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Infinite Representability of Schrödinger Operators with Ergodie Potential 

H. ENGLISCJi and K.-D. KURSTEN 

• Analog zum Begriff.der endlichen Darsteilbarkeit inder Banachraunitheorie wird der Begriff 
der Darsteilbarkeit und der unendlichfachen Darstellbarkeit fur selbstadj ungierte Operatoren 
eingefuh'rt Es wird gczeigt, daB die unendlichfache Darstelibarkeit des Operators A in B zur 

• Folge hat, daB das weentlièhe Spektrum von B das Spektruin des Operators A enthält. 
Durch Anwendung auf ergodische Schrodingeroperatoren ergibt sich u. a. ein neuer Beweis 
fuui den Zusammenhang zwischen Spektrum und Zustandsdichte sowic dafiir, daB das Spektrurn 
nicht zufallig it. Fur das Spektrum des Harniltonoperators im Falle eines substitutionellen 
Misclikristalls wird einc Formel angegeben, welche eine K lärung des Bowiugeffektes gesta ttet. 
.Ahnliche Resultate wurden unabhii.ngig von KIRSCH und MARTINELLI gefiinden. 

Do aHajiornu C noilaTneM HoHe'I}Ioi npepcTaIiuMocT1I B TCOHH Gallaxolibix rlpocTpaIlcTB 

BBO1IITCH OOHI-ITIIC npe)lcTaBnMocTIi II 6ecHoile'IiIoJipaTHoft npeacTaBltMocTu jj.na caioconpn 
;HeuhII,1x ollepaTopoll. )ioIa3uBaeTcA, 'ITO 11:3 6eei;oiie , nIORpikTIIo11 npeacTaBuMocTll ouepa-
opa A B 13 CJLCJLYeT, 'ITO cyLueCTBeinihirl CHOHTI) oriepaopa B co;epiiit cnewrp onepa'ro-

pa A. fipluloalellile ic api'ouLu4ecllnM orlepaTopaM Ulpeaniirepa aaöT; MeH-cay-npoMuM, nonoe 
ioKa3aTe31bcTBo. IIcc3ly4anhIocTu cnei-cTpa Tallux oriepaTOPOB It C13H3II e+iy CIICIITpOM It 
EUIOTHOCThIOCOCTOIIHHIt Jirn criepa onepaTopi i'aMIIJIaToHa B c.riyae 1i0LcTaHoI;o1lHoro 
lIpucTa:IJIa cMeci-i uoiyiaercn ()opMy.J1a, i-coi'opaii aorlyci-caeT Iib!HCHIITb cyTh npoi'II(aTeiib-
iioro 3ill,eHTa. rl000HbIe pC3yJ1I,TaTbI IIelanslcuMo flOJIy'IIIJIII TaHi+ie l-(iii'ijj it M,tPTIIIIE.rIJlu. 

_Analogous to the notion of finite representability in the theory of Banach spaces, the notions 
of thi representability and the infinite representability of self-adjoint operators are intro-
duced, it is proved that the infinite representability of the operator A in B yields that the 
essential spectrum of B.contains the spectrum of A. This resultapplied to ergodic Schrodinger 
operators yields a new proof for the nonranomness of the spectrum and for the connection 
between the seetruni and the density, of states. A formula for the spectrum of the 1-laniil- 
tonian of a substitutional alloy is presented, which clarifies the bowing. effect. Similar results 
were found iddependcntly by KlRsdn and MARTINELLI. 

1. Itepresentability of Self-adjoint Operators 

in order to compare the spectra of self-adjoint operators, we use the concept of the 
infinite representability of an operator in another one. This notion is similar to the 
concept of finite representability of normed spaces developed in [17, 28, 29]. It 
means that the (not necessary finite dimensional) restrictions of an operator do not 
much differ from appropriately chosen restrictions of the other operator. 

