Zeitschrift für Analysis und ihre Anwendungen
Bd. 3 (4) 1984, S. 367 – 369

A Remark on the Qualitative Spectral Theory of Sturm-Liouville Operators

E. MÜLLER-PFEIFFER

Bezeichnet $N(\Lambda)$ die größte Anzahl der Nullstellen nichttrivialer Lösungen der Sturm-Liouvilleschen Gleichung

$$
\bullet \qquad - (p(x) \; u')' + q(x) \; u = \Lambda u, \qquad -\infty \leq \dot{a} < x < b \leq \infty,
$$

so ist unter einer gewissen Voraussetzung die Anzahl der unterhalb A gelegenen Eigenwerte eines bestimmten selbstadjungierten Operators (Friedrichssche Erweiterung) gleich $N(A) - 1$.

Если $N(A)$ - наибольшее число нулей нетривиальных решений уравнения Штурма-Лиувилля

$$
-(p(x) u')' + q(x) u = Au, \quad -\infty \leq a < x < b \leq \infty,
$$

то при некотором предположении число собственных значений одного самосопряженного оператора (расширения Фридрихса), меньших Λ , равно $N(\Lambda) = 1$.

If $N(A)$ denotes the maximal number of zeros of the non-trivial solutions of the Sturm-Liouville equation

$$
-(p(x) u')' + q(x) u = \Lambda u, \quad -\infty \leq a < x < b \leq \infty,
$$

then under some hypothesis the number of eigenvalues of a special selfadjoint operator (Friedrichs extension) is equal to $N(A) - 1$ below A .

Consider the Sturm-Liouville expression

$$
\mathscr{A}\varphi = -\big(p(x)\,\varphi'\big)'+q(x)\,\varphi,\qquad -\infty\leq a
$$

and the symmetric operator

$$
A_0\varphi = \mathscr{A}\varphi, \qquad \varphi \in D(A_0) = C_0^{\infty}(a, b),
$$

where

 $p(x) > 0$, $a < x < b$, $p \in C^1$, q real and $q \in C$.

Concerning the symmetric forms

$$
a[\varphi, \psi] = \int_a^b p\varphi' \overline{\psi}' dx + \int_a^b q\varphi \overline{\psi} dx, \qquad \varphi, \psi \in C_0^{\infty}(a, b),
$$

$$
a^+[\varphi, \psi] = \int_a^b p\varphi' \overline{\psi}' dx + \int_a^b q^+ \varphi \overline{\psi} dx, \qquad \varphi, \psi \in C_0^{\infty}(a, b),
$$

$$
q^+(x) = \max_{a} (q(x), 0), \qquad q^-(x) = \min_{a} (q(x), 0),
$$

$$
(q^- \varphi, \psi) = \int_a^b q^- \varphi \overline{\psi} dx, \qquad \varphi, \psi \in C_0^{\infty}(a, b),
$$

assume the inequality

the inequality
\n
$$
|(q^-\varphi, \varphi)| \leq c_1 a^+ [\varphi, \varphi] + c_2 \|\varphi\|^2, \qquad \varphi \in C_0^{\infty}(a, b),
$$
\n
$$
\leq c_1 < 1 \text{ and } 0 \leq c_2 \quad (\ldots) \text{ and } \|\cdot\| \text{ denote inner product and norm in the}
$$

FEIFFER
 *c*₁ $a^{\dagger}[\varphi, \varphi] + c_2 ||\varphi||^2$, $\varphi \in C_0^{\infty}(a, b)$, (1)
 $0 \leq c_2$, (\cdot, \cdot) and $||\cdot||$ denote inner product and norm in the
 From (1) it follows that the operator A_0 is bounded from below.

chs extensio with $0 \leq c_1 < 1$ and $0 \leq c_2$. (\cdot, \cdot) and $||\cdot||$ denote inner product and norm in the Hilbert space $L_2(a, b)$. From (1) it follows that the operator A_0 is bounded from below. Let *A* be the Friedrichs extension of A_0 . We assume in the following that there are eigenvalues λ_k , $k = 1, 2, ..., K$ ($K \leq \infty$), below the essential spectrum $\sigma_{\rm e}(A)$ of A. There are connections between the number of zeros of certain solutions of the differential equation

$$
\mathscr{A}u = \Lambda u, \quad -\infty < \Lambda < \infty,
$$

on the one hand, and the number of eigenvalues below Λ of self-adjoint extensions of *A0* on the other hand (see [1: pp. 1480, 1481]). In the following case where the Friedrichs extension A is considered these connections will be described more precisely. **inctual equation**
 infinitely many points of the spectrum of A. A is denoted by A on the one hand, and the number of eigenvalues below A of self-adjoint extension of A_0 on the other hand (see [1: pp. 1480, 148 **22 Example 1 22 Externsions** the number of eigenvalues below Λ of self-adjoint extensions the other hand (see [1: pp. 1480, 1481]). In the following case where the sextension Λ is considered these connections

