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The Convergence of Galerkin and Collocation Methods i
with Splines for Pseudodifferential Equations on Closed Curves

G. ScEMIDT-

In der vorliegenden Arbeit wird die niherungsweise Losung von Pseudod1fferentmlglcxchungen
auf geschlossenen Kurven mittels Galerkin- und Kollokationsverfahren untersucht, die als
Ansatzfunktionen polynomiale Splines benutzen. Es werden hinreichende und im allgemeinen
notwendige Bedingungen fiir die Konvergenz dieser Verfahren in Sobolevriumen angegeben.

B npeasaraemoii paGore pacemarpiBaeTcA npudaiikrennoe peuicHue ncesmoanddepeHi-
AJLHBIN YPABHEHHI HA 3AMKHYTHX KpHBHIX MeTonaMi [ajepKkuHa 1 KOAJI0OKAIUK, B KOTOPHIX
ApuOaIKeHHOe peleHite HUCTCA B BHAC MOANHOMUAIBLHOrO cruraiina. IlaioTea noctaTounmie
H, KaK NpaBIIIO, TaKe HEOOXOIMBIC VCIOBHA CXOMIIMOCTH 3THX METOIOB B MPOCTPAHCTBAX
Coﬁonena.

The present paper studies the approximate solution of pseudodifferential equations on closed
-curves using Galerkin and nodal collocation methods with polynomial splines.” We give suffi-
cient and in general necessary condmons for the convergence of these methods in Sobolev

spaces. . . \

N

1. Introduction

Various physical problems can be reduced to pseudodifferential equations on closed
curves. These equations include for example linear differential equations, certain
classes of first and second kind Fredholm integral equations, singular integral
equations -with Cauchy kernel and mtegrodlffcrentlal equations. There is a snzable
literaturé on the numerical treatment of such equations.

It is the purpose of the present paper to investigate the spline approximation of
elliptic pseudodifferential equations via standard Galerkin procedures and via-nodal
collocation methods. We shall give conditions which are sufficient and in special
‘cases also necessary for the convergence of these methods in Sobolev norms and
establish’ quasioptimal error estimates in a range of Sobolev spaces.

Let I" be a simple closed C®-curve in the complex plane given by the equation
z = z(z), x€[0,1]. We 1dent1fy functions w(z) on /" with 1-periodic functions
" u(x) = u(z(x)) on the real axis R. Let 4 be a classical pseudodifferential operator |
of order 2n € R on I", whose Lomplctc symbol a(z, £) (& € R).-has an asymptotic
expansion :

>~2a2n_ z,8) as|f| — oo, : ' o

whcr(, o t are 0 for &+ 0 and positively homogeneous of degree 2n — 1 with
respect to & Throughout the paper C denotes the set of all infinitely differentiable
1- -periodic functions on R and H* the periodic Sobolev space of arbitrary real order s,
i‘e. the closure of C* with respect to the norm '

lleally : = {|“o|2'+ 2 | I2nkl2‘}”2,
) 0kEZ .
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1 L
a where 4 = f u(x) e~ 2nikz dz. Note that the inner product in the Hilbert space H¢
0 . '
o o)y = Aoy + T Gy |2nk|-s - . (12)
‘- +k€Z . ’

extends to a duality between H**" and H* " for arbitrary r € R and

= ”ul|s+r .

<u3 v>3 ‘ ) ’ ' ‘ .
su i 1.3
vente Tollr o (1-3)
Clearly, H* is continuously and compactly imbedded in H! for t < s and, moreover,
imbedded in the space of 1-periodic continuous functions C for s > 1/2.
The pseudodifferential operator 4 with symbol (1.1) has the representation [1]

’

s

Au(z) = 3/ uka(x 27:10) e2rike + fK z, 7/ u(y) dy,
) 0k€Z ) \
. where u € C® and K(z, y) is a smooth kerrel. We note, that 4 is called elliptic if its
~ principal symbol ag,(z, ) & 0 on RX{41}. Then it generates a bounded Fredholm
operator in Sobolev spaces A € L(Hs*», H""), s € R, whose index is equal to the
winding number (27)°! {arg az,(z, —1 Y aga(2, +1)}22. Our aim is to investigate the
approximationof the equation .

Au = f ' . . . ' (1.4)

by Galerkin and nodal collocation methods using polynomlal splines.

Tetd = {z }k 2 . be a 1-periodic mesh of the real line, i.e. 2, < Xpyy, Tppn = 2 + 1
for some fixed % € N and all & € Z. By S4(4) we shall denote the space of all 1-peri-
odic, d — 1 times continuously differentiable splines'of degree d subordinate to the-
‘partition 4. We have Sy(4) = H*® if and only if s <d + 1/2. The spline spaces-
S4(4) provide the 1mportant approximation property (cf. [6]):

Let by = max (Tpir — Zi)- 1'/ s<d+12ads=r=d+ 1 then /or any v € H
and any partmon A there exzsls uy € Sg(A) such that :

Nl — uglle < c(t) B3~ lull,

’

(1.5)
for all t < s, c(t) denoting constants mdependent of wand 4. -, .‘

The standard Galerkin method for approximate solving equation (1.4) can be for-
mulated as'to find a sphne uy € Sq(4) satisfying the Galerkm equatlons :

 (Aug, va)o = {f, va)0 for all v, € Sy(4). . (1.6)

\ "The nodal collocation of equation (1.4) reads as: Find u, € Sa(4) such that the
collocation equations : .

i
'

Augy) = ) (k=1,...,) B o

are satisfied.

