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" 'On Strongly Nonlinear Poincaré Boundary Value Problems

for Harmonic Functlons

‘L. v. WOLFERSDORF

Es wird eine Klasse stark linearer Poincaré-Probleme fiir harmonische Funktionen im Ein-
heitskreis durch Zuriickfithrung auf ein neues System von Integralgleichungen untersucht,.
auf das der Schaudersche lepunktsatz angewendet wird. Fur verschiedene Spezialfille werden
konkrete Eustenzaussagen gemacht, insbesondere .wird der quasilineare Fall im Detail be- .
handelt. - .

Hceaeayerca Knace CHIIBHO HeNliHeliukX 3anay Ilyam(ape nana rapuomwecxn\{ ¢yHxuit B
eAMHUYHOM Kpyre. 3ajlaun CBOATCA K HOBOH CHCTeMe HHTErPAaNbHEIX ypaBHEHMI, K KOTOpOIf
NPMMEHHACTCSA, TeOpeMa llaynepa o HemoaBm<HHIX TOYkax. J{iA pasHBIX YACTHBIX Cl1y4aes

“nanTcH KOlleCTHHe Teope\m cymecmonaunﬂ B qacmocm HOllpOﬁHO paccma'rpunae'mf{

KBasUJIMHEHHLI cnyyYail. .o

A class of: strongly nonlinear Poincaré problems for harmonic functions in the unit disk is
studied by reducing them to a new integral equation system to which Schauder’s fixed point
theorem is applied. Specnflc existence results are given for several specml cases; in partlcu]ar
the quasilinear case is dealt with in detail. 1

AN

Introduction

The Poincaré boundary value problem is a basic problem of the theory of harmonic
functions posed by H. PoINCARE in his investigation. of the mathematical theory
of tides in 1910. The plane linear problem of this type containing the problem of
oblique derivative as a special case is now fully investigated (cf. [13]). .-
Existence theorems for nonlinear generalizations of the Poincaré .problem are
derived by W. POGORZELSKI [14], J. WoLsEA-BOCHENEK [20, 21], and M. SCHLEIFF
(16] in the case of a linear main part of a boundary operator of Steklov or Poincaré
type and a strong nonlinearity in the tangential (and also the normal) derivative of
the unknown function % and in u itself satisfying a Holder-Lipschitz condition with

. _sufficiently small constant. Corresponding problems in sufficiently small neighbor-

hood of the Neumann and Steklov boundary value problem of potential theory are
already investigated by K, MARUHN [12], too. On the other hand there are global

‘existence assertions for this problem with linear main part of oblique derivative or

Poincaré type and nonlinearities in the unknown function % alone given by
M. SCHLEIFF [16] again and in more general form by H. AmMaxN {1, 2}, F. [NKM.ANN
(6), F. RoTHE [15], and P. WILDENAUER [17].

More mtcnsnvely, because of its importance in physics, the special case, where the
linear main part is the normal derivative of 4 and the nonlinearity depends only
on u, has been investigated beginning with the classical paper by T. CARLEMAN (3].
In thls context we only mention the papers by K. KLINGELHOFER [7—11], where
the method of Hammerstein integral equations is used. for proving the existence of

.solutions for diverse types of such problems and the paper of J. M. Cusar~G [4],

where a correspondmg eigenvalue problem is studied.
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. In this paper we make an attempt to investigate nonlinear Poincaré problems for
harmonlc functions in the unit disk by another integral equation method developed
in our paper [18] for the nonlinear Riemann-Hilbert problem of analytic functions.:
This method works with the differentiated boundary condition on the circumference

~and reduces .the problem to an integral equation system of the type of Villat’s,
equation in the theory of jets. To this system the classical Schauder fixed pomt
theorem is applied.” As a result we obtain existence theorems for some classes of

© strong nonlinearities in % and the, tangential derivative of  satisfying a constraint

* on the oscillation of the ascent -with respect to the tangential derivative of « and
depending in some sense weakly onthe function w itself.

