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. Analog zum Begriff.- der endlichen Darstellbalkcxt in der Banachraumtheorie wird der Begriff
der Darstellbarkeit und der unendlichfachen Darstelibarkeit fiir selbstadjungicrte Operatoren
cingefithrt: Es wird gezeigt, daB die unendlichfache Darstellbarkeit des Operators 4 in B zur
.Folge hat, daBl das wesentliche ‘Spektrum von B das Spektrfum des Operators A enthiilt.

‘Durch Anwendung auf ergodische Schrédingeroperatoren ergibt sich u. a. ein ncuer Beweis

fiir den-Zusammenhang zwischen Spektrum und Zustandsdichte sowie dafiir, daB das Spektrum
nicht zufillig ist. Fir das Spektrum des Hamiltonoperators im Falle cines substitutionellen
Mischkristalls wird eine Formel angegeben, welche eine Klirung des Bowingeffcktes gestattet.
Ahnliche Resultate wurden unabhiingig von K1rsch und MARTINELLI gefundcn

ITo ananoruu ¢ NOHATHEM KOHCUHOI1 npenCTanuuocm B TOOle[ 6&!({\\01!&\ ﬂpOCTpd!{CTB
BBOJINTCA NMOHATHC NPEeaCTABHMOCTIL I 6CCKOHe‘HIOh])ZlTHOﬁ NpeacTaBiMOCTI A cauoconpn-
“KEHHBIX' 011epaTOpOB. JIOKASLIBACTCA, YTO M3 0ECKOHEMHOKPATHOI MPEACTABIMOCTIL ONEpa-
TOpa /1 B B cliefiyeT, UTO CyIECTBEHHBII CIICKTP OmepaTopa B cOjepHMUT CIEKTpP Oneparo-
pa A. [Ipiosenite K aprojHyecKiM onepaTopas Wpenuurepa qaéT; Mexay -NpoyHM, HOBOC
HOKA3ATCAbCTBO. HLC'Iy‘IZlIHIOCTVl CIIEKTpA TAKIX ONCpaToOpoOB If CBA3N MEEHILY CIEKTPOM M
TIOTHOCThIO COCTOAHUIT. JIIA cnexkTpa oneparopa ['aMuibToHa B ciyvae I10NCTAHOBOUHOTO
KPHCTANIa CMecH TIosyyaercAa (GopMysa, KOTOPaA JOMYCKAeT BBIACHUTL CYTh NPOrHOaTEe b-
noro aderta. Iloj06HbE pe3yanLTATH HE3ABUCUMO noy AN rakxe Kupuwr i MapTunenin,

_Analogous to the notion ‘of finite representability in the theory of Banach spaces, the notions
“of the rcprcscntahxllty and the infinite representability of self-adjoint opcrutors are' intro-
duced. 1t is proved that the infinite representability of the operator A in' B yields that the
_essential spectrum of B,contains the spectrum of 4. This result'applied to ergodic Schrodinger
" operators yxelds a new proof for the nonrandomness of the spectrum and for the connection
between the spectrum and the denSIty, of states. A formula for the spectrum of the Hamil-
tonian of a substitutional alloy .is presented, which clarifies the bowmg effect. Slmllar results
were found ifdependently by }\mscn and MARTINELLL

o N

1. Representability of Self-adjoint Operators‘\

In order to compare the spectra of self-adjoint operators, we use the concept of the
infinite representability of an operator in another one. This notion is similar-to the - -

concept of finite representability of normed spaces developed in [17, 28, 29]. It
means that the (not necessary finite dimensional) restrictions of an operator do not
much differ from approprlately chosen restrlctlons of the other ooperator.

