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On Strongly Nonlinear Poinearé Boundary Value Problems 
for Harmonic Functions 

L. V. WOLFERSDORF 

Es wird eine Klasse stark linearer Poincaré-Probleme Mr harmonische Funktionen im Em-
heitskIeis durch Zurçickfuhrung auf ein neues System von Tntegralgleichungen untersucht, 
auf this der Schauderscho Fixpunktsatz &ngewendet wird. Für veischiedene Spezialfälle werden 
konkrete Existenzaussagen gemacht, insbesondere wird der quasilineare Fall im Detail be-
handelt. 
I4cci1ejyeTcR iacc CMbHO HeJuhlleftilux 3aja'i flyaHKape j.nn rapMOHlpiecxnX ()yHIc[llfl B 
eu1H iIqH0 M Rpyre. 3aja'iia CBOJHTCH K IlOBOfl cucTeMe uuTerpailbHhlx ypaaHeH}lfl, K KOTOpO1 
npuMeuneTcn , 'reopeMa Ll1ay)epa 0 }Ien0B1nHHa1x ToqKax. JjiB paaHblx 4acTHblx ciyaen 
aIoTcH JouicpeTuue Teopembi cyiuecuouau. B qacTHocTlj, nogpo6Ho paccMapnaec 

K13a3ntuhleflHbrfl cJiyaft. 
A class of strongly nonlinear Poincaré problems for harmonic functions in the unit disk is 
studied by reducing them to a new integral equation system to which Schauder's fixed point 
theorem is applied. Specific existence results are given for several special cases, in particular 
the quasilinear . case is dealt with in detail. 

Introduction 

The Poincaré boundary value problem is a basic problem of the theory of harmonic 
functions posed by H. PorNoAltE in his investigation, of the mathematical theory, 
of tides in 1910. The plane linear problem of this type containing the problem of 
oblique derivative as a special case is now fully investigated (cf. [13]).	- 

Existence theorems for nonlinear generalizations of the Poincaré problem are 
derived by W. P000RZELSKI [14], J. WOLSKA-BOCHENEK [20, 21], and M. SCRLEIFF 
[16] in the case of a linear main part of.a boundary operator of Steklov or Poincaré 
type and a strong nonlinearity in the tangential (and also the normal) derivative of 
the unknown function u and in u itself satisfying a Holder-Lipschitz condition with 
sufficiently small constant. Corresponding problems in sufficiently small neighbor- 
hood of the Neumann and Steklov boundary value problem of potential theory are 
already investigated by K. i'vLAJtuiiN [121, too. On the other hand there are global 
existence assertions for this problem with linear main part of oblique derivative or 
Poinearé type and nonlinearities in the unknown function u alone given by 
M. SCRLEIFF [16] againand in more general form by H. AMA—N[1, 2], F. 1N11i 
[6], F. ROTHE [15], and P. WILDENAUER [17]. 

More intensively, because of its importance in physics, the special case, where the 
linear main part is the normal derivative of u and the nonlinearity depends only 
on u, has been investigated beginning with the classical paper by T. CABLEMAN [3]. 
In this context we only mention the papers by K. KLINGELHÔFER [7-11], where 
the method of Hammerstein integral equations is used, for proving the existence of 
solutions for diverse types of such problems and the paper of J. M. CusNG [4], 
where a corresponding eigenvalue problem is studied. 
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• In this paper we make an attempt to investigate nonlinear Poincaré, problems for 
harmonic functions in the unit disk by another integral equation m'ethod developed 
in our paper [18] for the nonlinear Riemann-Hilbert problem of analytic functions. 
This method works with the differentiated boundary condition on the circumference 
and reduces the problem to an integral equation system of the type of Vilat's 
equation in the theory of jets. To this system thç classical Schauder fixed point 
theorem is applied.' As a result we obtain existence theorems for some classes of 
strong nonlineari ties in u and the, tangential derivative of u satisfyihg a constraint 
on the oscillation of the ascent with respect to the tangential derivative of u and 
depending in some sense weakly on the functi6n- u- itself. 

, 1. Statement of problem  

Let G' : - J z I	1 be the unit,disk in the complex z plane with boundary F: Itl = 1, 
= e" (—n	s 'x). We deal with the-following nonlinear Poincaré problem. 

Problem P: Find a regular harmonic function u(z), z -. x ± iy, in 0 which has 
- continuOus partial derivatives in 0 = 0 + F, i.e. u(z) E 0 1 (0), and satisfies the 

boundary condition  
-	au/ar + P(s, u(ei8), au/as) = f(s) on  

where r is the polar radius.  
- The following basic Assumption A on the data is made.  

