrdmg s inequality for the operators of even:order 7 = 2j: bor
u € Hg, n H; there i is valid

(Léju, Wz Ajllull? — Billull}, (G =1,....,m)

o (5)
Lo, u) = A, |lulf
with constants-4;, B;, the first ones are to obey
: _ Cm—1 2 B e
A,>0, - Ay >0, (zmin 5, 0}) <o dgdy, (6)
. j=1 . /

- ¢ '= const < 1. Here the brackets (-, -) signify the scalar product in L,(G), and |-||; '
denotes the norm in the Sobolev space H; = W,?(G). The reduced problem (¢ = 0)
is simply i . : . \

' Low = agw = h o ‘ . )
in G - no boundary conditions.. ' .

Coefflclents and right hand side k are assumed sufficiently smooth and the
boundary 8G to be regular enough in order to guaranty the existence 6f solutions
w = u, € Hyp 0 H,, of (4) for small ¢ > 0-which are of class C*(G") in each compact
subdomain G' & G at least, éG should be plecemse of class C?, and Gauss’s inte-
gration theorem be applicable in G.

2. A preliminary estimate. For a éolution u of (4) integration by };arts yields

(h, w) = (L, uw) = .;’e?’(Af lfull — B llfi2y) + Ao llull?
,=

—'Z;S ZA i ||u||[ ] lull[; 1] h (8)

with proper constants A4, and [z] denoting the integer part of x. In deriving the
last sum it has been made use of the fact

(DPu, u) = (— 1)l (u; D*u) = 0

R

for |x| odd and, consequently, the p0s51b111ty to substitute for (a,"’D“u u) terms of
total order less than |«|. By thie help of arithmetic-geometric-mean inequality used
for § even :

. e o L
2,”?”[5 Ilull[;%] Se Hull[%] + = ”u”[)—_zl] ‘

© we.may conclude from (8)

() Z 3 Ay — edf' — By) [l ‘ , C(9)
=0 . . :
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with 4, = A4, (e ) uniformly bounded, By,.,.= 0. Finally, we omit the terms with

A >0 =1,. m—l) and if 4; < 0 we use the

Tntcrpolatlon Lemma For weH, B<a 0< =18l < |a| = m, and
posilive &, @ 1t 1s valid ) :

|_ y 1 ’
1Dl < L et Do 4 o Y Il (10)

‘T'his assertion may be proved by induction based on
I|D7'u||'-" =" (Diu, Din) = —(Di*ly, Di-ly)

and the arithmetic-geometric-mean mequallty
Hence we now have

. m—1 _
(h, u) = & (Am — eCm l~'2 (49 — “307')) lleellm®

m-—1 _ l ) . ,‘

+ (Ao — eCy + Z (A;'; - 507")) fluil? '

where ?‘Ti = min {4;, 0}, and C}, Gy prdpcr constants. If we choose ¢2 = 4,/4, we
"obhtain |, . ~

— 1 — ’ .
Am‘*—qZAigC/Am: A0+?ZA;'20'A0 ' .-

with¢ =1 — ]/c_> 0 (c the constant in (6)) and, therefore,
(h, w) = ey tlln® + co llulf? ' - S (1)

for ¢ < g with positive constants ¢, ¢, mdependcnt of ¢ and u. A simple application
of Schwarz’s mequa,llt,y shows

1 1
full S — IR, & i S - [
Co ]/coc,,,

which may be extended by interpolation lemma to
o lluly S ¢ Ibll,  §=0,..,m. | o (12)

This result can be further extended to orders of derivation beyond m, and that
without additional supposition of smoothncss if we restrict our conSIderatlon to
e-approximating subdomains :

G, = {z € G: dist (2, 96) > ¢ ' : (13)
of . As easily to be seen by Lemma 1 of the appendix (cf. (44)) we can state: For
.j > m there exists a constant ¢;’ so that for solutions of (4) holds the inequality

3 ' /j_m 'y ~ :
&l Jlulle.; = ¢ Z(; elklli - (5 > m) B - (14)
i= . R

where |||, ; denotes the norm of Hy(G,).

Remark: A sjmilar result might be achieved too by utilization of the well-know na-
priori estimates for solutions of elliptic boundary value problem’s (e.g. [1: Chapter 15])
via homothetic’ transformation z = ¢ -2, in the case of smooth boundary even
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‘with ||-||; instead of |||, ;; but in order to maintain a self-contained elementary
treatment as far.as possible we establish (14) by integration by parts as done in the
appendix.

