Zeltschrift für Analysis und ihre Anwendungen Bd. 3 (4) 1984, S. 367 – 369

A Remark on the Qualitative Spectral Theory of Sturm-Liouville Operators

E. MÜLLER-PFEIFFER

Bezeichnet $N(\Lambda)$ die größte Anzahl der Nullstellen nichttrivialer Lösungen der Sturm-Liouvilleschen Gleichung

•
$$-(p(x) u')' + q(x) u = \Lambda u, \quad -\infty \leq a < x < b \leq \infty,$$

so ist unter einer gewissen Voraussetzung die Anzahl der unterhalb Λ gelegenen Eigenwerte eines bestimmten selbstadjungierten Operators (Friedrichssche Erweiterung) gleich $N(\Lambda) - 1$.

Если $N(\Lambda)$ — наибольшее число нулей нетривиальных решений уравнения Штурма-Лиувилля

$$-(p(x) u')' + q(x) u = \Lambda u, \qquad -\infty \leq a < x < b \leq \infty,$$

то при некотором предположении число собственных значений одного самосопряженного оператора (расширения Фридрихса), меньших Λ , равно $N(\Lambda) = 1$.

If N(A) denotes the maximal number of zeros of the non-trivial solutions of the Sturm-Liouville equation

$$-(p(x) u')' + q(x) u = \Lambda u, \qquad -\infty \leq a < x < b \leq \infty,$$

then under some hypothesis the number of eigenvalues of a special selfadjoint operator (Friedrichs extension) is equal to $N(\Lambda) - 1$ below Λ .

Consider the Sturm-Liouville expression

$$\mathscr{A} \varphi \equiv -(p(x) \varphi')' + q(x) \varphi, \qquad -\infty \leq a < b \leq \infty,$$

and the symmetric operator

$$A_0 \varphi = \mathscr{A} \varphi, \qquad \varphi \in D(A_0) = C_0^{\infty}(a, b),$$

where

p(x) > 0, a < x < b, $p \in C^1$, q real and $q \in C$.

Concerning the symmetric forms

$$\begin{aligned} a[\varphi, \psi] &= \int_{a}^{b} p\varphi' \overline{\psi}' \, dx + \int_{a}^{b} q\varphi \overline{\psi} \, dx, \qquad \varphi, \psi \in C_{0}^{\infty}(a, b), \\ a^{+}[\varphi, \psi] &= \int_{a}^{b} p\varphi' \overline{\psi}' \, dx + \int_{a}^{b} q^{+}\varphi \overline{\psi} \, dx, \qquad \varphi, \psi \in C_{0}^{\infty}(a, b), \\ q^{+}(x) &= \max\left(q(x), 0\right), \qquad q^{-}(x) = \min\left(q(x), 0\right), \\ (q^{-} \varphi, \psi) &= \int_{a}^{b} q^{-}\varphi \overline{\psi} \, dx, \qquad \varphi, \psi \in C_{0}^{\infty}(a, b), \end{aligned}$$

assume the inequality

$$|(q^{-}\varphi,\varphi)| \leq c_1 a^{+}[\varphi,\varphi] + c_2 \, ||\varphi||^2, \qquad \varphi \in C_0^{\infty}(a,b),$$
(1)

with $0 \leq c_1 < 1$ and $0 \leq c_2$. (\cdot, \cdot) and $\|\cdot\|$ denote inner product and norm in the Hilbert space $L_2(a, b)$. From (1) it follows that the operator A_0 is bounded from below. Let A be the Friedrichs extension of A_0 . We assume in the following that there are eigenvalues λ_k , k = 1, 2, ..., K $(K \leq \infty)$, below the essential spectrum $\sigma_c(A)$ of A. There are connections between the number of zeros of certain solutions of the differential equation

$$\mathscr{A}u = \Lambda u, \quad -\infty < \Lambda < \infty,$$

on the one hand, and the number of eigenvalues below Λ of self-adjoint extensions of A_0 on the other hand (see [1: pp. 1480, 1481]). In the following case where the Friedrichs extension Λ is considered these connections will be described more precisely.

Theorem: Consider all solutions of the differential equation

$$\mathscr{A}u = \Lambda u, \quad a < x < b, \quad -\infty < \Lambda < \infty,$$

and let $N(\Lambda)$ be the maximum number of zeros of the different non-trivial solutions on (a, b). If $N(\Lambda)$ is finite, then there exist exactly $N(\Lambda) - 1$ eigenvalues of the operator Λ on the interval $(-\infty, \Lambda)$. In the case where $N(\Lambda) = \infty$ the interval $(-\infty, \Lambda)$ contains infinitely many points of the spectrum of Λ .