• (i) (s, u, co) is a real-valued continuous function on	n' n] . x R X R which is 
- 2-periodic in s and possesses a continuous partial derivative 0. and partial den- - 

vatives , and cP satisfying the Carathéodory conditions and estimations of the 
form	 . 

	

-	•	-	u, w)	E(s) E Le(I'),	> 1,	 - -	 (2) 

-	0(s, u, w)	C(s) E L(F), - '> 1, -	•	 ,	.	(3) 

for u, co from bounded intervals of R.	 -.	. 
(ii) f(s) is a real-valued absolutely continuous 2i-periodic function on  

- possessing a derivative
' 
s) E L(F), e >1.	 - 

-	Under these assumptios we can differentiate the boundary condition (1) with 
respect. to s obtaining the condition •	 S	

•, 

•	-	, u 3 + 3 (8, u, u3) + i(s, u, u,) u, +	U, u3) u3, = /'(s) 'a.e. on F, 
-	 -	-	-	--	- 

	

-	where derivatives f u are now denoted by subscripts, too. The boundary condition 
•	(1) is equivalent to the condition (4) together with the integral condition - 

	

•	 f(s, u(ei8), u) ds =ff(s) ds	 - -' '	 ( 5) 

•	following from (1) . by integration over F.	•	-	 • 
• We introduce the holomorphic functions in G  

	

•	. w(z) = (z) -l-- iv(z);	W(z) = U(z) + iV(z) = zw'(z) = Mr - jU3, 
•	 -	 .	-	 (6) 

	

- - X(z) =.ip(z) + iip(z) =zW'(z) = rU r - iU8 = V8 + irV, •	-
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with	 . 
X(t)	9(t) +.ii(t) = — Usa - Urs on - i'.	 (7)

Then (4) takes the form of a Riemann-Hilbert condition for iX(z):  

•	Re [(A(s) - i)'X(t)]	A(s) (t) +(t) = g(s) ' a.e.on P,	 (8)
where  

A(s) =	 . 	 :	(9), 
g(s) = u, u3) + (s,u,t8 ) • u3 - / ' (s)! . (10) 

The solution X(z) of the Riemann-Hilbert problem (8) has to fulfil the additionl 
•àondition  

1(0) = 0 in 'z,-- 0.  
From 1(z) the boundary values u(ets) of the sought function u(z) follow by the 

relations,	 - 

u(e) = /u3 (ei ) da ± k,	 .	.	., . ( 12) 

u3(e' ) = _f8 (eta ) da + k1	 (13) 0  

where	 -.	 5	

0	 . 

k1= . _
J"f (e'°) da	 -	 -	( 14) 

and the constant k = u(1) has to be determ ned in fulfilling the integral condition' (5)' 
The harmonic function u(z) itself is then given by the' Poisson integral of the 

.boundary values .u(e18): Thus,' Problem P is' equivalent to the relations (12) with 
arbitrary k E It and (13) with (14), where q(e')	Re 1(1), X(z) the solution of (8)' . 
with (11), and additionally (5) has to be fulfilled.  

§ 2. Reduction to'a fixed point problem  

For prescribed continuous function A(s) and function g(s) E L(fl, p > 1, the Rie-
mann-Hilbert problem (8) with (11) has a unique solution' 1(z) with (e') = Re 1(t) 
on I' given by (cf. [5: § 29])	- •	 ..	•	•	 - S 

	

= a(s) h(s) + fl(s) e	 (s), •	 • (15) 
where	 •	 •	.	 -	'-S 

•	'	x(s) = A (â )I1I1 + A 2(s),	fl(s) ='i/j/i +A2 (s),	•	-	' (16)	• 

'u(s) = arc tan A(s),	h(s) = g(s)/j/1 +--A2(s),	..	• •

	 ( 17) 
• and H denotes the Hilbert transform	 -	• 

(Hv) (s) =	fv(a) cot a	da	 (18> 

25* .	 •	
,	 :	 ,	 •	 -	 5	

0 

5	

5	 0 '•	 05	 , 

-	

0	
5.	 5	 0	 •	 -	 -
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This solution exists if and only if g(s) satisfies the orthogonality condition 

fy(s)g(s)ds=0	 S
(19) 

•	with the nonnegative function	0 

Y(S) = eh1()(8)/J/1 + A 2 (s). (20) 

In virtue of a known theorem of A. ZYGMUND (cf. [22]) the function	and there-
•	fore y(s) is sumivable to any power.  