3. Quasi-testfunctions. The desired. umform pointwise estimates for the solution u

and its derivates shall be set up in the subdomain
G7'= (v € G: dist (2, 96) > 7 = ¢ &%) ; . (13)

¢, 6 given ;‘iositivé constants (cf. (13); of course, § < 1/2). G5 might also be concelved
as an analogically defined subdomain of @, (for ¢ < ¢, and a proper constant, c); we-
shall somgtimes do.so in what follows.
Our main tool for analysing « locally will be the ‘‘quasi-testfunction” @: -
) o(x) = @) = pn (l) with r = ]L — &, 5 =¢"? : .
n ’ - - Cn
AN .- (16)

oml0) = W&, ,

where the point under consideration & is any fixed point in G;. For & < m, we have

d*gm(e) [ 0™ *Bilo) - pml0) for o =1 '
do* | Cile) - pmlo) - ' for o ='1

wlth bounded functions B, C,, whence we obtain for any partial dcnvatlvc of

" order k (with respect to the variables z;)

1 ' -
D_G(Pe(x) = ,'7_k Ca(x) 77) . ‘P:(x);' I(Xl =k é m * . : (17)

with bounded continuous C,. ‘ g

- ]nstead of vanishing outside some neighbourhood of & th(. function ¢, will only"
tend to zero exponentially if ¢ — 40, and that will do for our purpose. hspecm]ly
in a nelghbourhood of the boundary’ 8G of width ¢ -¢ (d poslblve constant) it is
easily seen from (15) and (16)

@(z) = Olexp (—c/e?)) for &— +O, ' . . 4, " (18)

4. The L, estimate. By the next step, for all derivatives D% of the solution, |jpDul]
will turn out bounded — uniformly with respect to ¢ and the choice of # in G’—
Differentiating cqua,tlon (4) we obtain for any derivative D*u = v of order, |a| =1

51/ —_ Dah + Z nyICﬂ )Dﬂ+7’u, = h. I N (19)
IlfillsélZml ' ‘

The proof of our assertion will now be givcnv by multiplying this equation by ¢?- v

" and integrating by parts. To this we point out an observation on principle: All -

integrands (and so all norms) will involve functions of kind ¢ - D*u. If we, addition-
ally, multiply by a testfunction y, € G (F.) with v(z) = 1 for z € G,, as used in the
appendix we enforce vanishing at the boundary though we only give rise of an
error. of the integrals of order O(exp (—c/e‘)) as to be inferred from the preliminary
estimates (12), (14), the property (18) of ¢ and the fact that the derivatives of y, also
grow like powers of 1/e. Because exp (—c/e?) = o(e¥) for any N, while‘the quanti-
ties in consideration in what follows are of orders e only, we shall omit the
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boundary terms introducing'an equivalence relation = and a weakened order
relation = with meanmg “equal (resp., less or equal) up to additional terms of
order Ofexp (—c/e*))”. Then we can formally integrate by parts as if the integrands
were exactly equal zero at the boundary if we relate the integrals and norms to the ;
subdomain @, what we will do in this section without special notation.

Remark: Another way to become aware of this fact is to choose a subdomain

- similaf to G, so that its image G,” under homothetic transformation z' = z/¢ has o

uniformly smooth boundary and then use the continuity of the trace map n: Hpn(G.)
>Hk(3G ); (12), (14), and (18) will now tell that the boundary values are “very

-small” in the sense described.

~

Now we will implement the integration by parts of (19) after scalar 1nult1p11catron

by ¢* - v according to our rule: .

(Lo, 9*) = (gh, pv) = z e Ly (gv), gv)
. 5

: om . : " (20)
' + 2 & 2 - fbaﬂ/”,’D LDﬁ’bD"'(pDY'(p dz,
’ . i—1 la|+|ﬁ|+|71[+|r |=i .
Iyl +lysl21 ‘

where may be assumed lx|, |8] < m. By means of (17), the mtcgra,ls a.ppearmg hcre
in the second sum are to be seen ma.Jorued by expressrons of type

[

—lltpD”vllHq)D"vll, Cg=p=gq+1, p+q+7=i cr =1

here D, D denot,e any derlvatlves of total order p or g: Appllcatlon of the mequallt,y/
ab < ; (oa2 4+ —b ) with o = eZP” ¢ leads to bounds

~

Cile? nquPvuz gD e, v 21, -. L@y

for the integrals in (20) multlplled by & (remember n = ¢17¢). On the other hand,

the principal terms in (20) — fisrt sum — will obey, in our weakened sense, Gérdmg s
mequahty (5), 1 . . ' .