Proof: Let the spectrum of A be denoted by $\sigma(A)$ and suppose

$$\lambda_k < \Lambda \leq \inf \sigma_e(A), \qquad (\lambda_k, \Lambda) \cap \sigma(A) = \emptyset.$$
⁽²⁾

The eigenvalues λ_k (k = 1, 2, ...) are to be denumerated in ascending order. Note that each λ_k is a simple eigenvalue of A. A can be a regular point of A, an eigenvalue $(A = \lambda_{k+1})$, or A can be equal to the lowest point of $\sigma_e(A)$. The eigenfunction u_k belonging to λ_k has exactly k - 1 zeros on (a, b) [1: p. 1480]. By these zeros x_j , j = 1, ..., k - 1, the interval (a, b) is divided into k subintervals $(x_{j-1}, x_j), j = 1, ..., k$, $x_0 = a, x_k = b$. By Sturm's comparison theorem, that can also be applied to the intervals (a, x_1) and (x_{k-1}, b) under the hypothesis (1) [2], a solution of $\mathcal{A}u = Au$ realizing "the maximum number N(A) of zeros has at least k zeros on (a, b), because u_A has at least one zero on each interval (x_{j-1}, x_j) . By using a non-trivial solution u_A vanishing at x_1 , for instance, one easily can see that u_A has at least k + 1 zeros. Let us now assume that a not identically vanishing solution u_A has at least k + 2 zeros on (a, b) and let ξ_1, \ldots, ξ_{k+2} be the first k + 2 of these zeros such that $a < \xi_1 < \cdots$ $< \xi_{k+2} < b$. Then on the interval (ξ_1, ξ_{k+2}) there are k zeros of u_A . The restriction \tilde{u} of u_A to (ξ_1, ξ_{k+2}) is an eigenfunction of the Friedrichs extension \tilde{A} of the operator

$$\widetilde{A}_0 \varphi = \mathscr{A} \varphi, \qquad \varphi \in D(\widetilde{A}_0) = C_0^{\infty}(\xi_1, \xi_{k+2}),$$

belonging to the eigenvalue Λ . Λ is the (k + 1)th eigenvalue of \overline{A} . Hence to the left of Λ there are k eigenvalues of \widetilde{A} . We set $\xi_1 = \alpha$ and $\xi_{k+2} = \beta$ and consider α and β as parameters. If the endpoints α and β of the interval (α, β) tend strictly monotone to a and b, respectively, then the eigenvalues of the Friedrichs extension $A_{\alpha,\beta}$ of the operator

$$A_{\alpha,\beta,0}\varphi = \mathscr{A}\varphi, \qquad \varphi \in D(A_{\alpha,\beta,0}) = C_0^{\infty}(\alpha,\beta),$$

are strictly decreasing (the spectrum of $A_{\alpha,\beta}$ is discrete) [3]. Thus, it follows that there exist at least k + 1 eigenvalues of the operator A to the left of A. In view of (2),

368

however, we have only k eigenvalues of A to the left of Λ . Consequently, a solution u_{Λ} realizing the maximum number $N(\Lambda)$ has exactly k + 1 zeros on (a, b). Hence, the equality $k = N(\Lambda) - 1$ is proved.

To handle the case

$$(-\infty, \Lambda) \cap \sigma(\Lambda) = \emptyset$$

a non-trivial solution u_A of $\mathscr{A}u = \Lambda u$ will be compared with the eigenfunction u_1 not having any zero on (a, b). By assuming that u_A has two zeros on (a, b) the Sturm comparison theorem implies that u_1 has at least one zero between the zeros of u_A . Since this situation is impossible, the solution u_A has at most one zero on (a, b). Of course, a zero of a non-trivial solution u_A of $\mathscr{A}u = \Lambda u$ can be realized on (a, b). Thus, we have $N(\Lambda) - 1 = 0$.

Finally, let $N(\Lambda) = \infty$ and consider a non-trivial solution u_{Λ} of $\mathscr{A}u = \Lambda u$. Assume that there are only finite points of the spectrum of Λ below Λ . These points are eigenvalues of Λ , say $\lambda_1, \ldots, \lambda_k$. Choose k + 2 zeros ξ_1, \ldots, ξ_{k+2} of u_{Λ} such that $a < \xi_1 < \cdots < \xi_{k+2} < b$ and consider the interval (ξ_1, ξ_{k+2}) . Now, we have the situation as above and, analogously, we can conclude that there are at least k + 1 eigenvalues of Λ below Λ . This contradicts the hypothesis that there are only k' eigenvalues to the left of Λ . This proves the Theorem.

REFERENCES

- [1] DUNFORD, N., and J. T. SCHWARTZ: Linear operators. Part II: Spectral theory, self adjoint operators in Hilbert space (Pure and applied mathematics: Vol. VII). Interscience Publishers: New York—London 1968.
- [2] MÜLLER-PFEIFFER, E.: An extension of the Sturm-Picone theorem to elliptic differential ' equations. Proc. Roy. Soc. Edinburgh (to appear).
- [3] MÜLLER-PFEIFFER, E.: Some remarks on Courant's variation principle for elliptic differential operators. Math. Nachr. (to appear).

Manuskripteingang: 09. 09. 1983

VERFASSER :

Prof. Dr. ERICH MÜLLER-PFEIFFER Sektion Mathematik/Physik der Pädagogischen Hochschule "Dr. Theodor Neubauer"

DDR - 5010 Erfurt, Nordhäuser Str. 63

24. Analysis Bd. 3, Heft 4 (1984)

369