Definition 1.1.: Let 4, B be se]f—adjomt operators in a Hilbert space H We
“call 4 infinitely representable in B, if there is an increasing sequence {Dy}, k € N, of
linear subspaces of.dom 4 and a sequence {U;} of umtarsr operators, such tha,t'

i) U D, is dense in dom 4 with rcspect to the topology defmed by the scalar pro-
duct (z 2y + (Az Az)

.
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' 358 . H. Enciiscs and K.-D. KirsTen

ii) Un(Dy) = dom B and for every ¢ > O.there is a ko €N, such that for all k > ko
and all z € D

(4 — Uk*BUk) 2 Z> S e(l 2l + IIZII

i) for k4 I Uy(Dy) is orthogonal to U,(D,). | -
If only i) and ii) are satisfied, then 4 is called representable in B. ’

Remark 1.2: Of course, every ope'rator is representablc.in itself (take U, :=1,
the identity), but not:every operator is infinitely representable in itself.

For the proof of the following theorem we neéd a finite dimensional criterion that
a point belongs to the essential spectrum. It is well known (e.g. [l]) that a number £
lies in the essential spectrum ¢ (4) of an operator, A, iff there is an orthonormal
sequence {e;} in dom A4, such that lim ||de, — Ze,|] = 0. We use the followmg fmlte

n—-co il
? dimensional varlant of this criterion. - R .

Lemma 1.3: 2 ¢ R belongs fo the essential spectrum of a self-adjoint ’opemtor A,\'
iff for every ¢ > 0 and k € N there is an orthonormal sequence ey, ..., ¢} = H and a
sequence {z,,..., 7z} = dom A, such that. |le; — z|| < ¢ and ||dz; — Zz|l < & for
TE{l, LKk T ‘ )

Proof: The above mentioned criterion shbws the nccessit& of the conditions. Now
we prove indirectly that the conditions are sufflclent Let us assume 24 0e.(4).
' Then A has a spectral representatlon :

1-6
A-—fy(lF —~)P-4—f‘udh
— o0 A48

with 6 > 0 and a fmlte dimensional orthoprojector P (P = 0 is also possnble) F¥or -
z € dom A this means |[(4 — A+ 6P) z|| = 0 |'z|l: Let {f,, ..., f:} be an orthonormal
basis for the range of P. We choose k > 4l and ¢ > 0 in such a way that 1 — 2¢
— 5/6 > 1/2. If {z,, ..., z;} and {el, o ek} fulfil the ¢onditions of the lemma then

81 — &) SO llall < (4 — AL + oP) il < Az — 7zl + 6 [1Ple; — 2|
© 4 0lPell S e+ 0e + 5 |1Peil,

ie. 1/2 < iIPe~||\ By'summation of the squares we get : ‘ \

k4 < Z' |Pe; II2 = ): Z Kea, fil* = Z Ifl? =22

.. R B [ED }—A

This contradiction shows that the assumptlon /4 acss(A) is false B -

Theorem 1.4: i) If A is representable in B, then o(A)Cc( yand ‘oess(A) C. Gess B).
i) If 4 is mfzmtely representable in B, then o(4) < Gess(B). 4

Remark 1.5: KtrsTeEn [26] proved the following version of this theorem for

form-bounded perturbations. Let g(f, ) := [ (fg + grad f - grad g) d"z, the scalar

" product.in W 2(R"), and (f, g) := f/g d"x For 0 < a.and 0 < b < 1 we regard the

set I, of those linear functionals V on the linear -hull of {f2]f¢€ W, (R")} which
fulfil for arbitrary f € W,(R"™) thc mequahty —alf, /) — bglf, ) = V() < aqlf, f).
Due to the formula fg = ((/ + ) — (f — 9)3)/4 V(fg) can be defined for V € I',,.
For every V € I, , there is an uniquely defined self-adjoint operator whose quadratic

form is q(f, ) + V(fg) — (f, g).(with the form domain W, (R")) [19]. This operator-

.\



Representability of Schrédinger Operators 359

is called —A + V. Let: B, — R" be the ball with center 0 and radius 7. Further, we

dcfine the shift operator on LYR") (T';h) (y) := h(y — z) and the shift operatot on
Top (T'V) (k) := V(T.h). For M <= TI,, and V € I,, we call V f-representable

in M, if for every ¢ > 0 and every r > O there is # € R" and a functional U € M,

such that for all f € W, (R") with supp f = B,

V=TSO S lf D . | BN

"Let V, U € I,,. Then V is infinitely frepresentablc in U, iff for every £ > 0 and

[y

every 7> 0 there is a € R" \ B,, such that for all f € W, (R") with supp f = B,

, mequallty (1) holds.