§1. Statemmt of problun - ,
' Let G’ |z] 2 1 be the unit, disk in the complex z plane with boundary I': |t| =1,
t=e" (—n=s==n) We deal with the following nonlinear Poincaré problem,

Problem P: Find a regular harmomc function u(z), z = 4 4y, in G which has
" continudus’ partial derivatives in G=@ + F, i.e. u(z) E CI(G’), and satisfies the
boundary condition :

" oulor + @(s, u(e"), au/as) = /(s) on I‘ : Co (1)
where 7 is the polar radius. ) ‘
The followmg basic Assumption A on the da.ta is made

(1) D(s,u, w) is a real-valued continuous function on [—m 7} X R X R which is
2n-periodic 1n s and possesses a continuous partial derivative @, and partial deri- - )
vatives @, and @, satisfying the Carathéodory conditions and estimations of the
form : h ’ . o '

0w o) S B € L), e>1, - 2)
[Pu5, %, @) S 6(s) € L(T), - 0>1, " o (3)

for u, w from bounded intervals of R.

(ii) /(s) is a real-valued absolutely contmuous 2n-periodic functlon on [—-z a]
- possessing a derivative f'(s) € L(I'), ¢ >'1.

Under these assumptions we can differentiate the boundary condntlon (1) w1th
~ respect.to s obtammg the condition

urs'l'@(s u,us)+¢(s:u)us) ua'l‘@(suua) ’ll,”—/(s) a.e. ODF
' C(4) -

where derxvatlves of u are now denoted by subscripts, too. The boundary condition
(1) is equnvalent to the COHdlthIl (4) together with the integral condition

—_n

fdi(s u(e ‘), us)ds ff(s) ds _ 1 ‘ IR G)
following from (1) by integration over I R . ~ -
"We introduce the holomorphlc functions in @ )
Cwe) = ule) & w2); W) = Ul) + V() = ') = ru, — iy,
. . : S 6
X(2) = ¢l2) + iple) = 2W'(2) = rU, — iU, = V, + irV, ®)

- . v e
~ 4

. . . .8
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win o o S S
X(t) = @lt) +ip(t) = —Ugy — ity on . T < ’ (7)
Then (4) takes tTle form of a Riemann-Hilbort condition for/X(g): , '
Re((4 s) — 1) X(t)]E A(s) glt) + yit) = gls) .a.e..onF,’ - (8)
where _ . o _— 4 S
' A(s):@w(s,u,u;,), S S o 9
gls) = ¢wum+¢wu ) s — 1(5): SR (10)

: The solution X(z) of the Rlemann Hilbert_ problem (8) has to fulfil the additional -

’ .condltlon :

X(0)=0 in’z,_'o ,' N ¢ 51

From X(2) the boundary values u{e') of the ‘sought functxon u(z) follow by the
relatlons : : ;

ulet®) = fusl(e"”) da'-{; k, ’ . - BT 4,(12)
[ ,_‘ . . : . ) R .
wﬂ;ejmww+m_ Ty

. where oo ' o . o :
and the constant Ic = u(l) has to be determlned in fulfllhng the 1ntegral condition (o) '
.. The harmonic function u(z)_itself is then given by the’ Poisson integral of the
.boundary values u(e*?).” Thus, Problem P is equlvalent to the relations (12) with

arbitrary k£ € R and (13) with (14), where @(e®?) = Re X(t), X(z) the solution of (8) .
with (11), and additionally (5) has to be fulfilled. . , :

§ 2. Reduction to-a fixed point problem o ' : -

For presérfbed continuous function A(s) and function g(é) €L o), @ > 1, the Rie-
mann-Hilbert problem (8) with (11) has a unique solutlon X(z) w1th p(e®) = Re X(t) .
on I’gwen by (cf [5:§29]) - ‘

(M=M)@+WN“WWW%@) R o (19)
where - - . ' - R
. als) = /V1-+.Azw> ﬂ@)=:1/Vl-Ff4%8L . e
p@;mmmm,h@;meM%x Ly

and H denotes the Hilbert transform

'
%

' (Ev)(s):%z--/‘v(a)gbt.”_sdo;, o ‘ 18y,

25%
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This solution exists if z\md only if g(s) satisfies the orthogonality condition
fy(s)g(s)ds:O' - T . (19)

—IK

with the nonnegatlve function

yls) = eHw /YT 1 A%s . v : ' (20)

In virtue of & known theorem of A. 7YG‘VIUND (ct. [22]) the functlon efitus) and there-
- fore y(s) is summiable to any power. -