^r I he orem: *Consider all solutions of the differential equation*

$$
\mathscr{A}u = Au, \qquad a < x < b, \qquad -\infty < A < \infty
$$

and let N(A) 'be the maximum number of zeros of the different non-trivial solutions on (a, b) . If $N(A)$ is finite, then there exist exactly $N(A) - 1$ eigenvalues of the operator A *on the interval* $(-\infty, \Lambda)$. In the case where $N(\Lambda) = \infty$ the interval $(-\infty, \Lambda)$ contains infinitely many points of the spectrum of A.

Proof: Let the spectrum of *A* be denoted by $\sigma(A)$ and suppose

$$
\lambda_k < \Lambda \le \inf \sigma_{\mathfrak{a}}(A), \qquad (\lambda_k, \Lambda) \cap \sigma(A) = \emptyset. \tag{2}
$$

The eigenvalues λ_k ($k = 1, 2, ...$) are to be denumerated in ascending order. Note that each λ_k is a simple eigenvalue of A. A can be a regular point of A, an eigenvalue $(A = \lambda_{k+1})$, or A can be equal to the lowest point of $\sigma_e(A)$. The eigenfunction u_k belonging to λ_k has exactly $k-1$ zeros on (a, b) [1: p. 1480]. By these zeros x_i , $j = 1, ..., k-1$, the interval (a, b) is divided into k subintervals $(x_{j-1}, x_j), j = 1, ..., k$, $x_0 = a$, $x_k = b$. By Sturm's comparison theorem, that can also be applied to the intervals (a, x_1) and (x_{k-1}, b) under the hypothesis (1) [2], a solution of $\mathscr{A}u = Au$ realizing the maximum number $N(A)$ of zeros has at least k zeros on (a, b) , because u_A has at least one zero on each interval (x_{i-1}, x_i) . By using a non-trivial solution u_A vanishing at x_1 , for instance, one easily can see that u_A has at least $k + 1$ zeros. Let us now assume that a not identically vanishing solution u_A has at least $k + 2$ zeros on The eigenvalues λ_k ($k = 1, 2, \ldots$) are to be denumerated in ascending order. Neach λ_k is a simple eigenvalue of A . A can be a regular point of A , an eigenfunctiolonging to λ_k has exactly $k - 1$ zeros on $(a,$ ζ_{k+2} ζ *b*. Then on the interval (ξ_1, ξ_{k+2}) there are *k* zeros of u_A . The restriction \tilde{u} of u_A to (ξ_1, ξ_{k+2}) is an eigenfunction of the Friedrichs extension \tilde{A} of the operator (a, b) and let ξ_1, \ldots, ξ_{k+2} be the first $k+2$ of these zeros such that $a < \xi_1 < \cdots$

$$
\widetilde{A}_0\varphi = \mathscr{A}\varphi, \qquad \varphi \in D(\widetilde{A}_0) = C_0^{\infty}(\xi_1, \xi_{k+2}),
$$

belonging to the eigenvalue A. A is the $(k + 1)$ th eigenvalue of \vec{A} . Hence to the left of *A* there are *k* eigenvalues of \tilde{A} . We set $\xi_1 = \alpha$ and $\xi_{k+2} = \beta$ and consider α and β as parameters. If the endpoints α and β of the interval (α, β) tend strictly monotone to *a* and *b*, respectively, then the eigenvalues of the Friedrichs extension $A_{\alpha,\beta}$ of the - operator *e* eigenvalue A. A is the $(k$

eigenvalues of \tilde{A} . We set *d*

f the endpoints α and β of

ectively, then the eigenvalu
 $= \mathscr{A}\varphi$, $\qquad \varphi \in D(A_{\alpha,\beta,0}) =$

easing (the spectrum of $A_{\alpha,\beta}$

$$
A_{\alpha,\beta,0}\varphi = \mathscr{A}\varphi\,,\qquad \varphi\in D(A_{\alpha,\beta,0})=C_0^\infty(\alpha,\beta)\,,
$$

are strictly decreasing (the spectrum of $A_{\alpha,\beta}$ is discrete) [3]. Thus, it follows that there exist at least $k + 1$ eigenvalues of the operator *A* to the left of *A*. In view of (2),

however, we have only *k* eigenvalues of *A* to the left of *A*. Consequently, a solution u_A realizing the maximum number $N(A)$ has exactly $k + 1$ zeros on (a, b) . Hence, the equality $k = N(A) - 1$ is proved. Spectral Theory of Sturn
wever, we have only k eigenvalues of A to the left of A,
alizing the maximum number $N(A)$ has exactly $k + 1$
uality $k = N(A) - 1$ is proved.
To handle the case
 $(-\infty, A) \cap \sigma(A) = \emptyset$
non-trivial solutio Spectral The

we have only *k* eigenvalues of *A* to the

the maximum number $N(A)$ has exactle $k = N(A) - 1$ is proved.