: N .
Now we are able to formulate Theorem 1.4 for form-bounded perturbations.

Theorem 1.4':i) If V is f-representable in M, then

o(—A + V)= Ud(—8 + 1),

‘ veM
~=ii) If V is infinitely f-representable in {U} then
o(—A + V)T oel(—A + U).

. This extension is necessary .when one considers ‘one-dimensional potentials con-
sisting of randomly distributed d-distributions (cf. [11]).- ) ,

Proof of Theorem 1.4: i) VVe assume the representabllltv of A in B and |
2 € 0e;5(A). In accordance with Lemma 1.3 we find for every £ > 0 (£ is chosen in
dependence on /7 and ¢) and k € N an orthonormal sequence {e, ..., &} and a sequence

{2y, .. zk} — dom A4, such that [je; —z; || < |4z — izl < 2 Smcc UD is dCY,lSe
leN
in dom A4 with respect to. the graph norm (cf. Def. 1.1) there are vectors ¥i, ..., Yk

in U Dy, such that ||e, —wull < 2e and l4dy; — Zyill < 2&. We conclude that {1/” ceo Yk}
leN

‘already lies in a subspace D,,,, m € N. For a sufficiently large p = m we take the

unitary operator U, from Definition 1.1. The vectors {Uye;}, {Upyi} and B fulfil the
conditions of Lemma. 1.3, because for given ¢ > 0 we can choose & > 0, such that
1Uple: — ol < 28 < ¢ and :

N

(B — 2) Uygil = U,*BU, — 7yl < (4 — UBU,) i + 4 — 2 ol ,
S S dud ) + 1A — “
< (148104 — gl + 50 + 1) lgll -

S (=82 + 81+ 1) (1+20) < e

0y

But Lemma. 1.3 states that 7 belongs to cess(B) : o K
We prove o(4) <= o(B) in the same manner, but use ‘the following criterion:
2 € a(4) (for A = 4%*) iff for every ¢ > 0 there is a normed véctor z € dom A, such

* that |4z — /z|| < e

i) From 14y — Jgll < 2, y € Doy llfl <1+ 25 we conclude (B — /Uyl < &
for all k = p. The statement follows from Uy | Uy and the above lemma @

»
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A

2, Schriidjnger Operators with Ergodic Potehtial

In this chapter we derive the conclusions from Theorem 1.4 for Schrédinger opera-
tors 'with an arbitrary stationary and ergodic potential.
Let (2,9, v) be a measure space with Q — L, ,,;;(R") (for definition cf. [34:

Th. 13.96]) or 2 <= I°(Z") with p = 2 forn < 3, p > 2 for n = 4 and p = n/2 for

n = 5. A denotes the (discrete) Laplacian on LXR") (I2(Z")), » is a probability meas-
ure (o-additive!), ¥ is the o-algebra generated by cylindrical sets [36].

Theorem 2.1: i) If » is stationary with respect to-the translations in R (Z7) (2.e. the
“tramslations are mewsure " preserving), then the operator He = —A + Ve, VeeQ,on
LA(R") (I2(Z")) has no discrete spectrum for a.e. w.

i) If » is ergodic (for definition cf. [16]), then almost all operators H‘" have the same
spectrum as.a set.

Proof: i) From {34: Th. 13. 9()] we conclude that every Hv is a self-adjoint ope-

‘rator on dom (—A). We want to show that a.e. H* is infinitely representable in

itself. The statement then follows from Theorem 1.4ii). Take Dy := {z € dom (—A

suppz = N} with Np:= {2 = (), ..., z,) € R" | || = kV ). We construct U
bv induction beginning with U, := 1. Jiecause of the separability of LP(N;) we can
’ choose a counmblc set { V!, such that for every V € LP(N,) there is ‘at least one V;*
in the (1/2k) -environment of V. Fix i € N. For a.e. V¥ such that Ve|y, lies in the

(1/2k)-environment of V%, recurrence [16: Satz 4.1.2] ylclda that for arbllrary\ ~'

large R, there is a vector 2 € R", such that .