For given continuous functions &(s), 5(s) on I \nth f77 5) ds =0, ig. ¢ € C(F

7 € Co(I'), we introduce the aulemry problem Pg,, characterwed by the boundary -

condltlon
\

A(s, &, n) ¢p(t) + tp(t) = go(s, &n) ae.onl B . o 21y

and the additional cbndition A(ll) for X(2) = ¢(z) + iyp(z), where

Als, & m) = Puls, &m), - ‘ o C(22)

ol &) = gl £7) = s, &) i ‘ (@)
with ) ‘
9’(8{5;77) <I>(s £, 1) + Duls, &, 77)17 = f(s), - ' " (24)

m(s, &) = mal, ) - s, &, m) dm+ﬂo=h . . @)

mofé, m] = [ 9o, & ) 95, & ) f o bmds, (26)

and

s, &, 7) = efwt-tnle /YT L A%s, £, g ,. | . @7 -

uls, &) = arctan A(s, &, m). o T @28)

The auxiliary problem Pf,, has a umque solution X(z ) Accordmg to (12), (1‘3)'

the corresponding boundary values u(s) = u(e®) of u(z) and TRE) of u,(z) are given
by the expressions

uls) = Myln] () = [ nlo)do + k, -~ (29
0 : : .
uyls) = Nofé, 1) (6) = — [ olo, &, 7) do + by, ‘ (30)

. 0
where

and k = k[7] has to be dctermmed in fulfilling the relation o ' -

f@D(s,fna)da-}-kn(s)ds ffs)ds. o SR €5

i 4

ffq;(o,én)dods . o o (31)

Ve



Poincaré Boundary Value Problems 389

s .

The function (s, &, 7) = ple®, §; 77). is defined by (13) with (16), (17), where 4 is

" replaced by Als, &, 7) from (22)'and.g by go(s; &, ) from (23). By Assumption A the . -

function A(s, , %) is continuous on I" and the function gq(s, &, 7) € L(I') for any pair
of continuous functions &(s), 5(s). Moreover, g, fulfils the orthogonality condition (19)
. by construction. ’ . L

Any fixed point {u, u,} € C(I')XCo(I') of the 6perator N = {N,, N,} yields a solu-
. * tion u(z) of Problem P with boundary values u(s). For, v = & and %, = 7 in (29),

(30) at first implies %, ="u'(s) and further leads to the equation (4) with an addi-
tional term mq{u, u,] - [y(s, u, %,)}°"" in the right-hand 'side which is seen to be zero

by integrating the equation over I'. Also, from (30) follows that u; = usjr € Co(I") -

‘indeed.is a Holder continuous function such that also the boundary.values of the
_normal derivative %, of w arc (Hélder-) continuous and u(z) € C(G). Thus, Problem P

. is rediiced to the determination of fixed points for the integral operators (29), (30)
with (31), (32). « , R

~

§ 3. Existence theorem
- We consider the operator N = {Ny, Nz} on the convex compact subsct & = £, X &,
of the space C(I')X Co(I") with : ' : '

R = (€ O E6)] S P,y 80 — Elel S Polsy —sal), = (33)

“for any s, :s,,_sz € [—m, n), where 2 = 1/¢; ¢ th(:) conjugate exponent to p, 1l<p <o,
and P, P,, R, R, are fixed positive real numbers to be specified later. :
Further, we make the Assumption B that.for all n € Q; the equation (32) for

with respect to 5 € ®5:

‘k € R has aroot k = k{xn] which depends continuously on % and is uniformly bounded .

k7]l < K for ariy 5 € R, with K = K(R, Ry). : (35)

This is especially fulfilled if the (continuous) function P(s, u, w) is strictly monotone
with respect to u for any s € [—=x, 7}, € R, there exist the limits ’

U—> 3 00

ai-nd f f(s) ds lies between the-values (I); = f & (s)ds.
Let_lus now estimate u = N,[] and u, _= No[£, 1) for £ € Ry, ¢ S"Pz Obviously,

()] 'S 2nR + K(R, Ry), -~ uls) —uls)l SRlsy— ol -~ - (837)
for any s, s, éz € [—m, 'n]. Further, for the L, norn; of the function g, there holds
lgolle < 2 ligle < 2(M + ve.r + Rp.s, A (38)
where 3 = ||f'i]9, , R ' - C E
Vp g = SUp I[Q,(s,’u, ) !9 < 0, ‘ (39)
r.n = SuB [Buls, w, 0, < 0, o : (40)

. thie-suprema are taken over s € [—=, 7], |u| = P, |w| < R. Finally, applying the
. triangel inequality, the elementary inequalities [B(s)] < 1 and |a(s) B(s)| < 1/2,