dle the case
 $(-\infty, A) \cap \sigma(A) = \emptyset$

vial solution u_A of $\mathscr{A}u = Au$ will b

ig any zero on (a, b) . By

$$
(-\infty, \Lambda) \cap \sigma(A) = \emptyset
$$

a non-trivial solution u_A of $\mathscr{A}u = \Lambda u$ will be compared with the eigenfunction u_1 not having any zero on (a, b) . By assuming that u_A has two zeros on (a, b) the Sturm. comparison theorem implies that u_1 has at least one zero between the zeros of u_4 . Since this situation is impossible, the solution u_4 has at most one zero on (a, b) . Of course, a zero of a non-trivial solution u_A of $\mathscr{A}u = \Lambda u$ can be realized on (a, b) . Thus, we have $N(A) - 1 = 0$. To handle the case
 $(-\infty, \Lambda) \cap \sigma(A) = \emptyset$

a non-trivial solution u_A of $\mathscr{A}u = Au$ will be compared with the

not having any zero on (a, b) . By assuming that u_A has two zeros on

comparison theorem implies that u_1

Finally, let $N(\Lambda) = \infty$ and consider a non-trivial solution u_{Λ} of $\mathscr{A}u = \Lambda u$. Assume that there are only finite points of the spectruni of *A* below *A.* These points are of u_A such that that there are only finite points of the spectrum of A below A. These points are eigenvalues of A, say $\lambda_1, \ldots, \lambda_k$. Choose $k + 2$ zeros ξ_1, \ldots, ξ_{k+2} of u_A such that $a < \xi_1 < \cdots < \xi_{k+2} < b$ and consider the inter $a < \xi_1 < \cdots < \xi_{k+2} < b$ and consider the interval (ξ_1, ξ_{k+2}) . Now, we have the situation as above and, analogously, we can conclude that there are at least $k+1$ eigenvalues of *A* below *A*. This contradicts the hypothesis that there are only k $(-\infty, A) \cap \sigma(A) = \emptyset$
a non-trivial solution u_A of $\mathscr{A}u = Au$ will be compared with the eigenfunction
not having any zero on (a, b) . By assuming that u_A has two zeros on (a, b) the Stu
comparison theorem implies that If there are only finite points of the spectrum of
envalues of A, say $\lambda_1, ..., \lambda_k$. Choose $k + 2$ zerc
 $\zeta_1 < \cdots < \zeta_{k+2} < b$ and consider the interval
ation as above and, analogously, we can conclude
envalues of A below A

REFERENCES

- [1] DUNFORD, N., and J. T. SCHWARTZ: Linear operators. Part II: Spectral theory, self. adjoint operators in Hubert space (Pure and applied mathematics: Vol. VII). Inter. $\begin{bmatrix} \mathbf{H} & \mathbf{S} \\ \mathbf{H} & \mathbf{S} \\ \mathbf{S} & \mathbf{S} \end{bmatrix}$ ENCES

DRD, N., and J. T. SCHWARTZ: Linear optoperators in Hilbert space (Pure and

Publishers: New York—London 1968.

ER-PFEIFFER, E.: An extension of the Stures.

ONE. PTEIFFER, E.: Some remarks on Coura

1 operators. Ma t operators in Hilbert

Publishers: New York-

ER-PFEIFFER, E.: An ext

Ons. Proc. Roy. Soc. Edi

ER-PFEIFFER, E.: Some r

operators. Math. Nachr.

Manuskripteingang: 09. (

VERFASSER:

Prof. Dr. ERICH MÜLLER

Sektion Math
- [2] MULLER-PFEIFFER, E.: An extension of the Sturm .Picone theorem to elliptic differential' equations: Proc. Roy. Soc. Edinburgh (to appear).
- [3] MULLER-PFEIFFER, E.: Some remarks on Courant's variation principle for elliptic differential operators. Math. Nachr. (to appear).

 $\frac{1}{\sqrt{2}}$

SRD, N., and J. I. SCHWARTZ: Linear operators. Part 11:

t operators in Hilbert space (Pure and applied mathema

e Publishers: New York—London 1968.

ER-PEEIFFER, E.: An extension of the Sturm-Picone theorem

ons. Proc. Ro Sektion **Mathematik/Physik der Pädagogischen Hochschule ,,Dr. Theodor Neubauer"**

DDR -5010 Erfurt, Norcthäuser Str. 63

²⁴Analysis Bd. 3, Heft 4 (1084) **/ ^S**