\ (Ls;(o0), qw)>A gl — nqzvn?

Finally, in order to adapt this estimation to (21), we shall express the norms of

D=(gv) here by those of (pD“v in (21). Using triangle inequality and (17) we obtain

Dol 2 gDl — 5 —tor oDl R
. . Blslal—1 7' . :

and therefore, for j = 1.

', eei(Léi(W): W)
o 7 (22)
2 Ay T gDl = 5 £ ettt [pDi,
© lal=j "0I =1 .
Estimatlng now the rlght hand side of (20) by means of (21) and (22) we arrive at
the desired result -~ - o v S -
Z(; &% |E C. llpD? = (<Ph ) = ||<Ph|| flpell (23)
_i=0 lal=j, ,

‘4
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for & small (¢ < ¢,) with positive constants C independent of ¢ and & 6 G5, and
especially - :

lgwll = C |kl ' . (24)

for any derivative v of order { of the solution u. Taking in consnderatlon the structure
of h (cf. (19)) and the preliminary estimates (12), (14) we observe '

C
llpvll < 4=, ’ : / '
£

i.e., pv = pD’u obeys a general estimation of type (14), but improved by a factor ¢
compa,red with v itself accordmg (14). Now, in turn, the 1mproved estimate. could
at once be'‘applied to % again, for u and its derivatives occur in % only multiplied
by @. This entails a further lifting of the power of ¢ in the last mequahty, and finally
we can conclude, in this way, . '

lpDeul] < C. : . (25)

for all derivatives of  in G, with con/sta,nts C, independent of ¢ (¢ < ¢,) and % € Gs.

5..Uniform bounds. From Sobolev’s imbedding theorem for the n-dimensional unit
ball B, .

4 . n
- sup |u(z)] < C, flali by = [5] + 1,
it follows )
. . -
sup lu(x)l < Co ™2 3 glvl ||D7‘u||39

=0
g ; vl

for a ball B, with radius 0. Appllcatlon to v = D*u, || = l = lo, in B (centred at )
yields

sup Jo(@)] < Cy'n~ £ e, -
By IrI=0 ’

- 1
because of (25) and ¢ = T e in B, ; therefore

sup |Deulz)] =

C
zec; SV |
for every derivative of the solution of (4). By means of the differential equation
of (4) and with regard to the reduced equation (7) we see that in G5 at least

(26).

C. 1
lu(z)] = {ma.x ‘7:—,, "€ 7 8up |h|}
n 0 ) 3
(ag = A, > 0). Differentiating (4) we obtain analogous estimates for all derivatives
of u (of course, » replaced by its corresponding derivative), so that we successively
can improve the result until we arrive at

sup |D“u( z)| = C,,

zEG 5 N

;@

i.e., the uniform boundedness of all derivatives of u in the expanding and, for ¢ — 0,
exha.ustmg subdomain Gz(7 = &'~%)..

-

21 Analysis Bd. 3, Heft 4 (1084)
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6. Uniform convergence. Based on (27) we immediately perceivé the uniform point-
‘wise convergence of u = u, to w, the solution of the reduced problem: (7): After
dmsmn by aq(x) the equation of (4) reads

B@) 4+ u =+ —w

Qg e 1
with B(z) uniformly Bounded in G'; on account of (27).

Summarumg, we may estabhsh the o . .

‘

Theorem. 'l: Coefficients and nght hand side of equatwn (4) shall be smooth in the
n-dimensional bounded domain G the boundary 0G is supposed regular enough. (at
least precewise-CY) 2n order the problem (4) be solvable.for all positive ¢ < &y, the solution
u = u, being smooth in the interior of G. Then, for' ¢ — 4-0, u, converges in each point
z € G to the solution w of the reduced probéem (7) and so do all derivatives. This con-
wrgence zs uniform in the sense . . : /

lim  sup [Deu(x) — Dow(z)| =0,

e—>0 IEG-

i.e., 1n the set G5 of all points of G with distance at least T=c-e' ¥ the boundur Y
oG (c o positive constants arbitrarily chosen). '