Definition 1.1.: Let A, B be self-adjoint operators in a Hubert space H. We 
call A infinitely representable in B, if there is an increasing sequence (DL.), k € N, of 
linear subspaces oLdom A and a sequence J Uk} of unitary operators, such that 

i) U Dk is dense in dorn A with respect to the topology defined by the scalar pro-
kEN	 I . 

duct (z, z) + KAZ, Az), 
/
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ii) Uk (Dk )	dorn B and for every r> 0 there is a Ic0 E 'N, such that for all k> k0 
and all z E DL.	-	S 

((A - Uk*BUfr) z, z)	 ( j IAz + HzD2, 
iii) for Ic =1= 1 Uk (Dk) is orthogonal to U,(D1). 
If ohly i) and ii) are satisfied, then A is called representable in B.	- 

Remark 1.2: Of course, every ope'rator is representable in itself (take Uk := I, 
the identity), but not everyoper,ator is infinitely representable in itself; 

For the proof of the following theorem we need a finite dimensional criterion that 
a point belongs to the essential spectrum. It is well known (e.g. [1]) that a number;. 
lies in the essential spectrum O'ess(A) of an operator . A, iff there'is an orthonormal 
sequence {} in doin A, such that Jim I lAe,, - 2'e II = 0. We use the following finite 

> dimensional variant of this criterion. 

_L em ma 1. 3: E R belongs to the essential spectrum of a sell-ad joint operator A; 
ill for every e> 0 and Ic E N there is an orthonormal sequence {e 1 , ..., e}	H and a 
sequence {z 1 , ..., z}	domii A, such that 1jej 	z il < e and IjAz i - .zI < e for 
i € {1, ..., Ic).	I	- 

Proof: The above nientioned criterion shows the necessity of the conditions. Now 
we prove indirectly that the conditions are sufficient. Let us assume 2 
Then A has a spectral representation

A = f pdE ± ).P,  

-with 6> 0 and a finite dimeisionaI orthoprojector P (P = 0 is also possible). For 
z € dom ii this means I(A - 21± 6P) zIl ^ 6 1 z); Let {/, ..., j,} bean orthonormal 
basis for the range of P. We choose Ic> 41 and e> 0 in such a way that 1 - 2e 
- eM > 1/2. If {z 1 , ..., z} and {e 1 , . .i., e} fulfil the Conditions of the lemma then 

6(1 - e)6 Iz i ll .	)(A - 21 + 61') zI	IA; —T 'z I IL+ 6 IIP ( e1 - z)II 

+ 6 IPe 1 II	e + or ± 0 11peill, 

i.e. 1/2	lIPe II . By - summation of the squares we get 
k	 k	I	 I 

•	k/4	E HPeII 2 =	E I(e, /	1112 = 
• i-1 j=1	 j=-1 

This contradiction shows that the assumption 2. aess(4)is false I 
- Theorem 1.4: i) If A is epresentable in B, then cr(A) c: (1(B) and aess(A) . Cess(B). 

•	ii) It A is infinitely representable in B, then a(A) - aess(B). 

Remark 1.5: KURSTEN [261 proved the following . -version of this theorem for 
form-bounded perturbations. Let q(/, g) := 1(19 ± grad f . grad g) d'x, the scalar 
product in W 1 2(R"), and (f, g) := f /g d"x. For 0 < a. and 0 < b < 1 we regard the 
set T'ab of those linear functionals Von the linear hull of {/2 / € W2 1 0ll")} which 
fulfil for arbitrary / € W2 (R.') the ineqality —a(f, /) - bq(f, I)	V(/2 )	aq(f, /). 
Due to the formula /g = ((I ± g)2_ (/ g)2)/4 V(/g) can be defined for V E Tab 

For every V E rab there is an uniquely defined self-adjoint operator whose quadratic 
form is q(f, g) +'V(/g) - (f, g). (with the form domain W 2 1 (R")) [19]. This operator
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is called - + V. Let' Br	W be the ball with center 0 and radius r. Further, we
define the shift operator on L'(IV) (TA) (y) := h(y - x) and the shift operator on 
T'o,b (T'V) (h) : V(Th). For M "o.b and V € 0b we call V f-representable 
in M, if for every €> 0 and 'every r> 0 there is x € li" and a functional U € M, 
such that for all f E W2 1 (R') with supp / B 

(V - T1'U) (/2)	Eq(/, /).	 -	 (1) 

'Let V, U € Tob • Then V is irfinttely f-representable in U, iff for every > 0 and 
- every r> 0 there is a x € R" \ Br, such that for all / € W 2 1 (R.") with supp /	Br

inequality (1) holds. 