For given continuous functions a(s), ?] (s) on I' with 	7 (s) ds= 0, i.ç.	E C(f'), 

E C0(fl, we introduce the auxiliary problem	characterized by the boundary 
condition 

•	 A(s,	,	)	(t) ±	(t) = g0 (s,	,	)	a.e. on P (21) 

and the additional condition (11) for X(z) = p(z) + ip(z), where 

A(s,,	) =	(s,	,	), (22) 
• (23), 

with	 .	 0 

g(s,	, ,j =	3 (s,	, ,) +	, 77)'n/'(s), (24) 

m(s,	;) = m0[, 771 . [(s,	,	)]a-I,	1/	+ 11a = 1, (25) 

= fgs,	,	) y(s,	,	) ds/ fyo(s,	, j) ds,	-. (26) 

and
y(s,	,	) =	(I(8)/I/1	-j-- A 2 (s,	, (27) 

j) = are tan A(s,	,	).	 S	 -

-	 (28) 

The auxiliary problem P4, has 'a unique solution X(z).According to (12), (13), 
the corresponding boundary values u(s) = u(ets) of u(z) and u1 (s) of u3 (z) are given 
by the expressions	 -	5 

•	•	u(s)	N1 [] (s) =f ?) (a) da + k,	• (29) 

u1 (s) = N01 77] (s) = 	) da + k1 , (30) • 

•	where	,	 S	 •	5 

k1 = •	

0 

f f
(31) 

2,-r
- 

and k = k[] has to be determined in fulfilling the relation	S 

f0 s f
	

da + k: n(s)) ds =f /(s) ds. (32) 

-
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The function q(s, ,) = ç2(e', i) is defined by (15) with (16), (17), where A is 
replaced by A(s, , )from (22)and-g by go(, , j) from (23). By Assumption A the 
function A(s, , ,) is continuous on rand the function g0(s, , ,)'E Le(P) for any pair 
of continuous functions a(s), (s). Moreover, 'go fulfils the orthogonality condition (19) 
by construction. 

Any fixed point {u, u 1 } e C(F)XC0(f') of the operator N = {N 1 , N2} yields a solu-
tion 'u(z) of Problem P with boundary values u(s). For, 'a = and 'a1 = 71 in (29), 
(30) at first implies u =V(s) and further leads to the equation (4) with an addi-
tional term m0[u, u] . [y(s, 'a, u3)]' in the right-hand side which is seen to be zero 
by integrating the equation over f' Also, from (30) follows that 'a1 = Uslr € C('F) 
indeed, is a Holder continuous function such that also the boundary. values of the 

• normal derivative u of u are (HOlder-) continuous and u(z) E C'(G). Thus, Problem P 
is reduced to the determination of fixed points for the integral operators (29), (30) 
with (31), (32). 

§ 3. Existenèe theorem	- 

We consider the operator N = {N 1 , N2} on the convex compact subset = RI X R2 
of the space C(F)xC0(P) with	j	• 

	

= { € C(P): I(s)I	F, (s) - (82)1 5 P0 js - 2I},	 ',	(33) 
•	

2 = (77 € CO(T) : I()l 5 R, I01) - 77(S2)1	Ro Is,-	 (34) 

for any s, S11,82 € [' ], where 2 = 11q; q the conjugate exponent to p, 1 <p < Q, 
•	and F, P0 , R, R0 are fixed positive real numbers to he specified later. 

Further, we iriake the Assumption B that for all € S 2 the equation (32) for 
Ic € H has a root Ic = k[ij] which deends continuously on and is uniformly bounded 
with respect to ?1'€ 2: 

Ik[ii lI	K for any 77 E. S 2 with K = K(R, R0).	 (35) 

This is especially fulfilled if the (continuous) function J(s, 'a, (0) is strictly monotone 
•	with respect to 'a for any s €	ar], co € H, there exist the limits 

lirn (s, u, co)	(s) € C(r) • uniformly in s € [—rn, 4 w E It,	(36) 

and f/(s) ds,lies between the values	=f 0 (s) ds.	
0 - 

• ' Let us now estimate u = N 1 [71 and u 1 = N2[, j for E S, 'j € . Obviously, 

Ju(s)l	27iR ± K(R, R 0),	u(s) - u(8 2)1 5 R Is ' — S 21	 •	 (37)

for an S, s, S2 € [' ]. Further, for the L norm of the function g0 there holds 

!I ;5 2 Ilgil, 5 2{M + VpR + R ,11 },	'.	•	 (38)

where M 

Vpj = SU P I 8 (s,u, w)l 0 < oo,,	 (39) 