7. Extension in the case k = 0.of “‘totally degenerating” problem. In equation (4)
the operators L; are multiplied by that power of ¢ which exactly coincides with their-
orders. As easily to be seen, Theorem 1 also comprehends the situation of additional
regular perturbations by continuous dependence of coefficients and right hand side
of ¢ or, especially, if &'L; in (4) is replaced by &+*OL; with k(z) = 0 for 0 < 7 < 2m
(but £(0) = k(2m) = 0); condition (6) will not be v1olated

_ Bat it.is of some interest that our method will work also in-the case of superposing
. smgular perturbatlons ‘that is, if the higher derivatives are multlphed by another
e-power besides &i. After some strengthcmng the premises concerning the-ellipticity
constants 4; the proof of the following assertion will run just as explained in 2. to 6.
above, at least, if we, for simplicity, assume the coefficients to be constant.

Theorem 2: With notations and under regularuy condations of Theorem 1, moreover
- assuming constant coefficients, the solution u = u, of ‘

y 1G: Ltu :=\-Lne"tL,»u =h . .
_ . . i£7) ' , . (28)
0G: Dru =0 (yl=m—1) i ‘

[y

with ky=0, kjny=k;+1 (1=0,1,...,2m — 1), ‘and ellipticity condition (5)
sharpened by claiming all ellipticity constants A; > 0 (j =0, 1, ..., m), will converge -
© -quast-uniformly to the solution w of the reduced problem (7), i.e
. lim sup |Du (z) — Dew(z)] = 0
0 z€G

as in Theorem 1. . .
As to the proof, we only mention that the preliminary estimate can bc derived as
“ shown in 2. but, on account of the more stringent condition 4; > 0 for all j, without
use of the mtcrpolatmn lemma, and with aid of Lemma 2 of the appendix stating
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i

that also in this case the derivatives of the solution will grow, for ¢ — 0, at the most
as powers of 71, and that will do, because in the constant coefficient case the essential
step 4. will be finished already at (24).

8. Remarks to the case k = 1. Unfortunately, our simple method will not work
off-hand in the case k = 1 in general where the reduced problem is of positive order.
Some exemplifications will indicate the range of it rather restricted. Amongst other
things, additional smoothness conditions of the boundary must be imposed. In the
following we shall denote by G' a subdomain of @ with sufficiently smooth boundary
3@’ (corners and edges rounded off), and by |||’ the Sobolev norms with respect
to G'.

We will occupy ourselves with fourth order problems which are (nearly) factorable.
Let 4 and L be elliptic operators of second order with smooth coefficients in G so that

(—dv,0) Zelll® —co[olf,  (—Lv,0) Zdy ol — dolll2 - (29)°

for v vamshmg at oG, with positive constants c,, d1 The formal adjoint opcra,tor .
A4* of ‘4 will obey such a Garding’s inequality too.
Proposﬂuon 1: Let be ¢y =0 2n (29). The solution u = wu, of

G:e2ALu — Au=h
0G:u=Lu=0

converges to the solution of the degenerate problem
G: —dw = h, ﬁG: w=0

in the sense of Theorem 1:

A (30) -

lim sup’ ]D“u(z) Dew(z)] =0

6—>0 zeG

for every « (G5" s the subset of x € G with distance to the boundary G’ more than
—] = gl~ ”6) ) . _

Ifn=2, and4 = L the Laplacian operator, the problem could be considered as a
model for a supported membrane with small stiffness.

Proof: As e?ALu — Au = —A(—e*Lu + u) we shall, of course, set —ezLu +u=w,
“and this function w mugt then be the solution of the degenerate problem. Beca.use
- of ¢ =0 (29) implies |lw||, = C|j&]l, and by the well-known a-priori estimates for -
subdomains G’ we obtain™for any l (lwlls.; = Cy ||k]l;. We now pass to the “interior”
problem :

G:—elu +u=w
oG : o= 0

and derive first, using (29), {lu|l + ¢ ||lull; = C |lwl < C' |2l and,_aécording to the

ahy

C Co - . .
appendix, |jullj,, = e—hf—p (p=0,1,...). "All derivatives of the right hand side w

are bounded, and preliminary estimates of type (12), (14) for the solution u-of (31)
are valid, so that the procedure lea.dmg to Theorem 1 pursuant steps 3. to 6. may -
work with respcct to problem (31) in G’ too @ .
Proposition 2: If u = u, ¥s the solution of
G: 2 A4%u — Au + cu = h ;
{8G:u=A*z=0,_ (32)

21*
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¢ =clz) = ¢y > ¢y (cf. (29)), then _t_kélasserlz'on of Propositzfoﬁ 1 holds with respect
to w given by the degenerate problem

G:—dw+cew=h, G:w=0. o (32)

Proof: At first we must look for preliminary estimates as set upin2, We multiply
by u, integrate by parts, and use (29): : .