Now weare able to formulate Theorem 1.4.'for form-bounded perturbations. 

Theorem 1.4': i) If V is /-representable in M, then 

UEf	 - 

-- ii) If V is infinitely f-representable in {U} then 

1(	+ V) c ess(	+ U). 

This extension is necessary_when one considers one-dimensional potentials con-
sisting of randomly distributed 6-distributions (cf. [11]). 

Proof of Theorem 1.4: I) We assume the representability of A in B and 
2 € aes(A). in accordance with Lemma 1.3 we find for every > 0 (e is chosen in 
dependence on ). and ) and k € N an orthonormal sequence {e 1 , ..., ek.1 and a sequence 
{z 1 , . 1, z}	dom A, such that II e - z1 jI < e IA; - 2z < E. Since U D1 is dense 

leN 

in doni A with respect to, the graph norm (cf. Del. 1.1) there are vectors y, •.., 
in U D,, such that.IIe 1 - y Il < 21 nd.11Ay1 - 2y < 21. We conclude that {y, ..., Yk} 

teN ' 

already lies in a subspace Dm, m € N. For a sufficiently large p m we tald the 
unitary operator U from Definition 1.1. The vectors {Ue}, {Uy1 } and B fulfil the 
conditions of Lemma 1.3, because for given e > 0 we can choose E > 0, such that 
11 U (e1 - y <21 <e and 

II(B - 2) Uyj = ll(U*BU - 2) ydl , II(A - U9*BU) ytII + II( A - 2) ylI 

(IlAy lI + lIy II) + II(A - 2) yM 

(1 + 1) II( A —2) y tIl ± 1(1 + 1).1) lIydl  

—1)21 + e(1 + I),I)(1 + 2e) 

But Lemma 1.3 states that 2 belongs to .,,(B. 
We piove a(A) c a(B)' in the same manner, but use the following criterion: 

2€ a(A) (for A = A*) iff for every e > 0 there is a normedvéctor z € dom A, such 
that J jAz - AzlI < E. 

ii) From Jj Ay - AyI < 21, Y E Dm, IlII < 1 + 21 we conclude II(B .- ).)UkyII . < 
for all k ^ p. The statement follows from UkY I U,ij and the above lemma 

/ 

/
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2. Schrödinger Operators with Ergodic Potential 

In this chapter we derive the conclusions from Theorem 1.4 for Schroclinger opera-
tors with an arbitrary stationary and ergodic poteitiaI. 

Let (Q, Z, v) be a measure space with 92= LP,,,.j,(1t11) (for definition cf. [34: 
Th. 13.96]) orQl(Z") with p = 2 for  :!E^ 3, p> 2for n = 4 and p = n/2 for 
n 5. A denotes the (discrete) Laplacian on L2(R") (12(Z)), v is a probability ineas-
nrc (a-additive!), l3 is the or-algebra generated by cylindrical sets . [36]. 

Theorem 2.1: i) If v is stationary with respect tothe translations in R' (Z") (i.e. the 
translations are measure preserving), then the operator H'" :=, -A + V'", V'" EQ, on 
L2(R) (12 (Zn )) has no discrete spectrum for a.e. co. 

ii) If v is ergodic (for definition c/. [16]), then almost all operators H'" have the same 
spectrumasa set. 