We study the problem under which conditions on A the right- hand side f and the
splines equations (1.6) resp. (1.7) arc uniquely solvable for all sufficiently fine
meshes 4 and the sequences of the approximate solutions {u,} converge to a solution
of (1 4) in certain Sobolev norms. L .

AN
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» There is a large literature on Galerkin methods and the following fact is well known

(cf. [3, 14)):
‘ i
Assume that A is coercive elliptic, i.e.

Re a,,(z, &) >0 /on RX{x1}, . - (1.8)
and dimker 4 = 0. For fe H" n<r <d + 1, n < d + 1/2, the Galerkin équa-

tions (1.6) are unigquely solvable for any mesk A with sufficiently small h; and the '

approximate solutions u, € S4(A) converge in the.norm of H, 2n—d — 1 <t < n,
to the exact solutzon u as hy — 0 with optimal order O(h"‘)

' Obviously, thlS assertlon is valid if the principal symbol of 4 satisfies Re da,,(z, &)

> 0 for some.number # € C. In Section 4 we shall prove that the assertion holds 1f ,

the pseudodlfferentlal operator 4 is strongly elliptic, i.e. there exists a funcuons
B €C® such that

ReB(z) az,l(x & >0 on RX {:i:l} ' - . (1 9y

Moreover, we shall show that in a spec1al case the strong cllipticity is even necessary
for the convergence of Galerkin’s method.

Although in practice most numerical computations for solving equation (1. 4)‘
employ collocation procedures, hitherto the convergence of these methods is rather
completely studied only for certain special equations, as for Fredholm mtegral

equations of the second kind and for ordinary differential equations Recently it was -

shown in two papers that the nodal spline collocation converges for strongly elliptic

operators. In [11] S. PrssDORF and G: ScHMIDT staté. the L2-convergence of the -

collocation with linear splines for a singular integral equations on the unit circle if
and only if this equation is strongly elliptic. In (2] D. ArRxoLD and W. WENDLAND
developed a new and elegant technique to investigate the nodal collocation with
splines of odd degree relating the collocation  equations with certain- nonstandard
Galerkin equatxons They proved the convergence of nodal collocation using splines
of arbitrary odd degree d > 2n for strongly elliptic pseudodifferential equations and
obtained: quasioptimal error bounds for any right-hand side f ¢ H'@+12-%_ Using
these ideas and some facts about projection methods the author considered in [13]
“the convergence of the nodal collocation using splines of arbitrary degree d = 1 for
pseudodifferential operators of order zero, i.e. for singular integral operators

alz) u(z) + b(z) Su(z) zel.
Here - _— . .
- Sulz) = L[ 4D 4 B ' 110y

) C—z
r

is the Cauchy singular operator having the symbol &/|§|.

In the present paper we generalize the results of [2] and [13] to pseudodeferentml
operators of arbitrary real order 2z and for spline spaces S {4) of degree d > 2n.
In order to formulate a special case of the results in Section 3 we define: A mesh 4
is said to be y-quasiuntform (y > 0) if min (Zpe1 — 22) = yhy. The set of all y-quasi-

uniform meshes for some fixed y we shall denote by 2,. Then we can prove:

Let dimker A = 0 and y > 0 be fized. For/é Hr28 1/2 4 20 < 7 Sd + 1, the
collocation equations (1.7) are uniquely solvable for any A E Z, with su/f_wtently,small hy

- .

-
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and the approximate solutions w, € Sy(d) converge tn H!, 2n <t ‘<‘d + 1/2 and

‘t < r, lo the exact solution w with optimal order O(h5™) if d is odd and the opera-

tor A is strongly elliplic or if d is even and the operator AS is'strongly elliptic.

Note that in [13] we provcd the necessity of these condltlons for the convergence
of the nodal collocation in special cases. ¢ :

Comparing these results we can state: The spline collocation converges for a wider
class of pseudodifferential equations but for a smaller set of right-hand sides than
the standard Galerkin method. Moréover, the Galerkin procedure achxevcs higher

- rates of convergence.

The-author is grateful to Professor W WL\DLA\D for bringing to attention the

'paper [2]. Also, he thanks Professor S. Prossporr and Dr. J. ELscuxer for many

hel pful dlscusswns

2. Galerkin method in Hs .

* In this section we collect some results on Galerkin procedurcs in Sobolev spaces H°,

which will be applied in Sections 3 and 4.} As a rule the results can be easily deduced
from standard literature [3, 15] and we shall only sketch the proofs.
Let X,(0 <k < 1) be a sequence of finitedimensional subspaces of II° for. all
s < m € R having the approzimation property
Al:tfs<mands =r =m + 1/2 then for am/ U E HT and any h there exists u, € X,I
such’ that ,

\ o — uplle = c(t) A" lull, for all t < s,

c(t) dem)lmg.cmwtanls independent of‘u and h.
At some places we shall addltlonqlly require that the subspaccs possess the tnverse

property

a

--]w,,]], S chi=e lwyll,  for all hand all vy € X, .