& AUl + ¢, [lull® — o 2 + ¢y ez < A flul

and therefore !

]

bl < CllL - e A%l < C AL . : (33)

- The last inequality gives rise to
, 1
llell” = C{llA*ul) +; llull} = - C ikl

in @. Since A4* iselliptic too, the premises of Lcmma 2 of the appendix are satis-
fied, hence

’

r C
Il ,,,—p,, - (p=0,1,..) : : (34)

) where IIII"" is to be taken. over G or, forp = 2, G{y—a), respectively; [x]* = max {z, 0}.
As easily-to be seen, the same result is valid for the solution % of the slightly altered
problem A o

(6:La = 244%T — A% — ed*T + ¢& = b
oG 7 = A%u = 0.

But this problem proves factorable, for Lau = (—4 + ¢) (—e24* + 1) %@. As in the
first case we set . ‘

(35)

14mm+i_w / \ : ‘ (36)

which is the solution of the degenerate problem (32,). 'l‘he conditions on —4 and ¢
let us obtain

ez, = Co libll, C ' (37

i
. and, consequently, for the solution % of equation (36) the assertion of theorem will
hold — we remember the fact that its proof dont make use of boundary values
immediately, but only of a preliminary estimate as (34) here. Thus
lim sup |D°u(x) Drw(x) =0. , (38) .
t—>0 sz = .

Yet we have to become sure the additional regular perturbation by —e%cA*% does
not affect this property of u 1tself To this end we shall of course, set u — U = 2,
so that :

G: Lz, := eZAA*zl — dzy: + czy = —e%A¥T

0Q: 2z, =A%z = 0. o
We replace z, by z, which is defined as the solution of

G: L3z, = —c%cA*u

aG:EX = A*El = 0 ’
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with || —e2cA*|| < £C ||k according to (33), and therefore this estimate will be trué
also for z, but with ¢ [|k|| instead of ||4|. Apparently Z, obeys the assertion of Theorem 1
with 0 as solution of the reduced problem.
Now we construct recursively z;, z; by 24, = z; — %,

G: Etzi-ﬁl‘: —‘SZGA*’Z-‘W

“0G: Zig = A*z.l"’_'l =0 \
beginning with z, = u, Z, = %, and we obtain successively -

[zl < C Rl e, [I4*2 < C |IRf| &1,
and this is valid also for the z; themselves (they satisfy t,he problem with the original
operator L, instead of L, but with the same right hand side), while for the Z; even

lim sup |D°z;(z)| =0 . . ' . - (39)

e—»Q Z€G 7

)

for every «. Thus we have obtained
L w=T A Rtz - o)
with (38), (39), and,_ by (34),-
rnlllsy < Cper P

whence the é,ssertién for 7 sufficiently large |

~ Appendix. As ]llSt; inducated in Sectlons 2 and 7, we will complete the discussion
there by the proofs of ‘two lemmata concerning the rough basic estimates (cf. (14))
affirming the derivatives of the solution to grow at most as (negative) powers of &.

Lemma 1: Let u = u, be « solution of the elliptic equation of order 2m = 2k 4 21

~

\ -

Lu—Zs’L2k+,u+ZLu—h : . @

in the domain G (L, denotmg a differential operutor of order ) with the propertz/

I]u”, _<_£ k] for 0 <72 =m o o (42)
or ‘ :

Il £ i 1) for 0 S 7S m o e

([z]* = max {z, 0}). Furthermore the operator L, vs assumed positive in the sense
(L, v) Z (4 [olla? — Blol), A>0, | (43)

for all v with compact support in G.
Then, for p g 0 2t 7s valid

p—1. . N e
llull"” éCW{W WAl + == § ||hn;:’_,' "} , -7 (44)

where |||, denotes the usual Sobolev norm of order g in the subdomain G = G4, of
all povnts of G with distance at least vde to the boundary 9G (cf. (13)); Cpap @8 tndepen-
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:

dent o/ ¢ (but may depend on the — arbitrarily chosen — positive constant d). In the
case (42') the denominalor e™*? in (44) may be replaced bz/ em+P-l
For p = 0 the sum in (44) is to be set zero, of course.