'
\
-

8

' ,Qe = {n € Co(r)i.lﬂ(s)l § R, \|77(31) — 7(s2)| S By |8y — s/} (34) -

lim &5, 4, w) = ®4(s) € C(I") uniformly in s € [~7, 7], weR, ' (36).
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Holder’s inequality and the boundedness of the Hilbert transform in. Lebesgue
~ spaces, for the L, norm of the function ¢ we obtain the estimate -

Iltpllp (172) llgall, + 4, fle=#®), - [lcH g,

"< lgoll ((1/2) (@2ny* + 4, e=#w, - e, -' | (6) "

where % = 2polle — p], r = «c[g — p)/le + ], and 4, is the M Riesz constant the
norm of the Hilbert transform in L(I').
We make the Assumption C-that _ i
© 2ypiit = sup p(s, u, w) — inf u(s, u', w) <alx L (41)
for the oscillation of the function ,u(s u, w) = arc tan D,(s, u, w), the supremum
and infimum are agam taken over s € [—n, n], [u| £ P, |w| < R. Then

"""x, —H(u)”g =z
o, =, < (22—

) accordmg to the well-known Zygmund ]emma (cf. [22, 18]) Therefore, .
llgll < (272 |igol, {(1/2) + Ai(cos xyp.p)~ 2”‘} b ’ (42).

l

and because of

a1 [ loto, &) ds < (@) g - (43)

we have the estimation® o -

[a(s)] S?‘3(2”)”" ligll,

< @)1 lgll, 11 + 24 {cos yr)=3), - e

takmg into account that 1/o, = l/q + 2/x Moreover . -

\

Jug(sy) — ul(SZ)I S [sy — 32|l/q ”‘I’”p

~r

2n.‘~)'/"* ' . ST e

T Sls = sl (27!)2”‘ ligolle {(1/2) + 4, (COS *¥p.R)” B (45) -

Finally, we put P,=R and make the Assumptzon D that there exist P,R > 0 '

with R = 2(2n)4R,, P= 2R + K(R, Ro) such that o
> CP r= (2n)2*[M + vp,r + Rfp, R] {1+ 2Ar(009 xyp,R)” 2/"} (46)

where as above 1 <. p <0, % = 2])9/[9 —pl,r= x[g — p)lo + p], A, the M. Riesz
constant, and vp z, ez, yp.x are defined by (39), (40), (41), respectlvely Then, on

account of the estimations (37) and (44), (45) with (38),'the operator N maps the- ‘

convex compact subset & of C(F)XCO(P) into itself. Besides, the operator N: & - &
_is continuous in the maximum norm of uniform convergence. This is obvious for N 1
and can be shown for N, like for the corresponding operator-in [18].

The Schauder fixed point theorem applied to the equations (29), (30) in § now '

yields the existence of a solution u(z) to Problem P. The boundary values u(s) of

the solution u and wu,(s) of 9u/ds are lying in &, and ®,, respectively: Therefore, u(z
“has Hélder continuous partial derivatives in @, viz. u(z) € C‘/‘(G’)

Theorem 1: Under Assumptzorw A—D Problem P has a solution u(z) € C“(G
wzth the Holder exponent ). =1— (l/p), 1<p <e :

’ .
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-

Corollary: Assumptlon D is fulfilled for arbltrary M with a sufflclently large .

R > O if S )
v = s“P 1y, 2, w)llg < oo, ' f=sup llQu(s7 w0l <00, . (47)

2y sup ,u(s u, w) inf wls, u, 0) < mfx, ‘ L 48

'»the supremum and infimum are taken over s E [—m, yz] u E R w € R and

20mBL + 2 dcos )T <1 49)
N

Espcmally, for p = oo wnth o=1,x=r=2p and P suffncnently near to 1 the con- :

. dition : : . .

- insures the existence of a solution to Problem P 1f the 1nequa1|tles (2), (‘3) are-ful-
‘filled uniformly in u, w € R, the oscillation 2y of u(s, u,w) = arc tan PD,(s, », w) taken

over in [—, n]xRxR is smaller than n/2 and Assumption B is satisfied for every
7 € Co(I).