Nz > B and Vel — 2w, — Villl, < 12k, \

'Take for Ui the translation z(x) — z(z + 2;*). Then for z € L¥N}) a dom (—A),

, ||(V‘“(x) — Velx — ) 2]l: = (Vo). — Vele — 2| x,llp 2lle—1m |
= 1/k-(c [I—Azll2 + [|2fl2) i

(cf. the proof of Theorcm 10.20-in [33]). Take Ry := |zp,| + nk to ensure that
U(Dy) 1 U(Dy) forall k > L. :

’

ii) In analogy to i) one can prove that fora.e. V, V¢ H* is mfmltely representable‘ ,
“in H*": Let us denote by Ej* the set /

< (Ve |3 € R with  [[Ve(r — )|, — Villlp < 1/2k}.

Ek is invariant with respect to all translatlons in R” E,} can have only measure 0
orl 1§

Remark 2.2: As the proof shows we did not need the stationarity of the measure; -

recurrence is sufficient.

Pastur [31: Th. ‘3] proved our Theorem 2.1 for random Jacobi matrices, and also .

that every point in the .cssential spectrum is with probability 1 not an eigenvalue
of finite multlphcxty KirscH and MARTINELLI. [21: Prop. 2 and Cor] carried over
this result to random Schrédinger operators. .

Kuxz and SourLLarD [24: Lemma 4.3] proved for random Jacobi matrices, that
the discrete, the pure point, the' absolutely continuous and the singular continuous
parts of the spectrum (oq, oy, 0ac and o) are a nonrandom set for a.e. Ve € Q.
This result was also carried over by KirscE and MARTINELLI {24: Th. 1 and Th. 2]
to random Schrédinger operators. The proofs are based on abstract manipulations

[N



Representability of Schrédinger Operators . 361

with random spectral projectors. ‘Our method cannot reproduce the mentioned
results, but has the advantage that it works sometimes for random and recurrent,’
but not stationary potentials (cf. § 3). - . S
For some random potentials it is known whether opp, 05c OF Gac is a nonvond set.
For example, almost periodic potentials ¥ can be regarded as a special case of
. ergodic potentials, as pointed out by Pastur [31]: Take for 2 the hull of V' [2], the
Haar measure on 2 is an ergodic ¢-additive measure. Thus Theoreni 2.1 can be
applied, where the word “almost™ can be omltted For every Ve, V‘” €02 H¢ is
infinitely representable.in H*".
Periodic potentials as a special case of almost periodic potentxals can be rcgarded
as a special casc of ergodic potentials, too. Under mild regularity conditions the
“Hamiltonian H := —A 4 V has for periodic potential V only.an absolutely con,
tinuous spectrunt’ [34: Th. 13.100]. ) '
In the last few years many results concerning the detailed structurq of the spectra
of Hamiltonians with almost periodic potential have been proved. Examples with
nonvoid ¢, 6;c and o, have been found (cf. the reviews of BELLISSARD [5] and
Simon [37]). In one dimension physisists expect that a.e. II“ has for a “truly rah-
dom” potential no continuous spectrum; for some classes of measures this has been’
rlgorously proved {15, 7, 10]. GOLDSHADE [14] announced a proof for the same fact
1n the quasi-one- dnncnsnonal model of a wire w1th a fmm, number of flles S