Proof: For p = 0 the assertion (44) coincides with supposition (42) (resp. (42'))
© = m, and we will assume it to be valid for all p < ¢ for some ¢ = 1.

We shall use test functions y; (2 = 1, 2, ) which are equal to 1.in G, vanish
outside G¥~1; and have the property |D° ()} < C, - e7lel with appropriate con-
stants C,. :

B

A remark concerning the construction of such y = y;: The homothetic transformation -
x"" = z/e will take the domains G and Gy to G”.and G;” = {&”’ € G”: dist (z”, 8G"") > d}.
We choose a finite covering of the closure of G by balls B; (s = 1, ...,n; n = n(e)) of dia-
meter d/2 so that the concentric balls B;”” constitute a covering with order bounded indepen-
dcntly of &. If #; are the usual local test functlons which are equal 1 in B and equal 0 out of.
B;”, then .

wiz)=1— 17 (1 — 77,(?«:))

i=1

will | possess the claimed propcrtxes concerning ¢ = G and G,

In order to prove now (44) for p = ¢ we first set up'a dlffcrentlal equation for
v = D% where, for simplicity, D? denotes any denvatlve of order ¢, and apply D¢
.to equation (41): .

DLy = cv + = b"h, fesp.
Loy = D% -+ Z’ g ) Y Dia, Dby + 3 3 Dba,Debu.
F=1 |a]=j+2k Iglsza; . T ek Igsz

Secondly, with y = y, we have ' ' .

L(yv) = vLo + 287 > 3 a,DyDro 4 Y a, Y DryDev;
i=1 [|al=2k+j Irlﬁ;l fa|S2k ]ylgzﬂl
b4 s ‘ b P

~ ' v

and here "we can substitute pL,» by the previous equation. After that we shall
multiply the last equation by wv and integrate by parts in such a manner that the
derivatives of « appearing in each scalar product are of minimal orders, i.c., they
differ in order at most by one. ’l‘hus we will attain to’

( (o), ym) = (wD”k :,m,) + e‘-” ; aHBDVipD“‘hJ, pDfy) 4 ---
o lel=181=k+! '
l Iyllﬂl y=a
plus lower order terms. Applying Schwarz’s inequality and, addltlonally in the case
of different orders in a scalar product, the arithmetic-geometric-mean inequality
with appropriate weights, we are abel to estimate the right hand side by

’

l=k+ lal=k+
Iyl——l

i g A
e lpDRIE +-67%* [yoll® + & o lle"vll2 + ¢¥C Z "D,’WD”’UIP

2l

+ Z &l . 2 n;ﬂ.r.r. ”D/W)th” ”DV’WDG’Z'”
=1 laal+lagl+1pil 41yl =2k +j
sl +lval 2 1 oyl —=fagll =1
. 2k . . S ' .
+ Z' 2 ' C"l“:)’l?g ”D)"wDalv” “‘DY'W'D;"U” +

szl ot fla Iy lysl =1 ‘¢
Inal=lysl2 1, llayf—la <1 -
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where the terms omitted are formed analogously by those of the expression for Ly -
above; compared with the corresponding ones indicated here they are of minor
order (because v is at least a derivative of order one). Taking into account |D’y|
< ve~ " and ¥ = D% we shall see ' '

& | D7pDsval [\Drep Do

g 2
-1 ,
C mprmm Il for ol = Joul = s
= . :
C— & -1° 1 @-1n? . .
F2k+7‘_23_1 £ ”u” g+s+1 + - ”u”q-u for '0{1] : I‘x2| + 1=s nn 1

withs =0,1, ...,k + [72] i=1, 25 — 1, and, for the second sum,

A

DD [[Dry Do

L
(g—1
Com Ilullq"+,’ for loy| =[] = ¢

=1, 1t SRR U SR
C ;:27_—1 (E ”u“?ﬁ.;:_l + ? ”u”;ﬂ.‘;)—) for oy = Jop| + 1 =8+ 1
WlthSZO, ],.__.’ [i],’i:l,...,2k.. ) 4 ..\.

Summarizing we obtain

A
(Le(yv), yov) — & > 2 lwD?
. 1Bl=k+1

!

e T N | (q—n? 2k 11 <-—1)'“’
% ¢ 3‘-—2(’) W’ ”u”g-;-a + 67 ”u”qq /+ € IIthq

and, due to (43), : N S ‘
c nl =1 % ny TR
lpDull, = oy Z;S" lell g™ + e (IRflgle=1. (45)
8= .