The Galerkin method, in H* for approximate solving equation (1.4) is defined as to
find an el(,mcnt uy, € X, satisfying the equation

R (Au,,, v,,}s = (f,vp)s forall v, € X,. ' ' (2.1)
Obviously, equations (2.1) are well defined if s <m — n and f € H" forr > 25 — m.

_As usual we consider the pseudodifferential operator 4 as a bounded operator from

He*" in H*~" and write (2.1) as projection equations
P;nhAuh= :nhf? R ‘ - (22)

whore P}, .., denotes the formal s-adjoint operator of the. orthogonal projection

“Pyynp: H*" > X, defined by

‘ .
+ (Pyin, iy Unssn = (U, Vp)ssn for all v, € X, S (2%)
and : ' ' S
(Ps,,, Aty v)s (u, Pgyp, ,,)3 for w € H ™, v € H%*n, / : (2.4)
Hence, the Galerkm method 'in II* is the projection method {X,, P;H, »}- We. shall

- write 4 € IT({X,, P¥,,,}; H') if equations (2.2) are uniquely solvable for all suffi-

ciently small 2 and all f € H'-2" and if the sequence of solution {u,) converges in
the norm of H! to an exact solutlon of (14) as h > 0. ,



Galerkin and Coilocation Methods with Splines . - 375

Lemma 21 Assume A coercive elliptic (1.8) and dim ket 4 = 0. ’ﬂh'en.
4 EI—I({XII: 8+n h} 18+") :

Proof: In light of the results in [3: Th 9.2] and [8] it suffices to show that 4
SatlelCS the inequality -

Re <Au u)a c “u’”s+n + ¢y "u”s+n—z

for some constants ¢ > 0, ¢ > 0 and ¢, and all w € C®. Let us define the mapping

At L€ R by -

Atu(x) = 3 dyp |2rk| ek L+ 4.

: 0% k€Z

Obviously, A' is a pseudodifferential ‘operator with symbol [£[*. Furthermore,

AAS = A3 and (u, v), = (A*u, Av),_, for all s € R and u, v € C*. Hence, (du, u),
(A"’Au u)- The psendodifferential operator 424 is of order 2(s + n) and has

the principal symbol [£|% a,,(x, ). Because of Re J&[® ayq(z, £) > 0 on R X {41}

the Gérding inequality [9] yields :

Re (A% 4u, u)y = Re (du, u)y = clulff, » ¢ IIMHW. 5

Next we consider the convergence of the H®-Galerkin method in a range of Sobolev
spaces. To this end we formulate a special case of a general convergence theorem of
projection methods {X,,, K,,} with uniformly bounded projections K.

Lemma 2.2 (13): If dim X, = dim im K, and [|[Kyu — /-5, — 0 as h - 0 for
all w € H'=2" then the following two conditions are equivalent:

“(1) 4 € IT{X,, K,); HY; '

(i1) there exists A~' € L(H'"%", H") and the fmztedamenswnal opemlors K A| X are
stable in H', i.e., there exist conslants ¢ > 0 and hy > 0 such that ‘ .

WKy Avplli—on = ¢ Jlusll, for alh < ho and v, € X,.

If one of the conditions is satisfied then the approximate solutions wu, comerge to the
ewct solution u with quasioptimal rate

e — wlly = ¢ inf jlu — v,f,. \
Ua€ Xp

In order to use Lemma 2.2 we consider some properties of the projections P,y .

Lem ma 2.3: Lét the spaces X, salzs/y assumptions A 1 and A 2. Then the proyec-
tions Py, , , are untformly bounded in H* for 2s+n) —m <r < mand

= Popntilly S chr=tull, ' t(25)

for 2(s + ) —m —1/2 St S rSm 4+ 1/2, 8 < m, 2(s—{—n)—m<rand/orall
uEH' ’

.

Proof: We use an mgument of \ITSCHE [10). Let s+ n<r<m and u € H’

Choosing u, from A 1 and using A 2 we conclude ) s
. {
“u - Ps+n.hu”r = “u - uh”r + “uh — 4 q+n,hu”r ‘

é c(||u||, ‘TI" },?'8+"_'(”uh—‘_ u‘”sﬂn + ”u - Ps+n,hu”s+'n)) é ¢ Hu[[,.
For 2(s + n)A— m < r <$-+n we have

Py gty Wi u, Pg,n
”Pa+n.hu”r = Sllp< 8+n, k%, >s+n — sup< s L s+n,k >a+n

= ¢ lull,.
\w*O ”w”2(3+n)-—r w0 ”w”2(s+n)—r T
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Thl;S, for 2(s + n) — m < t < m estimate (2.5) follows immediately from-the uni-
form boundedncss and from A1, For 2(s +n) —m — 1/2 £t < 2(s.+n) — m we
obtain . ' '

' U — Py, u, w
”u - Ps+n.hu”l = sup< il >ﬁ”
w0 [[20ll2¢s +-n)-¢

(U — Pyyn by W — Wy)sen

= sup inf = liw — Pysp pull,
w0 wh€ Xy ”w”2(s+n)-
‘ o . w — w, {
: x sup int [0 tlevnnt, < gumcpy _ p o,
: : w0 wpeXy  Wllatsrm—t ;
< chtull,