Remark 2.3: (—A 4 V) on L*(R3) is the quantum mcchamcal opemtor for the
_energy of a particle, —A is its kinetic part and V' is the random potential. For the
operator on’ L‘(R‘) one can give another interpretation after the transformation

x —>1t (time): y”" = Ve(t) y is the equation for a vibrating system- w1th randomly |

varying parmnctcr '
N I

 In analog\ to Thomas’ result for local’ perturbatlons of penodlc potentlals [34:
" . Th. 13. 102]) . we prove the following theorem in which L? f L0°° = /-_ fo + foo !
fp € LP, foo € L™, lim f(x) = 0).
|Z|—o00 R . . - . )
Theorem 2.4: Let V* € Q, Vy € LP(R*) + Ly®(R") with p and Q as in Theorem
2.1. Then for a.e. V¥ gei(H® 4 Vi) = o(H®). ’ : :

Proof: Because a.c. H* is ixifinitcly representable in H* + V,, the inclusion’

o(H®) < oe(H® ++ V) is trivial. For the inverse inclusion we want to show that
Vo € LP(R") n L*(R") is a relatively compact perturbation of (—A + V")""‘”+l
([2] denotcs the entire part of @) in order to apply Cor. 3 of [34: Th.. 1‘% 14]: :

Vo(—=A + Jo)-lnidl-1
\ = Vo(—A + 1)—ln/41—l'{( A - 1)irHAI+T (— A + Vw)—lnldl—l}

The C\pressmn in the curly brackets is a bounded operator because V¢ is a (—A)-
bounded operator with relative bound zero [34: Th. 13. 96] But Vy(—A + 1)~ ni1-1
is a Hilbert-Schmidt operator with kernel V(=) ((p? + 1)~t/4-1" (z — ) ()
denotes the inverse Fourier transform of (-)), because Vo € L? and (—A + 1)~ (nf41-1

has the Fourier transform (p2 + 1)~ l"/“ 1612(1{") The self- adJomtnecs of.
—A + Vy+ V* on dom (—A + V‘“) can be easily scen: V, and Ve are (—A)-.

" bounded with relative bound LCI‘O, .e. —A 1+ Vo + Ve is self-adjoint on dom (—A),
but dom’ (—A),= dom (—A + V). The extension for V, € L? 4 Ly can be done
as in [34: Example 6 to Th. 13.14], where the gap between the spaces Ly® and L.*®

 can be filled as in {13] . 0. S

v
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362 H. ENoLiscH and K.-D. KURSTEN . h

Fmally we, want to show that the spectrum of an erg,odlc Hamiltonian coincides
with-the support of the density of states measure dA". This measure is defined by
A (E) := lun NE(HA"')/|A|, where A Re are, for example, cubes. H,« is the Hamil-

_tonian restrlcted to A with perrodlc boundary conditions and Ng is thc number of .
eigenvalues smaller than E. The a.s. existence of the limit and the independence °
+ of ¥« was proven by BENDERSKD and .PasTur [6)] for a large class of ergodrc poten-
tials; for a more general class cf. [23].

Theorem 2.5 i) If V* is ergodic and E E O’H"’ for a.e. V“ then A (E + €) - ‘
o — N(E —8)>0f07‘6’l)07‘J€>0 ) o
_" ii) If the space dimension is'1 and N(E + €) ./V(E,— &) > 0. for evéry"e >0,
then E € o(H*) for a.e Voo . ' '

Proof:.i) Choose {V,'} as in Theorem 2.1 and take for given'd > 0 a sufficiently
large k € N, such‘ that there ‘is a function z(x) € D, and an index 7€ N with
(—=A +.Vi! — B) 2| < 0 |l2ll, »(Bif) =:% > 0, where By := {V«]||[Ve(2)|y, — Vil
< 8). %(V%) denotes the characteristic function of B,, The individual ergodic
theoremn [16: § 3. 3] yields for a.e. V¢ ¢ Q2 N ‘

lim ka (V‘”(x — 7)) d"x/|A| f/k (Ve (x))dv( “) = v,.
: AeR® 4 ~ . ]

X Vel — B)y,.— Vi)l <6, then 7 := 2(z + %) fulfils .
| I(He — B2l < (=4 + Vi) 2] + |(Volz — 3) — Vi) 2] < e lell

for suificient]y small 8. For |Z — #| = 2kn'2, 7 and Z have drsmmt support. Thus
N(E + &) — A (E — &) = (2kn?/?)~" y,, since the number of cigenvalues of H 4 in

[E — & F + ¢) is at least the number of ¥ € A with V'"(x — ’c)]h € B and. mutual .

dlstance at least 2kn'/2.

ii) For: given & >0 choose/l sufflclentlv large that |N gy (H 4¢) — N p_e(H ) = 3.
2y, 29, 23 € L2[—l/2 1/2] are the correqpondmg eigenfunctions on A = [—1/2;1/2].