" Using now the proposition (44) for the norms of u here and‘(42) w"e have

[IuHu‘zY < C mZ_‘I 6_8”;," ¥ £ "El a “qz"' 1,1_ “h”(8+q—m-—2—r)
m+tq = £&m <o gd+s . &m a‘-—-m—-q-H €l_k -t st+q—m—1—v .

) . ’ . N

C
+ o el e,
whence ’ ' .

oS = I + = i 2 L e,

the assertion (44) for ¢ instead of P<q In ‘the case of (42 ) instead of (42) the rele-
vant assertion will be reproduced in the same way 1 .

([l

" Remark: It might be conjectured that in the case where in (42) the order &
. could be replaced by e~li=#" (e.g. if for » are given homogeneous Dirichlet data) in
the assertion (44) likewise ¢~™=7 ||k|| could be replaced by &'~? ||k||; but our proof
will fail for the first £ — 1 steps of induction.

Lemma 2: Let u = u, be the solution of the. problerﬂ of Theorem 2
- /

GLu—Zs“'Lu_h 90:Dru =0  (y'sm—1) (28)”

i=0
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- with coefficients and mgkz hand side sufficiently smooth and ellzptzcm/ constants o/ all Lz,
- positive. Then there vs valid a preliminary estimate

c. . .
|u||,-”""’]" = ; (z=0,1,...) . (46)
where C; may depend on h and d but not on &; kg = 0, and
r= max" {k; — k,-_,} =1. ‘ (47)
1sis2m / .
We remember the norm ||-|| refers to subdomam Gige. The proof starts with
cstabllshmg the mequahty
- [
ol = 0 “5- = ? ’

for =0, ..., m, by scalar multiplying the equation by u and integration by parts.
Then, for © = m + p, p = 0, we follow up the induction argument of the proof of
the preceding lemma rep]acmg & by s"i The essential inequality (4:)) will then read
(observe k = 0)

C [rm=12m—1 cks ‘ (-1 '
lle"ull;.x = 2 X | 5= Y A+ lle=

Ve"m =0 j=28
C (m-1 1) ’
< —e,m,{ Z e it + nknq“'-”}
s$=

if we pay regard to the fact that £4/ef~28 js maximal for j = 2s, ‘and ko, = ks
— 2(m — s) . Now the assertion (46) is at once to be seen reproducing itself.

REFERENCES \ -

(11"Acmon, 8., DovcLrs, A, and L. NIRENBERG: Estimates near the boundary for solutions
of elliptic partial differential equations satisfying general boundary conditions I. Comm.
pure appl. Math. 12 (1959); 623 —727.

(2] BEessges, J. G.: Singular perturbation problems for lincar elllptlc differential opera.tors of
arbitrary order. I. Degeneration to elliptic problems. .J.. Math. Anal. Appl. 49 (1975),
24 —46.

[3] GoErixg, H., FELGENHAUER, A., LUBE, G., Roos, H.-G., and L. Tomriska: Singularly per-
turbed differential equations. Berlin 1983.

{4] GOHDE, D.: Innere Abschétzung bei singulir gestorten Randwertproblemen. Wiss. Bei-
trage IH Zwickau 7, 2 (1981), 75—77.

[5) Lioxs, J. L.: Perturbations singuliéres dans les probl(,mes aux limites et en contrdle opti-
mal. Lecture Notes Math. 823 (1973).

[6] Teenoruun, B. A.: PasBuTHe ‘U NpPUIIOKEHMA ACHMNTOTHYECKOFO METOHA JliocTepHiKa-
Buuiuka. Yenexu Mar. Hayk 25, 4 (1970), 123—156.

[7] Buumk, M. M., u JI. A. JliocTepnuk: Peryaspuoe BepoieHUe H norpaﬂuqﬂun CJI0it
A nuueﬁnux nmbq;epenuuaflbnux ypaBHenuit ¢ MaabnM napamerpoM. Ycmexm Mar. |
HayK 12, 5 (1957), 3—122. v

Manusk;ipteingang: 30. 12. 1982
VERFASSER: -
* Prof. Dr. DieTricH GOTDE

Abt. Mathematik/Naturwissenschaften der Ingcmeurhochschulc
-DDR-9541 Zwickau, Dr.-Friedrichs-Ring 2a

4