-	PH = sup lVb (s , u, a )II < co,	 (40) 

the suprema are taken over 5 € [— yr, ar], J ul	P, kol	R. Finally, applying the 
triangel inequality, the elementary inequalities	(s )I	1 and a(s) (s)t ^5.  1/2,
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Holder's inequality and the boundedness of the Hubert transfrm in Lebesgue 
spaces, for the L norm of the function q we obtain the estimate	 - 

-IIIi ^5 (1/2) IIgoI! + A	•. 

	

':5: llgoII 1(1/2) (2j)2 * Ar lle'"iL Iie II},	 (*) 

where x = 2p7[ - p}, r =	— p]I[e + p], and Ar is the M. Riesz constant, the
norm of the filbert transform in L(fl. 

We make the Assumption Cthat 

= sup /4(s,..'u, co) .— inf u(s, 'u, (0) </'	 (41) 

for the oscillation of the function u(s, u, co)* = arc tan ,(s, u, co), the supremurn 
and infimum are again taken over s E [ —a, ], J ul	F, I c	R. Then 

2v	\1/x.	 ..	.	- 
ile"'ll	 (COS	 1 xyIR/ - 

according to the well-known Zygmund lemma (cf. [22, 18]). Therefore, 

iiilp ;5(2n)2 iUoiIe ((1/2) + 4r(c9s yp R ) 2/ ),	 (42). 

and because of  

ik1 i ^SfJ(s, , n)I ds	(27z)IIq iiii	 (43) 

-	we have the estimation'	 - 

•	 Ui(S)! ^2(2r)hI iiil	 . 
^ (2v)'fr iJgoiIe (1 + 2Ar(COS Xyp,)21x), 

taking into account that I/ = l/q + 2hc. Moreover,	- - 

- ul (s2 )1 ^5 181 -, s1/ iji 

18 1 - 82 1 2 (27r )2j1 ] JgO JJ Q {(1/2) +A(cos Xyp , ) 2 }.	(45) 

Finally, we put P0 = R and make the Assumption D that there exisit F, R> 0 
with R = 2(2-i)lIR0, P:= 2nR + K(R, R0 ) such that	 . V 

R0 ^ UPR (2j)2I4 [M _ VPR + R 5 ] 11 + 2A(cs YPR ) 2 },	(46) 

where as above 1 <p <, X = 2p/[ -. p], r = c[ - p]/[ + p], Ar the M. Riesz 
constant, and VPR, 19P.R, VP.R are defined by (39), (40), (41), respectively. Then, on 
account of the estimations (37) and (44), (45) with (38),! the operator N maps the-
convex compact subset st of c(r) x C0(F) into itself. Besides, the operator N: — 
is continuous in the maximum norm of uniform convergence. This is obvious for N1 
and can be shown for N2 like for the correponding operator in [18]. 

The Schauder fixed point theorem applied to the equations (29), (30) in R now' 
-yields the existence of a solution u(z) to Problem P. The boundary values u(s) of 
the solution. u and u1 (s) of &u/s are lying in 9, and R2, respectively. Therefore, u(z) 
has HOlder continuous partial derivatives in G, viz. u(z) E C112(6) 

Theorem 1: Under Assumptions A—D Problem P has a solutiOn u(z) E C'.'1() 
with the HOlder exponent A = 1'— (l/p), 1 <p <. 

V	\
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Corollary: Assiimption D is fulfilled for arbitrary . M with a sufficiently large 
R>Oif

Y = sup IV.(S, u, w)ll <00,	'=sup ll(s, u, w)J < 00,	 (47) 

= sup u(s, u, co) - infi(s, u, (o) <v/x;	 (48)

the sliprenlum and infimum are taken over s E [-21, 21], U E R co € R, and 

2(2.7) 1 /"fi{1 + 2Ar(COS xy)72/M} < 1.	 .	 (49) 

Especially, for e = oc with a = 1 3 Y = r = 2p and p sufficiently near to 1 the con-
dition  

-	41 + 2(cbs.2y)_') < . 1	 (50) 

insures the existence of a solution to Problem P if- the inequalities (2), (3) are-ful-
filled uniformly in u, w E R, the oscillation 2y of u(s, u, co) = are tan u, (o) taken 
over in [ — 'i, ir]XRXR is smaller than 21/2 and Assumption B is satisfied for every 

Remark: Using the elementary inequality	-' 

a(s) a ± a(s) b	Va + b2	 ' 

together with Minkows'ki's inequality in the estimation (*) of J IT11, we obtain the 
slightly smaller expression  

c1 ,= 2(221)2/n [M + VP, 
a 

R +R;;R ] (1 +	 (46')

in Assumption 1) for p 2. 