" where 2(s + n) —m<ti<mt=r 1
By duality (1.3) and (2.4) we derive N
Lemma 2.4: Let X, (0.< b’ < 1) satisfy assumptions A 1 and A 2. Then the pro-
jections Py, , are uniformly bounded in HT for 2s —m <r < m — 2n and for
2s—m—1/2<t<r<m~—2n+l/2 t<m—2m,r>2s—mwehave

lle — P} pully < b=t lull, “for all w € HY . " (2.6)
We are now in position to prove

Theorem 2.1: Let A € H({X,,, p n} Hetnyand X, (0 < b < 1) satisfy assump-
tions A1 and A 2. Then A € I1({X,, P sinnls HY) for 2(s +n) — m <t < m. More-
over, for fe H'=, 2(s +n) —m <r =m + 1/2 the approximate solutions converje
in the norm of H‘ 2s+n)—m — 12 =t <m and 'S r, with optimal order to-
' the exact solution: -

o=l S kel S Bl o@D

Proof: The main step is to show that the operators Ps,,,,,Al x, are stable in Ht.
TLet2(s +7n) = m — 1/2 <t < s + n. Since 4 € L(H!, H'-%") is invertible we obtain
. error estimates in spaces of lower order by applying Nitsche’s trick [15]. There exists
v € H¥stm—t with ||A*v||ps, = 1, where A% ¢ L(H2s+m—t  FH25-1) is the formal s-ad-
joint of 4, such that |lu — wll, = (w — u,, 4*v);. Hence

'

“Jhe — un”z = (A(u — uy), ”}s = l?; (A(u — u), v — T
Up S

= ”A(u — up)|ls-n inf Hv - vh”s+n = Chs‘" Hie — upllgsn

! A€ Xp .
and, conscquent]y, .
N4 — (Pyiasdix,) P L,.;.flh = chotnt ll/lls_

forall f€ H*-n. We set f = @, € im P}, and remark that

lpalls—n = sup (Pn, w)s —su (Pns Pian yw)s

w0 ”w”s+u . w0’ 'lw”s+n
1Ps + n,5%1l25+m)-t
= ||<Pn|l: 2n SUP u

: w+0 ”w”s+n .
for 2(s 4+ n) — m < ¢t < s + n. Applying the inverse property A 2 we obtain

‘ I|P3+n,hw]|gls+n)-l = cht-letm IIP3+;l.th|s+n = cht—ts+m ”w”.ﬂn
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and, hence = . S
l@alls-n = ch=2M=C=m) ||yl _op.

The results of [4: Th. 4.1. 3] 1mp]y 'that the last mequahty holds for all ¢t <s + n.
' Hence

”(A ! (Pq‘ n hAIAt;.)_ s-;—n,h) (ph“t é ¢ ”‘ph”t—’zn .
and, consequently, .
P50 AVl 20 2 c l0all:  for 2(s + n) —m — 1/2 3 t<s+n.

In order to prdve the stability of the operatof‘s Py . 4Alx. for s+nkil<m we
assume that the exact solution z € H'. Then, using (2 5) and A 2 we derive

flw — uh”t = ”,u - Ps+n,hu_”: + I]Ps+n,h7l" — upfle
ot o = el + h“‘”"’(IIPm " — ullm + e — wpllssn) = c fluall
Hence o '

- (A7 — (P ardln) ™ Pos) /II: < ¢ ez

for all f € H'-?", Since due to Lemma 2.4 im P§., , < H'~2" for t < m we have shown
that the operators

Aly,: H‘—>H‘ —n, (s+n) m—12=t<m .

8?"}!
’

are stable. In view of Lémma 2.2 this 1mp]les together with Lemma’ 2.4 the first
assertion and estimate (2. 7) for 2(s = n) —m <t < m. Usmg once more Nitsche’s
trick we obtain (2.7) for 2(s + n) — m — 1/2 <t <2(s + n). — m, which complctcs
the proof 1 . )

: 3. Convergence of the collocation method

In this section we connect the nodal ‘collocation using splines of degrec d with a
Galerkin method in Hi, where j = (d + 1)/2. Thus, we can apply results of Sectlon 2
in order to study the splme collocation.

First we introdice some mappings. By S, we denote the psendodlffcrentxal operator

with symbol £/|&| defined by . ) . N :
. . [
. [’ - -1
Sou(s) — Z’ 72‘: 62"“‘1 Z’ ﬁk e'.!:u'kz
k=0 k= -

Obviously, S, € L(H?®), s € R, and’ §,~! = Sol) Further we defmc onedlmensn\onal
operators J and J 4 by . .

. 1 ‘ T
Ju = fu(x) dz and Jgu:= Zuxk (Tps1 — @ ,)/2
. 0 k=1
The following theorem goes back to D. ArNoLD and W. WENDLAND and is fundamen-
tal for our further'considerations.

~

1) It is well known [7] that S, represents the Cauchy singular operator (1.10) on the unit circle
={z:]2] = 1} :
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i

Theorem 3.1: Let w € H® /or § > 1/2. Then the following conditions are équivalent :
(i) w(zy) =0 fork = 1,. .
(i) (I — J 4 J ) u, vd), = 0 for alloddd = 1 and all v, € Sd( );

ity /(I — J + J,) u, ‘SovA>, = 0 for all even d = 0 and all v, € Sy(4).