Proof: i) From [34: Th. 13.96] 'we conclude that every H'" is a self-adjoint ope-
rator on dom (-s). We want to show that a.e. H" is infinitely representable in 
itself. The statement then follows from Theorem 1.4i1). Take Dk := {z € dom. (-s) I 
supp z	.Nk} with .Nk := {x = (x 1 , ..., x,,) E . flY' j jx	k V i}. We construct Uk 
by induction beginning with U 1 := I. Because of the separability of L(Nk) we cart 
choose a countable set { Vk'}, such that for every V € L(Nk) there is at least one Vk 
in the (1/2k)-envirnment of V. Fix i € N. For a.e. V'" such that YIN, lies in the 
(1/2k)-environrnent of Vkt , recurrence [16: Satz 4.1.2] yields that for arbiIraiy 
large Rk there is a vector Xk S R", such that  

kk'"I > R,,'" and II V'"(x — Xk°')INK — Vk < 1/2k.: 

Take for Uk'" the translation z(x) -* z(x ± x-). Then for z € L2(Nk) n dom (-s) 

II (V'"(x) - V'"(x — XL'-)) Z 11 2 ^5 ( V'"(x). - V'"(x - Xk)I NJI, II Z II(2_ l/p)'• 

1/k (c II —Z II2 + 1142) 
(cf. the proof of Theorem 10.20 -in [33]). Take 11k'" := Ix_1 I ± nk to ensure that 
Uk (Dk) I U(D,) for all k > 1:  

ii) In analogy to i) one can prove that for a.e. V'", V0' H'" is infinitely representable 
in H": Let us denote by Ek1 the set  

' {V'" 13 E li" with II V '"(x - 411  -' VkI j p < 1/2k}. 

Bk' is invariant with respect to all translations in W', Ek' can have only measure 0 
on 1 I 

Remark 2.2: As the proof shows we did not need the stationanity of the measure; 
recurrence is sufficient-.' 

PASTUR [31: Th. 3] proved ouir Theorem 2.1 for random Jacobi matrices, and also 
that every point in th.essential spectrum is with probability I not an eigcnvalue 
of finite multiplicity. KIRSCH and MARTINELLI. [21: Prop. 2 and Cor.] carried over 
this result to random Schrodinger operators. 

KUNZ and SOUILLARD [24: Lemma 4.3] proved for randoin'Jacobi matrices, that 
the discrete, the pure point, the' absolutely continuous and the singular continuous 
parts of the spectrum (ac, apj>, aac and a) are a nonrandom set for a.e. V'" € Q. 
This result was also carried over by KTRSCH and MARTflELLI [24: Th. 1 and Fh. 21 
to randorii Schrodinger operators. The proofs are based on abstract manipulations
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with random spectral projectors. Our method cannot reproduce the mentioned 
results, but has the advantage that it works sometimes for random and recurrent, 
but not stationary potentials (cf. § 3). 

For some random potentials it is known whether o, o or a,, is a nonvoid set. 
For example, almost periodic potentials V can be regarded as a special case of 

ergodic potentials, as pointed out by PASTUR [31 ]-: Take for .Q the hull of V [2], the 
Haar measure on Q is an ergodic (1-additive measure. r1hIis Theorem 2.1 can be 
applied, where the word "almost" can be omitted: For every V', V°" EQ H" is 
infinitely representable. in H".	 -	 - 

Periodic potentials as a special case of almost periodic potentials can be regarded 
as a special case of ergodic potentials, too. Under niild regularity conditions the 
Hamiltoñian H : - + V has for periodic potential V only-an absolutely con; 
tinuous spectriitn'[34: Th., 13.100]. 

In the last few years many results concerning the detailed structurq of the spectra 
of Hainiltonians with aliiiost periodic potential have been proved. Examples with 
nonvoid o, CrSC and ac have been found (cf. the reviews of BELLISSARD [5] and 
SIMON [37]). En one dimension physisits expect that a.e. II"' ha's for a "truly rah-
doin" potential no continuous spectrum; for some classes of • nieasures this has been' 
rigorously proved [15, 7, 101. GOLDSHADE [141 announced a. proof for the same fact 
in the quasi 2one-diniensional model of a wire with a finite number of files. 