§ 4. Special cases	 S 

We give some examples taking e	oo so that the criterion '(50) applies.	I

Example 1 :Let be (s,u, co) = cu + '(w), i.e. 
u/r + cu, + '(ôui3s)=/(s) onE,	 (51) 

• with a constant c and a continuously differentiable function W(w). Then the con-
dition-(50) reads•  

•	

'-

 

4,-r Icl {1-+ 2(c2y) 11 <1	 '.	(52)

with 2y = sup [arc tan !I"(a)] - inf [arc tan !I"((o)] < 2i/2 which is fulfilled for 
-ER	 ' -	wElt 

• sufficiently small i d if 0 < l. ^W'(w) < oo or 0 ^ Y"(w) l < 00, for instance. 
Further, c must be different from zero to insure the solvability of the corresponding 
equation (32) for the parameter k. 

The condition (52) is very restrictive for the-constant c. It always demands that 
cl <.(1221)- 1 , whereas in the limit case q' 0 existerice of a solution is present for 
all c + 0, --1, —2, ... We therefore apply , another frithod for positive values c 

• introducing the new unknown function  

-	U0(z) = ru,(z) + cu(z).	-	. 	(53) 

With ualso Uo is a regular harmonic function in G which is continuous in G if 
U E C'(0). Moreover, u = FLU0] is uniquely 'determined by U0

 
and the conjugate 

-	 I'
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harmonic function V0 to U0 is given by V0 (z) = —u8 (z) + cv(z),. where v is the con-
jugate harmonic function to u. The conjugate functions v, V0 are normalized by 
V0(0) = v(0) = 0 in the origin such that v = ---H(u) = —H(-P[U0 ]) and V0 = —11(U0) 
with H the Hubert operator (18). 

The boundary condition (51) now writes 
•	

U0 ± W(cv - V0) = /(s) on T,	 (54) 

which has the form of a nonlinear Riernann-Hilbert condition for the holomorpitic. 
function W0(z) = U0(z) + iV0(z). Like in our paper [18] we replace (54) by the 
differentiated condition	 0	 - 

aUO •

	

	

- '(cv - T/0)	+ cW'(CV - V0 ) [U0 - Cu] = /'(s) on 1'	(55)'as

together with the integral condition 

-	f U0 ds +f W(cv	(Is =f /(s) ds.	 (56) 

From (55) it follows that	 - 

Uo (e i8 ) = k + f	) d	 -, (57) 

with
q(s) = a(s) h(s) s— a(s) eH(1)(8)I1{ehf()h},.	 (58) 

where	 . ..	— 
(s) = w'/yi + 1'2,	a(s) = i 	+ ë,	 (59) 

u(s) = arc tan W',	h() = g(s1 + &'2,	 (60)
and

= / '(s) - c"(cv - V0 ) [U0 - cu]	 -(61)

has to fulfil the orthogoriality condition 

fy(s)g(s)ds=O	
•	 (62) 

with the nonnegative function 

•	 '(s) = e"(')(3)/j/1 _+ V112.	 .	 (63) 

The constant k in (57) is determined by substituting U0 into (56). 
The investigation of the- integral equation (57) for U0 can be performed like for

the corresponding integral equation in [18], i.e. like in the above proof of Theorem 1, - 
•

	

	where now. only the elementary inequalities I(s)I, I(s)I -:^1 in the estimation for
II q I,, aie used. Restricting ourselves to the case o = oo again, we have the estimation 

III	f'	+ W Il U010	 •	 (64). 

with 0	 . - 
= sup W'(w)I < co (by assumption)	.	-	 (65) 

•	 wElt 

/
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for the function (61) because	 -	- 

iiiax Icul ;5 max I cu + u,I = max I uo	 S 

in virtue of the maximum-minimum property for. harmonic functions. In the analogon 
of the condition (50) the constant can therefore put equal to 2cé and we obtain the 
condition

16cÔ{1 + (cos 2y)- 1) < 1	 (66) 

for positive constant c. In the limit case I'	0 this condi jion is fulfilled for all 
C> 0. 