+

- Rem ark: Usmg the elementary inequality e

Ioc(s a—{—ﬁ(s) b|S|/a2 + b2 ~, ' . I,'

'together with \Imkowslu s lnequallty in the estimation (*) of |lgll, we obtam the
sllghtly smaller expression - oo

OI’R = 2(2nr)** (M + ”Pn + Rﬂp R] + A 2(005 xyp, R) iz . o (467

in Assumptlon D for p= 2

4. Special cases
We give some examples ta.kmg @ =, 00 so° that the criterion’ (50) applles

F‘xample 1:'Let be d)(s uy ) = cu + l!’(w), i.e.

oulor + cu+ Woulosy = fls) onT, Il

‘with a constant ¢ and a continuously differentiable functlon ¥(w). Then the con-
dltlon (:)0) reads - . _ ' . » S -

el {1 + 2(cos 2y)- et o - o (e2)
with 2y = sup [arc tan fI’ ) — 1nf [arc tan Yy (w)] < 7/2 whlch is fulfilled for

sufflclently small le] if O < ll '{/’(w) < oo or 0 S Y'(w) < l, < oo, for instance.
. Further, ¢ must be different from zero to insure the solvability of the correspondmg
equation (32) for the parameter k.

The condition (52) is very restrictive for the- consta.nt c. It always demands that
le] <.(127)~1, whereas in the limit case ¥ = 0 existerice of a solution is present for
all ¢ =0, —1, —2,... We'therefore apply. another method for posmve -values ¢

. introducing the new unknown function

’

T~

. < Usla) = ru(2) + cule), o o NS

With » also U, is a regular harmomc functlon in @ which is continuous in G if

u € C‘(G) Moreover, u = P[Uo] is umquely determlned by Uo and the conjuga.te i

s

4nﬂ{1+2(cos2y) <1 . . 7 o (oO)

\
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1

harmonic function V, to U, is giffen by Vo(z) = —uy(2) + cv(z), where v is the con- °

jugate harmonic function to w. The conjugate functions v, V, are normalized by

Vo(0) = v(0) = 0 in the origin such that » = —H( u) = —H(P[U,])and Vy = —H(U,)

with H the Hilbert operator (18). :
The boundary condition (51) now writes

Uy + ¥l — Vo) = f(s) on T, B C (54)
- whlch has the fonn of a nonlinear Riemann-Hilbert condition for the holomorpluq

function W(z) = U,(z) 4 iV4(z). Like in our paper [18] we replace (54) by the
differentiated condition - o : A :

?TZO — ¥(ew — Vo) 8_Uo + ¢¥'(cv — Vo) Uy — cu] = /( “on I’ (55)

together with the integral_ condition

on ds + f P(cv — VO) ds = f/(s , (56)
- . \ . i 4 \
"~ From:(55) it follows that
Ue®) =k + [gloyds - . BRENCL
. with - o ° \ [ A . )
) @ls) = B(s) h(s) — als) e~ HWNNH{cHmp),. : o (B8)
where : . ] , S - o
xs) = W/Y14+ P2 Bls)=1/y1+ ¥=, = - : (59)
. u(s) = arc tan ¥, k(s’ s)/]/l Loy ] (60)
. and o

gls) = f(s) — oW ev — Vo) [Uy — cu) ' ~ ~(61)

has to fulfll the orthogonahty COl”ldlthl’l
[ 7(5) g(s) ds = 0 2 - | B

with the nonnegative function

s) = ell(#)(s)/]/l 1 e, ‘ . ; ) (63) -

The constant £ in (07) is determined by substituting U, into (56). :

The investigation of the-integral equatlon (57) for U, can be performed like for
the corresponding integral equation in [18], i.e. like in the above proof of Theorem 1,
-where now.only the elementary inequalities |zx(s)[, I8(s)] =<'1 in the estimation for
]](p”,, are used. Restricting ourselves to the case p = oo again, we have the estimation

9llo < Ifllo + 2¢8 | Uoflo - | B v . (64).
with : : . ‘-
6 = sup |¥'(w)| < oo (by assumption) . ) ' (63)

w€R
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for the function (61) because : o . .

max [cu| < max |cu + %,| = max Ul
r r '

in virtue of the maximum-minimum property for.harmonic functions. In the analogon
of the condition (50) the constant can therefore put equal to 2cd and we obtain the

* condition

16ncé{1+(cos2y) <1 N (66)

for positive -constant ¢. In the limit case ¥ =0 this condltlon is fulfllled for all’
c> 0. o

Example 2: Let be ¢(s u, w) = - X(u) ‘!’(w), i.e. o :
_au/ﬁr_”—}— X(u) Y’(au/as) = /( s) onl, C - (67)