Remark 2.3: (- + V-) -on L2 (R3 ) is the quantum mechanical operator for the 
energy of a particle, -A, is its kinetic part and V" is the random potential. For the 
operator on L2(R I ) one can give another interpretation after the transformation' 
x - t (time): y" V"(t) y is 'the for a vibrating system with raridonily - 
varying parameter.  

In analogy to Thomas' result forloeal 'perturbations of periodic potentials' [34: 
:Th. 13. 1021 we prove the following theorem in which L -f- L,- 	= / + f 

E L, / E L°°, lin-i /(x) = 0}.  

Theorem 2.4: Let V°' E Q, V0 E LP(R') + L0 (R") with p an1 Q as in Theorem 
2.1. Then for a.e. V"' (1ess(H"' + V0) = (1(H°').	- 

Proof: ' Because a.e. H"' is infinitely representable in H"' + V0 , the inclusion 
ess(H"' ± J'o) is trivial. For the inverse inclusion we want to show that 

V0 E LP(R) n L2(R") is a relatively compact perturbation of (- ± I" .,)[n/41 + 1 

([a] denotes the entire part of a) in order to apply Cor. 3 of [34:'Th. 13.14]: 

V0 (	+ ,V")'4'  

= V0(	+ 1)1f1411 - ± 1) L " '41 ' (- ± V°')	4I—I}  

The expression in the curly brackets is a bounded operator because V" is a (-s)-
bounded operator with relative bound zero [34: Th. 13.96]. But V0(— + 1)—ttu/41-1 

is a Hilbert-Schmidt operator with kernel 170(x) ((p2 ± 1) —(f141-1 ) (x - y) ((	,. 
denotes the inverse Fourier transform of (.)), because V0 € L2 and (- ± l)_(f141—I 

has the Fourier transform ( p2 + 1) -1 " I11	€ L2( It"). The self-acljointness of. 
-A + V0 + V" on dom (-A 	J7) cain he easily seen: V0 and .V'° are 
bounded with relative bouhd zero, i.e. -. ± V0 '-i- V"' is self-ad joint on dom 
but donr(—),= dom (- + V'°). The extension for 170 € L + L0 can be done 
as in (34: Example 6 to Th. 13.14], where the ga between the spaces L0 and L, 
can be filled as in [13] I .
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LI 

Finally we, want to show that the spectrum of an ergodic Hamiltonian coincides
with the support of the density of states measure d.K. This measure is defined by

:= urn N5(H4'°)/AI, where A R' are, for example, cubes. HA" is the Harnil-

tonian restricted to A with periodic boundary conditions and NE is the number of 
eigenvalues smaller than E. Thea.s. existence of the limit and the independence 
of V" was proven by BEND]eRSKrL and . PASTUR [6] for a large class of ergodic poten- 
tials; for a more general class cf. [23]. 

Theorem '2.5: i) If V" is ergodic and E € a(H-) for a.e. V', then .iV(E + a) 
-	---- a)> 0 for every a> 0. 

ii) 11 the space dimension isl and K(E + a) - .41(E, — a) > Q. for every a > 0, 
then E € a(H-) for a.e. V0. 

Proof:.i) Choose {Vk' as in Theorem 2.1 and take for given-ô> 0 a sufficiently 
large k € N, such that there is a function z(x) € Dk and an index i € N with 
II(— +Vk - E) zM < 6 II z II,' v (Bk') =: VO > 0, where B,,., ' := {V0.1 lI V (x)Ik - V'j 
< ô}. xkt(V") denotes the characteristic function of Bk'. The individual ergodic 
theorem [16: § 3.3] yields for a.e. V" E  

Jim f )'(V°-(x - ))d/Al 
= f Xk( V"(x)) dv(V) = VO. 

AER"A 
If IV(x - )J— V i(x)	then := z(x + ) fulfils 

IRH -,E) II < II(-4 + Vk'(x)) z il .-- II( V"(x -	- J k'()) z II'< a IIzH 
for sufficiently small 6. For I - 2km'12, nd have disjoint support. Thus 
.jY(E ± a) - ,A"(E - a) > (2kn'/2 )-" v0 , since the number of eigenvalues of H4 in 
[E , a; E + a) is at least the number of E A with Y'-(x - )lNk € Bkt and mutual 
distance at least 2km112. 