Proof: (i) + (i) see [2], (i) +- (iii) sec [13]

We sec that the collocation equations (1.7) can be written as equations using inner
products of Sobolev spaces. Since 4 € L{H*+» Hs—) the equations (1.7) are well”
defined for s +n < d 4 1/2 and s — » > 1/2, which imply in particular relation
d > 2n between the order-of pseudodifferential operator 4.and the degree of the
splines. Setting s = j = (d + 1)/2 all requirements are fulfilled and we obtain from
Theorem 3.1 that the collocatlon equations (1.7) are equivalent to

(T =T - ) Ay, vayy == (L — T+ ), va)
~ . for uy,v,€ S,,(A) and odd d > 21 '

and to ) .
L T =T+ T ) Aug, Ses); = (I = T + Ja) £, Sqva);
' for uy, vy € Sd(gl) and even (l > 2n. ' .

We note the error estimate fc;r the trapezoidal rule v
T = Tl < ok full - (3.1)

for d“ u € H* and all meshes 4 if 1 <5 <2, and for all y- quwelumform meshes With
fixed y > 0.if 1/2 < s < 1 (see [6]). For arbltrarv meshes the error estimate

T — T ) ul < okl |lul, . . - (3.2)

~

15 easily established, where 0 < e << s — 1/2. Thus, one can expect that cquatlons
(1.7) are uniquely solvable for all sufficiently small h if for odd d equatlons

<AuA, DA>) = <f, QA>] for all vy € ‘Sd(/l) ’ (3.3)
- or if for even d equations '

(Aus, Sqvs); = (f, Squa; for all vy € S4(4) . (3:4)

“are uniquely solvable.
We remark that (3.3) is the Galerkin method {S,,( )s Pfin.qt 2applied to operator 4,
where P;,, 4 is the orthogonal projection of Hit" onto Ssd). Introducing Sa(4 )
= §,84(1) and denoting by P, 4 the orthogonal projection of Hi+" onto Sy(4) we
see, that (3.4) is the Galerkin method (S4(d), P,M s applied to the operator 48;.
In order to prove the hypothesis we shall write ‘equations (1.7) as })I‘O_]CCthn _equa-
‘tions usmg some interpolation projections @4 4 with

im Qg4 =im P}, , foroddd,

resp. . N

im @y 4 = im P’M 4 forevend.

The existence of these interpolation projections follows from Theorem 3.1.
Let d be odd. Then the interpolating element Qg 4u € im P}, , has to satisfy

(I =T +J)Quaw,vs); = I —J + Ja) u, v,);

4
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. . .

for all v4 € Sy4(4). Hence

Pl —J 4+ J5)Qagu =Pl —J +J)u

for all %€ Hi-". Since im P?, n.4 contains the constant functions and (1> dJ + Jy)?
= (I + J — JA) [2] we obtam

.\' Qd.d-( +J_JA P.nzl(l J+JA)= ;”)A_*"(J—le (P nd _I)'

- ) , : (3.5)
Analogously onhe obta.ins for even d . : .
Qd 4.= ;+n a4+ (J — Jd) (P]+11A I) : - . . ; (3.6)

Thus, the nodal spline collocation for - cquatlon (1:4) is the projection method
{Sa(4), Qa,a}- . ’ '
We are now in position to prove .
‘Lemma 3.1: Let.the degree of the splines d be odd. Then
A € II({S(4), Qu.a}; H’*") tf and OnlJ if A € 114844 ) Pinabs HIt).
If d’is even then , ‘
4 € [1({84(4), Qu.a}; H**) if and only if ‘A8, € IT({844), P,‘ wabs HITM).

Proof: Since the finitedimensional spaces Sq(4) and Sy(A).s atisfy approximation
“property A 1 with m = d + 1/2 and h =k, the projections P, ,, f, na and Qg 4

strongly converge in Hi=" to the identity operator. Thus, we can apply Lemma 2.2

and have to study the stability of the finitedimensiorial opcrators as hy, > 0.
Let d be odd. Since j — n.> 1/2 we obtain from (3.5), (3.1) and (3.2) |P},, ,
"= Qa.4lli-» — 0, hence the operators Qg 4A4|s,4) are stable in Hi+" if and only if

}..

Py, |A|s,,(A) are stable. For even d we derive from (3.6), (3.1) and (3.2) ”P;+nd."

4, 4lli—n — 0 and hence,.the operators Qg .4 |s,a) = Qu.44 55,4, are stable in Hi+»
“if and only if PI”,JASOISAA, are stable @

We can now give conditions for the convergence of the spline collocation. We
remark that in the case.of odd degree d this condition was already established in [2].
Here we give a different proof.

Thgorem 3.2: If dimker 4 = 0 and for odd d > 2n the opéralor A s strongly
. elliptic or for evén d > 2n the operator AS is strongly elliptic then -A € IT({S4(d), Qg 4} ;
Hi*ny, Furthermore, for f € H=2" j 4+ n < r < d + 1, we have

I — tallion S RGI flyzn: ‘ B A
(S denotes the Cauchy singular operator-(1.10).)