~ with continuously differentiable functions ¥(w) and X(u). FQrther shall be
fr=sup |¥(0)| < oo,  fo=sup|X'(w) <oo . (68)
wéR ueR - v -

and _ L '
2y = sup [arc tan (X(u 'Ll"(w))] — inf [arc tan (X (x) ) V(o) )| < a/2, (69)

where supremum and infimum are taken over € R, w € R. Then the condition (50)
reads ‘ R

nﬂﬁz +2cos2y) }‘< 1. | » , (70)

Moreover, Assumption B has to be fulfilled.
In particular, for bounded monotonically increasing function X(u) and bounded

" nondecreasing functton ¥ (w) with

0L =1limX(w),. limX(u) =L, <oo, : : A71)
u—>—00 u=>-+00 -
0 < m = lim ¥ (w), lim¥P(w)= 1111 < 0, L {72)
' w—>-03 w—>+ 00"
and ' ‘ . . ) .
0=L=Xw=EL, < 0, 0=m, § Y/I(w) =M, < oo, (73)
the condition (70) takes the form . '
. LM, — l,m2 2 _ ’

“And Assumptlon B is fulfilled if l,ﬂl, < L m, and the rlght hand snde j(s satisfics
the Lan(lesman Lazer condition

LM, < — f f(s)ds < Lym,. : (75)
27 :

Example 3: If @ = @(s, w) does not depend on u, only the equation (30) with

‘the operator N, for the unknown function » has to be considered. A solution u of

Problem P exists only if the solution %, of this equation satisfies the condition

[ Ofs, w(e) ds = f/@@, 3 » S e

—_n . ~

the solution » is then determmed up to an arbltrary additive constant k in (29).
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Since uy i3 determined by f'(s) only, the boundary condition (1) should be miodi- A
fied in the following way : . :

au/ar + @, au/as) — /(s) +2 on r, o
where A is an arbrtrarlly variable. constant thch will be determmed by

2 = qu(s ul(s))ds—f/ o E )

. after solvmg the equatlon (30). Bes1des, U ma.y be ﬁxed through o, prescrlbmg the
value of k = (1) or.

.

n !

. u(O) .= '2—]4;[: fu(e'a) .dé'.' ‘ .

-7

. . R [

The existence of a solution u, to the equatlon (30) is msured if the correspondmg
Assumptions A and C above and the followmg 'modz/zed Assumptzon D is fulfilled" -
(cf. also 18] :

There exists-R > 0 with R = 2(2n)14R, such that

¢

RN

R, zoa—(2n)2f* [M +vR] +2A,(eos xyr) T, S (79)

wh‘ere' v - ) . Vo R
e Vg = Sup ”¢3(8, w)"g<'w e - . L. ) - (80)

~and o ’ . ‘ . ' S o o o
' g = sup [arc fan & (s, ] - mf [arc tan D, (s w)] < alx, - C(81)

vthe supremum and mf1mum are taken over s € [—m, :rr] lo] < R.

- - : . N
- :

BN
¢

'§ 5. The quasilinear case

In the quasﬂinea.r case ¢(s u w) = Y(s, u) + a)X(u), ie.
6u/3r+X(u)au/as+ Y(s,u)=f(s) onT, . ', T ( (82)

with Holder contmuous functions X(u), (s u) and f(s) we can the above method
apply directly to the boundary .condition (82) without differentiate it before. As *
above this leads to the flxed pomt problem for the operator N defmed by (cf. also
(8) - - : | |
$ .

u(s (NE)( k+ [ ¢lo, E)vdqv ’ IR ,.l . ‘(8(3) o /'
with - 7 . ST o
L ogls, &) =B(%) h(s, +a(§)e ”“‘"”H{e”“"k} (s) L)
where 7 7 : s .

() = 1/y1 +_’x=(s,{ ﬂ(f)%X(E/V1+X2( e C T
‘u(f) = are tan X(¢),  ls; 5)-90(8 SNTFX® s .

;
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and - - ' o . K
9o(s, &) = gls, &) — m[£], N
i 95, &) = f(s) — ¥(s,8), I L (88).
| mef] = fg<s, &) yls, &)ds | f'y(s, Hds, .69

(s, &) = e”"‘""/]/l + Xz({.- : o .‘\ (9())
Here the constant k in (83) is to be determmed in fulflllmg ‘the integral condltlon
\, A le(S,k‘f‘f(P(U, S)dd)) ds:ff(s) ds. L o “»' (91)
ot K , S S A .

..o

Weassumethat . ) o e T -

2y = sup [arc tan X(u)] — inf [arc tan X(u)] < 7/2 . (92 ] .