Example 2: Let be (s, u, co) = X(u) 9'(cv), i.e. 

au/Or + X(u) '(au/as) = f(s) on F,	 -	(67)

with continuously differentiable functions W(w) and X(u). Further shall be 

•	= sup W(co)I	 2 = sup IX'(u)I <	 (68) 
coER	 UER 

and

	

= sup [arc tan (X(u)-W'(cv))j - inf [arc tan (X(u) W'(w))j < 7/2,	(69) 

where supremum and infimum are taken over u E II., cv € R. Then th6 condition (50) 
reads

4n2{1 +2(cos2).-} <1.	 (70) 

Moreover, Assumption B has to be fulfilled.	 - 
In particular, for bounded monotonically increasing function X(u) and bounded 

nondecreasing function kJJ(cv) with	 S.. 

- 0	= lim.X(u),.	lim.X(u) =L 1 <ac,	 (71) 
-	 u-+-_ 

•	0 < m1 = lim W(w), - lirn W(w) = M1 < sc,.	 (72) 

and	 S 

-	 0 ^ 12 < X'(u) L 2 < cc,	0 rn2	W'(cv)	M2 < 010 ,	(73) 

the condition (70) takes the form	 - 

- 4M1 L0 {i +2 1  + ELM 
_1m2} 

<1.:	 • (74) 

And Assumption B is fulfilled if 11 M1 < L 1 rn1 and the right-hand side f(s)•satisfies 
the Lanclesman-Lazer condition 

1 1 M 1 <f/(s)ds <L1?n1.	
5 5

	 (75) 

Example 3: If P = P(s, to) does not depend on u, only the equation (30) with 
the operator 1V 2 for the unknown function 77 has to be considered. A solution u of 
Problem P exists only if the solution u 1 of this equation satisfies the condition 

f(s, ui (s)) ds =ff(s) ds,	
5.	

(76)

the solution u is thendetermined up to an arbitrary additive constant k in (29).
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Since u 1  is detemined by /'(s) only, the boundary condition (1) should be modi-
fied in the following way 

au/Or + b(s, t9u/as) = i(s) + 2 on I',	 (77)

where i is an arbitrarily variable constant which will be determined by 

2r) =f (s, u1 (s)) ds -f /(sds	 (78) 

after 'solving the equation ( '30). Besides, 'u may be fixed throughhu 1 prescribing the 
value of Ic = u(1) or. 

u(0) =	u(e') ds 

The existence 'of a solution u1 to the equation (30) is insured if the corresponding 
Assumptions A and C'bove and the following modified Assumption .D is fulfilled' 
(cf. also [181)	 •	 ( There exists-R- > 0 with R = 2(27v)u/R such that 

R0	C	(2x)2/ [M + yR] (1-+ 2Ar(cos YR) 2 }, •	 (79) 
where	•	 '	 '	'	• 

= sup 113(8, (0)11,.<' .00	 • (80) 
-and	 S	 -	 S 

- -'
	 '2y, = sup [arc tan	 inf [arc tan'(s, w)] < r/,c, -	(81) 

the supremum and infimum are taken over s € [—n* 	a	R 

§ 5 The quasi.hnear case 

In the quasilinear case (s, u, co) _. /'(s, u) + wX(u), i.e. - ,	• 
- ,	- u/a + X(u) eu/as + W(s, u) = f(s) on I',	•	'	/	(82) 

- - with Holder continuous functions X(u), W(s, u), and f(s) we can the above method. 
- -	apply directly to the boundary condition (82) without differentiate it before. As 

above this leads' to 'the fixed point problem for the operator N defined by (cf. also 
-	[.18])	•	'.	-.	-.	 •	.' 

u(s) = (Ne) (s) = Ic + f, E) d	 (83) 

•	with	"	•-	•'	 5	

-' 5	 - 

-	 '.	

• .(s, ) = 'fi() h(s, ) + x() eH()(3)H{e11()h} (s),	-	•	- (84) 
where

 

-	-	-	
-	)	i/i/i +X2(),:	) = X()/}/ i + X2()	•	 -, ' ( 85) 

p) = arc tan X(),	h(s ) = g0(s )/1 + X2()	 (86) 

I	 -	 --
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and	 - 
g0(s, ) = g(s, ) - m0[fl,	 (87 

•	 g(è, ) = f(s) - W(s, 0,	
0	

...	 (88). 