: Define z : = Z cizi, where {ci} is a nontrrvral trlple such that z(—l/2 =z (—l/2) = 0.
=1

Since z fulflls periodic boundary condrtlons it can be extended to the whole of Rt
by 2(2) := 0 for |z| = 1/2, and then ||(H® — E)z|| < ¢ Hzll Since ¢ was arbitrary,
- Be a(H‘") 3 | : '

Remark 2.6: It is easy to prove Theorem 2.5ii) also for dimension » > 1 and
almost periodic potential, rindom potential with occupation property (cf.§ 3) or
discrete models. In the first case one can use a theorem by V.[ARCHET\KO [30: Th. 2].
The condition A (E + &) — A(E — &) > 0 yields ¥ € 0 (in Ris notation) for .an
- arbitrary set of parallelepipeda {Qk} if |2]/|624] = oo (under this condition
N(E) = lim Ng(Hg,)/|£2;]). But MARCHENKO showed how to choose {2, in.order to

k_’R"

ensure oo = o(H). In the second case the condltron N(E + &) — ./V( — &) > 0 ,
also yields E € U U o(H 4*) ), and the occupation property states that for ae. V¢

o(H®) = U or(H,,“') For discrete models the proof can be done as in one/dimension:
“Choose A sufficiently large that NE“(HA ) — Nyg_o(Hy®)y = |0A4];2; € L¥A) are the
ST C 124]
ergenfunctlons of H,¢ with eigenvalues in [E — &; E + ¢). Define z:= 3 ciz;;
! =1
where {e;} is a nontrnvral set of coeffncnents such that z(a:) =0 forz € A with
dist (z, 24) < 1 and continue as in the proof of Theorem 2.5ii).
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Pastur [31] proved the identity o(H*) = supp dA” for ergodic potentials, AvKoN
‘and SiMox 3] r¢preated Pastur’s proof for almost periodic potentials in arbitrary
‘dimension and JorNsox and MOSER (18] proved-the same in one dimension by a
completely other method. :

Y

7

3. Models with the Occupation Property o . . . .

i . . ' .
Let a,, ..., @, be n independent vectors in R® and V;, 7€ N, real potentials in, R",

such that there is a sequence {s;} € {(Z"), such that for every i € Nand ¢ = (4, ..., )
(3 A ' . ' o
( f |V x)|? d"x)‘/” < 3‘ .‘ P

. N -
where Cy:= {x € R? |2 = Z za;, b S x.< b - 1} are the shifted basis cells ‘
and p as in § 2. Further let [N%", BZ" 4] be the measure space describing the
random occupation of the lattice points by different types of atoms. Then Ve(x) :=
Y Volz — 3 ta;) is the pot\ential of an alloy with countable many components.

Definition 3.1 : The measure space [N%", u] possesses the occupation property, if
for every finite subset 7' < Z" and every @ € NT and u-a.e. w € N%" there is a vector
to € 2", such that @;_ e = wyfor every t € T'. .

The occupatlon property was defined in [11]. It describes a natural property of -
substitutional alloys, generalizing the independent occupation of lattice points by
different kinds of atoms. For example, all random models where the absence of the
continuous part in the spectrum has been proved [15, 7,.10] can be regarded as

substitutional alloys with the occupation property. We want’ to emphasize that. -

also non-ergodic measures can possess the occupation property, for such an example .
(crystal growth process starting wnthaglven configuration) cf. [11].