. the supremum and mfunum are taken over %€ Ryand’

|yf(su)|3cl+c2|u|6 0sé<1, . | ' S {93y

" for all u € R with p031t1ve constants ¢y, Cs- Furthermore, the equation (91) for
k € R shall have a root k = k[¢] for any & € C(I) whlch depends contmuously upon &

’ and satisfies the estimation

CME S K + KR =KB), 0svg1, (94

for all & € C(I') with [£(s)] S R, R > 0, and uniform positive co'nstants K, K,. This
~is especially fulfilled with é < » < 1 if the (continuous) function (s, u) is strictly
“'monotone with respect to u for any s € [—=, 7], there exist the (finite or identically

mfmnte) limit functions” ~ \

lim ¥/(s, u) y’i(s) uniformly ins GA[—in, 7} ' (95)

U—>+4-00 . . . L
. . .

and f f(s ds lies between  the: values ’}’i = f Wi(s) ds. Namely, because of the

‘ assumptnons (92) and (93), there holds an’ estlmatlon of the form _
-f|¢s,s>|dsng+LzR6 . o s ‘(96)-

for all £ e C(I') -with |&(s)] S R and umform posxtlve constants L,, L, as .can be
shown like above. .
Now we consider the operator N on the convex compact set § of C(I" ) defined by

R = £ € O): [E6)] = By 16(s0) — (52 S Ro lsy — salt) S o)

_ with2=1— (1/p), 1< » < =/(4y), and suffncnently la,rge posxtlve constant R such
that (2n) Ry = R — K(R) = R — K; — K,R” > 0 and

Ry = Cr = (2a)ir (M 46 + R {1 + 24,,(cos 2py) =17} (98)

with M= max If(s)| and 4, the M. Rlesz constant. .Then like in [18] Schauders o

flxed point theorem ynelds the exxstence of a fixed pomt u € R for the operator N.

SN

T
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2

Moreover, because of du/ds = ¢(s, u) the correspondmg solution u(z) to Problem P
has Hélder continuous partial derivatives in G. Using the LIpSChltL continuity of »
in (84) the correspondmg Holder exponent is seen to be.the minimum of the Holder
_exponents of f, ¥, X.

.

- Theorem 2: If the assumptions (92), (93) are /ul/zlled and there exists a continunus
solution k{£] of (91) with (94) the boundary value problem (82) with Holder continuous

- functions X(u), W(s, u), and [(s) has a solutwn u(z) € CY4(@), where ¢ is the minimum
* of the Holder exponents of f, ¥, X.

If thé function P(s, u) in (82) is strlctly increasing in u, existence of solutlons to

“this problem can also be proved for functions ¥ with linear and superlinear growth

in @ using results of ScHLEIFF [16] for the corresponding semilinear boundary con- -
dition.

" In the boundary condition

6u/3r + X(s, u). 0u/8s —}— Yis, u ) f(s )‘ on I’ ' (99)

the functions X(s, u), ¥(s, u), f(s) shall be Holder continuous and moreover, ¥(s, u) . -

shall possess a Holder contmuous derlvatlvc Y,(s,u) >0 for all s € [ n, 7}, u € R.
Further we assume _that - ' ’ '

. P_(s) < fls) < Wils) for's €[—m,n), o (100)
where '1’ +(8) = lim (s, w). _ , , N ) '
u—>—Loo - N

" Then, accon:lmg to Theorem 2 of [16: Part 2] for any 'Hélder contmuous functxon
= £(s) the auxnllary problem _ ) .

8u/67' + X(s 5) 6u/3s + ‘I’s u) _\ f(s) on r h . - (101)
has a unique solution u(‘,) ‘with Holder c.ontmuoua partial derivatives in ='.> More-
~over, u(z) satisfies the estimation : B »
n= mlm 7(s) S ulz) < m?x 7(s) = 7, z¢€ G,_ . - ‘ (102)
where the continuous fuxlction n(s) is the solgtlon u to the equation o
Wi, u) = [(s), s € [, ' L (103)
( We consider the problem (101) for & € ® with & defined by o
R = ecOl):n < s) =, lé(sl) — &) = Rysy — s}, (104)

where 2 = 1 — (1/p), 1 < p < z/(4y). The solution u of (101) depends continuously
on &£ € ® in the maximum norm topology such that the operator u = ‘N& of the
boundary values-u(s) of « is a continuous opgrator from & into C(T").
Namely, let £, € & converge uniformly to &, € & and let u,, u, be the corresponding
. solutions of (101), respectively. The difference function U, = u, — %, satlsfles the
boundary condition - - :

oU Jor + X(s, £,) BU ol 08 !I’(s U, + uo) =G (s onl ) . (105)
w1th the Holder continuous functlon