Proof: By 0 we denote the operator-of multiplication wnh & nonzero function-
Hz) € C=°. Obviously, Qg 407'Q4 404 = Q4,44 and 071 ¢ H({lm Q.4 Qa.abs HI=").
Hence, A € 1]({S( ), @a.4}; II’+") if and-only if 04 € I[( {SalM), Q4. 4}; H7+"), and
because of L.emma 3.1, if and.only if

04 ¢ IT({S,,(A), Pi‘,.,,,,‘,}; Hi+ny for odd d "~ (3.8)

for

~

Ny
.

048, € IT({84(4), BL., }; Hi+") for even d ; 39
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" . and some nonzero function &. Due to Lemma 2.1 (3.8) holds if Red(x )ag,,(t, & >0 -
on R X {41}, ie., if A is strongly elliptic. (3.9) is valid if Re ¥z} ay,(x, &) &/[&] > 0
on R X {£1}, i.e., if the operator AS’ is strongly elliptic.. Estlmate (‘3 7) follows from

s

_ Let us derive equivalent conditions for the strong elliptiéity of A4 and AS. Since
@yq(z, &) is positively homogeneous of degree 2n with respect to &, there holds

@@, §) = &2 (@nal@, +1) (1 + E/|E)/2 + azalz, —1) (1 — E/|ED)/2) *
= [&P(clx) + d(=) &/18) ‘

<

c(,v)lz d,2?"(x’ +1);_ a’2n(x,._l‘1)? d(x) - a2n(x9 +1) ; (1‘2,,(117, _1) X

with

Hence, Re 9(x) aq,(z, §) > 0'on RX{+1} iff Red()(c(z) + dlx)) > 0 on R. The
. last relation holds for’ some function ¢ € C* if and only if c(x) 4 Zd(z) & O for
xe¢R, 2e[—1,1][11: Lemma. 4.4]. 'lhus we obtain that Ais strong]y elllptlc if -
‘and only if

na(z, +1) 4+ (1 — p) az,.(:v —1)£0 for ze R, pejo, 1]. (3.10) .

Analogeously, operator AS is strongly elliptic if and only if d( ) + Ze(x) £+ O for
x € R, 2 € [—1, 1], or equivalently,

an(z, 1) — (1 — 1) agalz, —1)#0 for.ze R, pe[0,1]. - (3.11)

We now mvcstlgate the convergence of the nodal splmc collocation in a range of
Sobolew spaces. To this end we remark that the spaces Sg(4) and Sa(d) satisfy the
inverse property A 2 with m = d + 1/2 and h = h, if all meshes under consideration
are y- quasmnlform w1th fixed y > O (cf. [6]). ,

Thcorem 3.3: Suppose dimkerd =0and A€ 2,. If A satwfws‘ (3.10) and d is
odd or if A satisfies (3.11) and d is even then 4 € H({Sd( ), @a.a}; HY) for 2n + 1/2
<t < d + 1/2. Moreover, for any right-hand side f € H'"*", 2n -+ 12<r=d+1,
the approximate solutions uy converge in the norm of H', 2n <t<d+ 1/2 t=r,
fo the ezact solution uw with

lle — wally < SR llly-2n- - ' g N @m

Proof: Due to Lemma 2:4 the projections P ' s and P ' w.a are uniformly bounded -
“in Ht=2n for 2n + 1/2 < t < d + 1/2. Hence, usmg error estimate (3.1) and repre-
sentations (3.5), (3.6) we conclude that the interpolation projections @4 4 strongly
converge to the identity operator in H!~?" as hs — 0. Thus, the first assertion is
proved if we show that the operators Q4 4A4|s,4) are stable in H*.
" Let d be odd. Because of Theorem 3.2, Lemmas 2.2 and 3.1 condition (3. 10) yields
the stability of P, AAls.,(m in Hi*" as hy — 0. The proof of Theorem 2.1 shows
that. ) : . .
“ )011 AAvA”l 2n 2 C ”vA”t ' : ) (313)

for all y- quasmmform meshes 4 with ky < h, all v, € S4(4) and 2n <t<d-+4+ 1/2.
Formula (3.5) implies - , .

. MQd, s — ;‘4 n.1) Clliow = (I —Ta) (P}ina — I) v = ch” |,
forve H”, r > 1/2, such that :
Q4.4 — ]+“||, =0 for 2n +1/2 < ¢ < d+ 1/2,
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which proves the stability of Qg 44|s,4) in H. If d is éven then condition (3.11) im-
plies the stability of P? endSol5,0a in H' for y- -quasiuniform meshes and 2n St < d

+ 1/2. (3.6) yields []Qd 4— Plinallican >0 for 2n +1/2 < t < d + 1/2 and, conse-
quently, the stability of :

Qu, 2480|544y = Qa, AAIS,,(A) in Ht.
In view'of Lemma 2.2 4 € 11({Su(4), Qa.a}; H‘) and estimate (3.12) holds for 2n 4 1/2
<t<d+1/2
‘In order to establish (‘3 12) in the remaining case 2n S t < 2n -+ 1/2 we first con-
sider the case of odd d and remark that because of (3.5) u, solvcs the equation -

P]?nJAuJ'T“(J—JA)( 7fn,A—I)AuA‘—:;~n.A!_ ; - )(P;t )/
Denoting by %, the solution of the Galerkin equation ' A