	

fgs, ) y(s, ) ds/ f(s, ) ds,	 '	'	. ( 89) 

-	y(, ) = eH(8)/ j/1 _+X2($).	 .	 ( 90) 

Here the constant k in (83) is to be determined in fulfilling the integral condition 

fW k +f, ) do)) ds =f f(s) ds	 (91) 

We assume that	 .	.	 ., 

= sup [arc tanX(u)] T inf [arc tan'X(u)] <r/2,	.	(92) - 

the supremum and infimum are taken over E R, and	 5	
0	 0 

0	

. IW(s,,u)I	cj + c2 uj o ,	0	6 < 1, .	.	 (93) 

for all u € R with positive constants c 1 , c. Furthermore, the equation (91) for 
k E' R shall have a root k = k[] for any E C(F) which depends continuously upon 
and satisfies the estimation  

jk[fll ;5 K1 + KR	K(R),	0 v < 1,	''.	'	
'(94) 

	

for all € C(P) with (s)I ;5R, R> 0, and uniform positive constants K1 , K2 . This	
• 

is especially fulfilled with 6 < v < 1 if the (continuous) function W(s, u) is strictly 
monotone with respect to u for any s € [— yr, r], there exist the (finite or identically 

•	infinite) limit functions'	..	
0	

•	 0 

urn W(s,u) = 5W(s) uniformly in S E . [—x, v]	 (95)  
0	 ,	

S 

and, f f(s) ds lies between the' values T± =f W±(s) ds. Namely, because'bf the 

O	
assumptions (92) and (93), there holds an estimation of the form -	 0 

1 I(s, )I ds	L1 + L2R8	 (96) 

for all € C(1") with (s)I	R and uniform positive constants L1 , L2 as can be •	shown like above. .	 -	0 

Now we consfder the operator N on the convex compact set S of C(f) defined by 

Sl'0	 = { € C(I): (s)j	R, I(s ) - (82)I :5 RO Isl- 8212} 	(97) 

- with A = 1 - (lIp), 1 <p <4(4y), and sufficiently large positive *constant R such 
that' (2x) R0 = R - K(R) = R - K 1 - K2R'> 0 and  

O	'	CR = (2x) hIP [M + c1 + c2R6] (1 + 2A 2 (cos 2py)'I }	 ( 98) 

with M = max f(s)j and A,. the M. Riesz constant. ,Theh like in [181 Schauder's
r	 -	 0 

fixed, point theorem yields the existence of a fixed point u € S for the operator N.
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Moreover, because of 3u/as = (s, u) the corresponding solution u(z) to Problem P 
has HOlder continuous partial derivatives in G. Using the Lipschitz continuity of u 
in (84) the corresponding Holder exponent is seen to bethe minimum of the HOlder 
exponents of /, V, X.	 - 

• Theorem 2: If the assumptions (92), (93) are fulfilled and there exists a continunus 
solution k[fl o/(91) with (94) the boundary value problem (82) with HOlder continuous 

• functions X(u), 1'(s, u), and i(s) has a solution u(z) € C'-(G), where e is the minimum 
• of the Holder exponents o/ 1 4ff, X. 

• if the function '(8, u) in (82) is strictly increasing in u, existence of solutions to 
• this problem can also be proved for functions W with linear and superlinear growth 
in Ur using results of SCHLEtFF [16] for the corresponding semilinear boundary con-
dition. 

In the boundarycondition	 - 
•	au/er + X(s, u) au/as .+ (s, ) = f(s) orf P	 (99) 

the functions X(s, u), W(s, u), f(s) shall be HOlder continuous and moreover, '(s, u) 
shall possess a Holder continuous derivative 4t'(s, u) > 0 for all s E [—x, x],,u € U. 
Further *e assume that	 - 

I'_(s) < f(s) < l',(s) fors E [—x, x],	 (100)

where q1(s) = tim J'(s, u). 
U-3±OO	 -	 - 

Then, according to Theorem 2 of [16: Part 2] for any Holder continuous function 
= (s) the auxiliary problem	 - 

au/ar + X(s, ) au/as + W(s, u) = f(s) on P	 •	 (101) 

has a unique solution u(z) with HOlder continuous partial derivatives in t. More-
over, u(z) satisfies the estimation 

m	min?7(s) ^5 u(z) < max 72(s )	772,	z € d,	 (102)

where the continuous function (s) is the solution u to the equation 

F(8, u) = f(s),	s € [—a,	 (103)

We consider the problem. (101) for E S with S defined by 

St = { E C(1):	(s)	I(81) — V801 ;5 1l I s j — 821')1 1	
(104) 

where 2 = 1 — (l/p), 1 <p <x/(4y). The solution  of (101) depends continuously 
on E R in the maximum norin topology such that the operator u = AT of the 
boundary values . u(s) of u is a continuous opQrator from S into C(T'). 