	

ii) For'givèr'm a >O choose A sufficiently large that N(H4-) - NE _(HA")I	3. 
Z, Z21 23 € L'[-112; 1/2] are the corresponding eigenfunctions on A	[-1/2; 1/21. 

3	 - 

Define z := 'c 1z, where {c 1 } is a nontrivial triple such that z(-1/2)	z'(-112) = 0. 
i= 1 

Since z fulfils periodic boundary conditions, it can be dxtcnded to the whole of R' 
by z(x) := 0 for JxJ 1/2, and then j(H" - E) zM :!-^- a J JzJJ. Since a was arbitrary, 
EEa(H'°) • 

Remark 2.6: It is easy toprove Theoren 2.5ii) also for dimension n> 1 and 
almost periodic potential, random potential with occupation property (cf. § 3) or 
discrete models. In the first case one can use a theorem by MARCHENKO [30 ; 	2]. 
The condition .K(E + a) - 	a)> 0 yields E €	(in h'is notation) for an
arbitrary set of parallelepipeda { Qk}, if -QkI/ QkI - co (under this condition 

= tim NE(HQk)/QkI)'. But MARCHENKO showed how to choose Qk in, order to 
ensure a =' a(H). In the second case the 'condition .A"(E+ a) -.-41-(E - a) > 0 
also yields E € U a(HA 0 ), and the occupatiOn property states that for a.e. V"' 

= U a(H). For discrete models the proof can be done as in onedimension: 
'Choose A sufficiently large that NE +(HA") - NE _(IiA'°)	9Aj ;; € L2(A) are the 
eigenfunctions of HA- with eigenvalues in [E - a; E +'t). Define z := E 

i1 

where {c} is a nontrivial set of coefficients, such that z(x) = 0 for 'x € A with dist (x, 'A)	1 and continue as in the proof of Theorem 2.5 ii).
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PASTIIR [31] proved the identity a(HI) = supp d.K for ergodic potentials, AvEON 
and SmI0N [3] repreated Pastur's proof for almost periodic potentials in arbitrary 
dimension and JorrNsoN and MOSER [18] proved'the same in one dimension by a 
completely other method.	 - 

3. Models with the Occupation Property 

Let a 1 , ..., a be n independent vectors in R° and V 1 , i E N, real potentials in . It", 
such that there is a sequence {st} E 1 1 (Z) , such that for every i E N and t = (t i , ..., to 
EZ"

(1 I l7 1 (x)' d"x 1P ^ Sg,  
). 

where C, x E W' I x = E x1a1 , t ^ x1 .< t1 ± 1) are' the shifted basis cells 
and p as in § 2. Further let [NZ", BZ", z] he the measure space describing the 
random occupation of the lattice points by different types of atoms. Then VI(x) : = 

Vwg (X - 'E t1a1) is the potential of an alloy with countable many components. 
tEZ

Definition 3.1 :The measure space [N Z", u] possesses the occupation property, if 
for every finite subset T	Z" and every th E NT and j-a.e. co E N Z " there is a vector 
to E Z", such that th,_,, = Col . for every t € T.	 - 

The occupation property was defined in [11]. It describes a natural property of 
substitutional alloys, generalizing the independent occuption of lattice points by 
different kinds of atoms. For example, all random models where the absence of the 

u continous part in the spectrum has been proved [15, 7, 10] can be regarded as 
substitutional alloys with the occupation property. We want' td ctiiphsize that 
also non -ergodic measures can possess the occupation property, for such an example 
(crystal growth process starting with agiven configuration) cf. [11]. 

We denote with S the closure of the union of the spectra of all operators H" with 
periodic pdtential V" € Q. In [11, 12] the following theorem has already been an-
nounced. ,	 S 

Theorem 3.2: For every V" € Q a(H-)	S. If the occupation property is /u/hued' 
then /or a:e. V" € Q a(H-) = S. 