P;'.‘fn,AAud’ = P} jin A/

we obtain

P sy —us)y = —Jg) (P}ps— 1) /—AuA)

Hence, using (3.13), (3.1) and Lemma 2.4 we derive’ B
s = uq e S ¢ |Pf:pd(uy — ug We-2n = ch*" ”AuA — fllr-2n

/

]

, _ = Ch'a_q" fIfllr-2n- -
Theorein 2.1 states that |l — w4, < ¢ iflly-2n and therefore

fu — wale < B fllr-2n + B5%" (fllr-2n) = A5 fllr-2a-.
The same arguments prove estimate (3.12) in the case of evend |1

4. Convergence of the standard Galerkin method
r
The example of the Galerkin method using trigonometrical polynomials, which con- V
verges for the operator.of multiplication with a nonzero function if and only if this
function has the winding number zero [7], shows that in general -Galerkin methods
- do not converge for strongly elliptic operators. In this section we shall demonstrate
that the standard Galerkin procedure with splines converges for strongly elliptic
_ pseudodiffercntial equations as it is stated without proof in some papers. Our proof
utilizes essentially results of Section 3.
First we consider-relations between Galerkin methods in different Sobolev spaces®
and using splines of dlfferent degree.
Let us denote by D', I € Z, the pseudodlfferentlal operator
Diu = 3 4(2nk) e?nik= + g '

) 0= k€Z :
having the symbol &. Obviously, for -sufficiently smooth » and 1€ N we have
Diu = (i di) u + Ju. Furthermore, D' maps H® (s € R).isomorphically onto H*-!

i.dx
and ||D‘u||, ; = llulls. Using the periodicity of the splines we obtain ‘

Sd J(A) D‘Sd(A) for { = d.

. In difference to Chap. 3 the orthogonal prOJectlon of H*, s <d + 1/2, onto the sub-
_ spaces Sy(4) is now denoted by P, 4.4. 1t is easily seen that

Pyt sa-1= D Ps.A.dD— ,  l=d. ‘ o (4.1)
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.’ZI',emma 4.1: Lel s +n<d+ 1/2 and the mteqer l=<d. Then 4Ac¢ [I({éd ,(A)
P:—l-é n.A.d—} Hs b ") lf (md O?llj 7’/ A € I_] {‘Sd(A) s 1.4, d} Hs—| ")

Proof: It suffices to prove the assertion in one direction. Let A € 11({Sd(A)
I’sﬁ,, Al Hs”') and suppose that the operators Py v aa—14ls._ua are not stable
in Hs—t+n as h, — 0. Then there exists a sequence {vy € Sy_,(4)} w1th [1% alls— len = =1
weakly converging to some v € Hs—+» such-that '

4 s N ”P:—' +n,4.d—1 Avd"s' l-n —> 0

Smcc Ps_ sma.a—1dvs weakly converge to Av in II’ {=n we obtain v.= O
" Using (4.1) we get on the other hand

_ * -1 _ pip* 1 L Dips
P s—l»o»n.d.d—lAvA - DP&~;n.A.dD Avd =D P.H‘n,A.dAI)i v+ D Pa+rz,A,deA’
\ L}

where K == D-'A — AD™! is a pseudodifferential operator of order 2n — 1 — 1.
Hence, [|Kv4lls—n — 0. Because of N

“P; ~l+n,4,d »l_AvA”s—t-n : IlP;+n.A,d(AD—IUA + de)”s—ﬂ
AY

- we derive ||[P¥,, 4 AD 'vlls_, — 0, which is impossible since D', € Sy4) and
”D_'v/.i”sfn = ”Qd”s—lﬂr = 1_ B

Theorem 4.1: Let the pseudodiﬂerential operator A be strongly elliptic and
“dimker 4 == 0. Then A € I]({ a(4), Py 44t H") for any d > n — 1/2. For f € H™=%n,
n<r'<d -1, the approximate solutions wu, converge in H', 2n — d—1=t=7
to the exact s‘olutzon with the rate

e — wall < kot Wllaue - (4.2)

If A € 2, then estimate (4.2) holds for 2n —d—12t<r<sd-+1, t<d—}—1/2
7>2n—d—1/2

Proof: Setting in Lemmma 4.1 s = 0, l= —(d + 1) we obta-in that 4 ¢ fl({S’d(/_l).
P:.A.d};H") if 4 ¢ H({Sz,,.”(._/_l), Py ingoaer)s H"+1+"). From Lemma 3.1 and Theorem
3.2 we know that the Galerkin method in H%*1 with splines of arbitrary odd degree -
2d + 1 > 2n converges for strongly elliptic pseudodifferential opemtors Estimate
(4.2) follows from Thcotem 2.1 1 .

-

Using Lemma 4.2 we can also show that in a special case the strong ellipticity is
necessary for the convergence of the standard Galerkin method.
Let A be the singular integral operator

Au(a‘c) = a(z) u(z) + b(z) Su(z)

' "and suppose that 4 € I]({So(/_l) P ao); HO), i.e., Galerkin’s method with piecewise
constant functions con\ erges in H® == L Due to Lemmas 4.1 and 3.1 we obtain
4 € 11({8,(4), Qy,4}; H'). But [13: Th. 4.8] states that 4-must be strongly elliptic.