Name1, let E converge uniformly to € S and let u, u0 be the corresponding 
solutions of (101), respectively. The difference function U,, = u,, — u0 satisfies the 
boundary condition 

all,,/0r + X(s, i,,) 8U,,/as ± q'(s, U,, .+ u0) = G,,(s) on .r	-	(105)

with the HOlder continuous function 

G,,(s)= I'(s, u0) + [X(s, 0) -- X(s, ,,)] au0 /as.	•
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• Again by Theorem 2 of [16: Part 2] there holds the estimation 

mm	(s) ^5 Us(s) ^S max 17(5),	S E [ — it, yr],	 (106) 
I	 I 

for the boundary values of U on F, where rj,,(s) is the unique solution of the equation 

P(s, (s) + uo(s)) = Ga (s),	s E {—t]. •.	 (107) 

But On (s) converges' uniformly to W(s, u(,(s)) as n — cc such that i,,(s) converges 
uniformly to zero. Due to (106) then also Un(s) converges uniformly to zero. 

Further, analogously to (83) one obtains the following expression fpr u = 
'S 

u(s) = k + f q(ci, , u) dci	 S	
(108) 

with k = k[fl the value of u(z) for t = 1 and (s, , u) is given by (84), where in the 
formulas (84)—(90) X(s, ) instead of X(), P(s, u) instead of 1'(s, ), and g(s, u) 

•	instead of . g0(s, ) is to be written. As just proved, u(z) depends continuously upon 
therefore also k = 

Finally, we assume that .	•.	 . - 

-	 2y'== sup [arctan X(s, u)] -'-- inf [aretan X(s, u)] </2,	 (109) 

the supremum and infimum are taken over s E [-7, vi], ?) I	U 77 2 Then there 
holds the estimation	 ,	 .. 

II'IIp ^ (27r)' IP {M + M0} {(1/2) + 4 2 (cos 2py)11P}	Co	.	(110)

• for any E S, where 1 <p <r/(4y), M = max 
F 

M0 = max max ['(s,2),—W(s,)],	S	

, 5 

r 
and 	theM. Riesz constant.  

Taking the constant R0 in (104) equal to, CO and applying the Schauder fixed point 
theorem to the operator N on S, we obtain the existence of 'a fixed point of N, i.e., 
the existence of a solution u to the boundary value problem (99). 

Theorem 3: Under the assumptions (100) and (109) the boundary value problem (99) 
with Holder continuous functions X(s, u), W(s, u), I(s), where W(s, u) possesses a 
HOlder continuous derivative W(s, u) > 0, has a solution u(z) E C"t(G), where e is 

• •- the minimum of the HOlder exponents of f, W, X. 

Finally, we biiefly deal with the boundary condition of the form 

au/ar + a/3s[b(s, u)] = /(s) on 1'	 .	'	(111)

with Holder continuous function /(s) satisfying the necessary solvability condition 

f.f(s)'ds = 0	 -	(112) • 

and HOlder continuously differentiable function (s, u) with respect to s 9nd u. 
Denoting by v(z) the conjugate harmpnic function to u(z) normalized by v(1) = 0 • 

or v(0) = 0, respectively, the condition (111) is equivalent to the Riemann-Hulbert 
condition-  

v+s,u)+F(s) on	 (113) 

\
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with F(s)	I t() dr and an arbitrary constant E Rogether with the additional 
condition o	 / 

V(I) = 0	 •.	 .	(114)
or  

V(0) = 0 3	 -	/	 (115) 
respectively. 

The Riemann-Hilbert problems (113) with (114) or (115) have' been considered 
in our papers [18,19]. In case of the additional condition (114)-let k E H be an 
arbitrary constant and put k.= (0, k). Then (114) can be replaced by the additional 
condition	 5 

- u(1) = k	 (116)
to the boundary, condition 

v +(s, u) = P(0, k) + F(s) onI'..	 (1f7) 
To this problem Theorem .2 of [18] with e = oo can be applied. 

For strictly monotone function (s, u) in ualso Theorem 4 . of [18] with e =oo 
may be applied directly to the problem (113) with (115), where the Landesrnah-Lazer 
type condition in this theorem can be fulfilled by a suitable choice of the parameter k. 
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