We denote with S the closure of the union of the spectra of all operators He with
periodic potential Vo ¢ Q. In [11, 12] the followmg theorem has already been an-
nounced. '

Theorem 3.2: For e@em V"’ € Qo(H*y= S. If the occupation propert_z/,z's fulfilled’ .
“then for ae. Vv € Q o(H*) = ’
Proof: The definition of the occupation property yields that every operator with-
periodic potential in  is infinitly representable in a.c. H*, i.e. S CU(H“’). We
define H as the direct sum of all Hamiltonians H* with perlodlc potential in 2. ’lhcn
o(H) = S. Secondly, every operator H¢ is infinitely reprcsentable in H,
o(H*y— 8 l o !

Remark 3. ‘3 This proof is related to Kiirsten’s proof in [20] KrmscH and MARTT-
~NELLI [22] found independently the same result for a much more restricted class of
substitutional alloys; their. proof is related to ours. After preparing a first version
of our paper we realized that the idea of the proof is already contained in a paper
- by Lrrsmic [27]. He made the inclusion o(H') u 6{H?) o(H‘") plausible, where H«
is the Hamiltonian of a binary alloy and H!, H? are the Hamiltonians of the pure -
crystals with potential V, and V,, resp. Not all physicists saw that his idea was cor-
rect independently of the dimension of the space. [20]. The problem of determining
the spectrum of a substitutional alloy is intimately connected with the Saxon-
Hutner conjecture, which is correct only in some special cases; for an e\t(,nswc dis-
cussion cf. [11]
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Remark 3.4: Theorem 3.2 contradicts the general wisdom on energy gaps in
alloys [4, 8, 9, 33, 38, 39]. “Bowing” is the notation for the effect that the width of
the gaps is expected to be a nonlinear function of the concentration of the atomic
types. Theorem.3.2 states that the width of the gaps is constant if the concentration
of all components is nonzero and that it is not greater than the gap in every pure
component. The seeming difference between Theorem 3.2 and the experiments may
be explained by the existence of tail functions in the dermty of states: The density
of states decreases exponentlally at the band edges, 1.e. in those parts of the spectrum
where Theorem'3.2 predicts a posntlve dcnsntv and the experiments do not show
lt [27] \ \ :

PURKERT and voM SCHEIDT [‘-}2] proved that the differences of eigenvalues of the
“averaged” Schridinger equation on a compact set can differ from the mean value
of the differences of the eigenvalues of the random Schrédinger operator. But the
interpretation of their result as a proof for the bowing effect is very questionable:

i) The width of the gaps in the spectrum of an averaged Schrodinger operator
(the so-called “virtual crystal approximation”) depends nonlinearly on the concen-
tration and the width of the gaps in an alloy spectrum is different from it. Thus it
is not proven that the width of the gaps in the alloy spectrum dcpends non]mearly
on the concentration. ’

ii) PURKERT and vOM SCHEIDT anCStlgdted a Schrédinger opcrator on a finite -
interval with random potential and random boundary conditions. This model has
no bands, but separated eigenvalues, In contrast to the models of Theorem 2.1, the
spectrum depends on the mdnwdual potentlals Ve e 0

Remark 3.5: In order to apply Theofem 3.2 to the models in {7; 10, 15] one has
to explain how to treat an uncountable set of potentials {V.}. Because L?(C) (C is
a basic cell) is separable one can choose a dense countable set {V, } = {V,}. Then the
occupa,tlon property has the following form:

For every finite subset 7' — Z", every £ >. 0, every weNT and a.e. Vo € Q there
is a vector [ € 4%, such that

“ Velw — X)) — X Vo, (x — Z‘;“i))lucg” <,
teT P X
whcre C, are the shifted basic cells. But we can more easily reproduce the statements
in [10, 15] about the spectrum from Theorem 1.4 directly: E.g. for the model of [10] .
o(l«) = [mf F(); oo) for a.e. V¢, since H := —d?*/dz® + inf F(¢) is infinitely repre:
teK
sentable in a.c. H* = H. In addition, MoLcHANOV [40)] uscd the occupation property

in order to prove in a very tricky way the positivity of the Lja.punov cxponent
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