Gu(sl = ¥(s, '“0) + [X(sy so) — X{s, 5 )] 8uo/8s .
: /
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Again by The_ofem 2 of [16: Part 2] there holds the estimation ‘ N

min 7,(s) < U,(s) < max 7,(s), s € [—m, x], : (106)
r r . ,

for the bounaary values of U, on I', where 7a(8) is the unique solution of the equation
W, mals) + uele)) = Gals),  s€[—mm]. - (107

But_G',.(s) converges~'unifornlly to !{’(s, uo(s)) as m — oo such that 7,(s) converges
uniformly to zéro. Due to (106) then also U,(s) converges uniformly to zero. C
Further, analogously to (83) one obtains the following expression for « = N¢:
X , . . ;

C ue) =k [ plo b u)do B - (108)
0 . ) : .

-with k: *{£] the value of u(z) for t = 1 and @(s, &, u) is given by (84), where in the
formulas (84)—(90) X(s, &) instead of X(¢), W(s, u) instead of ¥(s, &), and g(s, u)

instead of go(s, &) is to be written. As just proved, u(z) depends continuously upon &,

therefore also k = k[£]. .
Finally, we assume that - y ‘ ‘
2y '= sup [arctan X(s, w)] < inf [arctan X(s, u)] < 7/2, - (109)
. ; : )
the supremum and infimum are taken over s € [—m, 7], 7 = % = 7;. Then there
holds the estimation : . B
el = (27:)1/1’ {M + My} {(1/2) -+ Azp(cos 2py)‘””} =C, . (110)

.for any ¢& € ®, where 1 < p < n/(4y), M = max |f(s)],
. i . B - N r .

. My = max max [#(s, 7o), — (s, m)],
. r

“and 4, the'-M.‘R;iesz-constant. o , ' s c '
Taking the constant R, in (104) equal to, Cy and applying the Schauder fixed point
theorem to the operator N on ®, we obtain the existence of a fixed point of N, i.e..
" the existence of a solution u to the boundary value problem (99).
- Theorem 3: Under the assumptions (100) and (109) the boundary value proble';n, (99)
* with Hélder continuous functions X(s,u), ¥(s,u), f(s), where- ¥(s, u) possesses a
_ Holder continuous derwative Wy(s,u) > 0, has a solution u(z) € CV*(G), where ¢ ‘is
- the minimum of the Hélder exponents of f, ¥, X. - -
Finally, we bi‘iéfly déa.-l with the boundary condition of the form
_ dufor + 2/os[D(s,w)] = fs) on T : - ©o(111)

with Ht;lder continuous function f(s) satisfying the necessary solvability condition
) f fls)ds =0

. and Hélder continuously differentiable function d(s, u) with respect to s and u.

Denoting by v(z) the conjugate harmonic function to u(z) normalized by v»(1) = 0

~or v(0) = 0, respectively, the condition (111) is equivalent to the Riemann-Hilbert
condition- e C - . : ~

v-{-(D(s,u):l—c_-}-F(s) onl . ' . . '(113)<

0

' R (112)"

.

v

N

,e
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‘

. s o _ : ) . n
with F(s) = [ f() do and an arbitrary constant k E_'R‘t\ogether with the additional .

~ condition. o . ‘ o .
=0 S § 810
.Or . S ¥ ’ ’ N ) o N ’ _.
2(0) =0, ‘ . - (115) |
respectively. ’

‘The Riemann-Hilbert problems (113) with (114) or (115) have been considered ,. a
in our papers [18,19]). In case of the additional condition (114)-et k € R be an .~
arbitrary constant and plt k.= &(0, k). Then (114) can be replaced by the additional

condition : o . . * .
'»u(1)=kl-” T o o (116)
to _the—bo,ilr.ldaryfcond-itivor‘l B o ' . |
&}@@up=¢wxy+F@yoﬁr[.' , : L iy

To this problem Theorem.2 of [18] with ¢ = oo can be applied.

For strictly monotone function ®(s, %) in u also Theorem 4 of [18] with p =
may be applied directly to the problem (113) with (115), where the Landesman-Lazer
type condition in this theorem can be fulfilled by a suitable choice of the parameter k..

K S T :
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