We want to mention that the Galerkin method can converge for degenerate and,
in particular, for not strongly e]llptlc operators if the subprincipal symbol a},_,(z, &)
= Ggpy (2, &) — (20)7 D%a,,/0x ¢ satisfies additional requirements. The convergence
of Galerkin’s method with splines for such operators was considered by ELSCHNER

. [8] and as a special case of the obtained results one can formulate: . .

Suppose that A s elepnc ‘with dim ker 4 = O but not strongly elliptic and salzs[zes
" Re aga(z, &) =0 on RX {1}, ,
Re a;,,(x, §) >0 on Yrea,:= {(z, ::1): Re ay(z, 1) = 0}.
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4

Then for f€ H=28 n + 1/2 <r <d + 1, n < d, the standard Galerkin ejuations are
untquely solvable and the approximale solutzons u, converge in the norm of Hn-1? o
the exact solution-with

‘ ”u.— uA“n-—lla = Chd’_.l_("_lﬂ) W“r-—zu

Consequently, the set of the right-hand sides, for which Galerkin’s method con-
verges, and the order of convergence is smaller than in the strongly elliptic case and
this cannot be improved in general {(cf. [3]).

Fmally we remark that all statements remain valid for the more general case of
systems of pseudodifferential equations of the same order on a system of mutually
disjoint C*®-curves. We only mention the equivalent conditions of the strong ellip-
ticity for 4 and A4S (cf. [12]):

det (uaza(z, +1) + (1 — 1) aga(s, —1)) 4 0 - '

and respectively

det (uasn(@, +1) = (1 — 4) ag, —1)) 4 0
forx € R, u € {0, 1], where the matrix function a,,(z, &) is the principal symbol of
the system of equations.” - :

' A /

REFERENCES

[1] Arpanosir, M. C.: CnexTpaabuble cRoitcTBa :)n'anuuecr\n\ ncenorultbd)epemula..lbubl\
011epaToposB Ha 3aMKHYTOIf Kpusoi. Oyuk..auan. 13, Ne 4 (1979), 54— 56. .

{2] Ar~orp, D., and W. WexDLAND: On the asymptotlc convergence of collocation methods

. Math. Comput 41 (1983) 349—381

[_Ii] Auix, J.-P.: Approximation of elliptic boundary-value problems (Pure and applied
mattherllaticS: Vol. 26). Wiley-Interscience: New York 1972.

[4] BanusSka, L., and A. K. Az1z: Survey lectures -on the mathematical foundation of the
finite elehent methdd. In: The mathematical foundation of the finite element method
with applications to partial differential equations. Proc. Symp. Univ. Maryland Junec
26—30, 1972 (Ed.: A. K. Az1z). Academic Press: New York—London 1972,

(5] ELscHNER, J.: A Galerkin method with finite elements for degenerate onedimensional
pscudodifferential equations. Math. Nachr. 111 (1983), 111 —126

(6] EvLscuxkr, J., and G: ScumipT: On spline interpolation in periodic Sobolev spaces. Pre-
print P-Math-01/83. Inst. Math. AW DDR: Berlin 1983.

{7] Gocusere, I.-Z., und 1. A. FrLpmax: Faltungsgleichungen und Projektionsverfahren zu
ihrer Losung (Ubers. a. d. Russ.; Math. Lehrbiicher und Monogmphmn Abt. 2 Bd. 36).

. Akademie-Verlag: Berlin 1974.

(8] HiLbesraNDT, S., and E. WrexnoLtz: Constructive proofs of representation theorems in
separable Hilbert space. Comm. pure and appl. math. XVIT (1964), 369—373.

[9] Koun, J. J., and L. NIRENBERG: On the algebra of pscudo-differential operators. Comm.
pure and appl math. XVIII (1965), 269—303. -

[t0] Nirscur, J.: Zur Konvergenz von Niherungsverfahren beziiglich verschiedener I\oxmcn
Num. Math. 15 (1970), 224 —227.

[11] Prossvorr, S., and G. ScHmipT: A finite element collocation method for singular integral
equations. Math. Nachr. 100 (1981), 33 —60.

(12} Prossporr, S., and G.ScHMIDT: A finite element colloczmon method for systems of
singular integral equations. Preprint P-Math-26/81. Inst. Math. Ad\WW DDR: Berlin 1981.



A

384 G. SCHMIDT

N

(13] ScEMIpT, G.: On spline collocat:on for smgular mtegral cquatlons V[ath Nachr. 111
(1983), 177—196. '

[14] StepHAX, E., and W, \VFI\DLAVD ‘Remarks to Galerkin and least squares methods with
finite elements for general elliptic problems. In: Lecture Notes in Mathematics 564.
Springer-Verlag: Berlin—Heidelberg—New York 1976, pp. 461 —471.

(15] Straxg, G., and G FIx: An analys;s of the finite element method. Prentice Hull Engle-
wood Cl)ffs 1973

7/
/
Manusknptemgang 20. 01. 1983

VERFASSER: ' S )

Dr. GUN’I‘}I]’-‘B ScHMIDT
Institut fir Mathematik der Akademie der \Vlssenschaften der DDR
DDR-1086 Berlin, Mohre_nstr 39 PF 1304

-