Proof: The definition of the occupation property yields that every operator with 
periodic' potential in Q is infinitly representable in a.e. H", i.e. S i(H"). We 
define H as the direct sum of all Hamilton ians H" with periodic' potential in Q. Then 
a(H) = S. Secondly, every operator H" is infinitely representable in H, i.e. 
a(Il")'	S I 

Remark 3.3: This proof is related to Kursten's proof in [25]. KIRSCH and MARTT-
NELLI [22]found independently the sameresult for a much more restricted class of 
substitutional alloys; their. proof is related to ours. After prepaiiTig a first version 
of our paper we realized that the idea of the proof is already contained in a paper 
by LIFsmc [27]. He made the inclusion a(H I ) u o(H2) (H") plausible, where H' 
is the Hamiltonian of a binary alloy and 11 1 , 112 are the Hanmiltonians of the pure 
crystals with potential V 1 and V 2 , resp. Not all physicists saw that his idea was cor-
rect independently of the dimension of the space. [20]. The problem of determining 
the spectrum of a ubstitutiona1 alloy is intimately connected with the Saxon-
Hutner conjecture, which is correct only in some special cases; for an extensive dis-
cussion cf. [11].	-	 -
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Remark 3.4: Theorem 3.2 contradicts the general wisdon on energy gaps in 
alloys [4, 8, 9, 35, 38, 39]. "Bowing" isthe notation for the effect that the width of 
the gaps is expected to be a nonlinear function of the concentration of the atomic 
types. Theoreni.3.2 states that the width of the gaps is constant if the concenttation 
of all components is nonzero and that it is not greater than the gap in every pure 
component. The seeming difference between Theorem 3.2 and the experiments may 
be explained by the existence of tail functions in the density of states: , The density 
of.states decreases exponentially at the band edges, i.e. in those parts of the spectrum 
where Theorein3.2 predicts a positiv density and the experiments do not shpw 
it [27]. 

PIJItKERTartd voi ScI1EIDT [32] proved that the differences of eigenvalues of the 
"averaged' Schrodinger equation on a compact set can differ from the mean value 
of the differences of the eigerivalues of the randomSchrodinger operator. But the 
interpretation of their result as a proof for the bowing effect is very questionable: 

i) The -width of the gaps in the spectrum of' an averaged Schrodinger operator 
(the so-called "virtual crystal approximation") depends nonlinearly on the conceri-
tration and the width of the gaps iii an alloy spectrum is different from it. Thus it 
is not proven that the width of the gaps in the alloy spectrum .depends nonlinearly 
on the concentration.	 -	 S 

ii) PURKERT and voii SCHEIPT investigated a Schrodinger operator on a finite 
interval with random potential and random boundary conditions. This model has 
no hands, but separated eigenvalues ; In contrast o the models of Theorem 2.1, the 
spectrum depends on the individual potentials V"' E Q. 

Remark 3.5: In order to apply Thcoem3.2 to the models in [7; 10, 15] one has 
to explain how to treat an uncountable set of potentials {V. Because L(C) (C is 
a basic cell) is separable one can choose a dense countable set { V 1} { V}. Then the 
occupation property has the following form: 

For every finite subset 'I'	Z", every e >. 0, every ai E NT and a.e. V E Q there 
is a vector 1 E .Z', such that	 S 

(V"(x - ' la) - ' V,, 	- Xt,a1 )

/ 
i u, < e, 

'	 ET	 (T p 

where Ct are the shifted basic cells. But we can more easily reproduce the statements 
in 110, 15] about the spectrum front Theorem 1.4 directly: E.g. for the model of [15] 
a(II") =Iinf F(t); oo\ for a.e. V'°, since H := —d 2/dx2 + inf F(t) is infinitely repre 

[teK	 /	 IEK 
seritable in a.

'
 c H"	H. In addition, MoLcNov [40] used the occupation property 

in order to pove in a very tricky way the positivity of the Ljapunov exponent. 

Acknowledgement: One of the authors (H. E.) is grateful to Prof. J. KERSTAN for 
valuable discussions.	 . 
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