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On the Limit of some Diffusion-Reaction System with Small Parameter N

N

- H. GATEWSKI and H-D SPARING

Es wird ein Reaktions-Diffusionssystem mit kleinem Parameter ¢ betrachtet, das einen Poly-

kondensationsprozeB beschreibt, in demn die chemische Reaktion schneller als der Massen-

transport verliuft. Fir € — 0 ergibt sich eine nichtlineare Evolutionsgleichung vom Typ-
Sy = Af(v).

PaccMAaTPHBAETCA CHCTEMA C MAJLM NApaMeTpoM & C peakuuAmu u muddysueft u onuck-
BaloLIAA NPOLECC MOTMKOHAEHCALMI, B KOTOPOM XMMHYECKAA PCAKUMA MpoTeKaer GrcTpee
TPAHCTIOPTa BEWCCTS. IOaa e — 0 no.nyqae'rcn HeJMHeitHOe 9Bomouuouﬂoe ypaBHeHue THIA
v'= 4f(v).

A diffusion-reaction system with small parameter ¢ is considered describing some process of
polycondensation in which the chemical reactions are faster than the mass-transport. For
£ — O results a nonlinear evolution equation like v; = 4f(v).

Let G = R" be a bounded domain, G = D = U D, its smooth boundary -with the .

‘components Dg: D, n Dy =0 (k +1). In this note we want to study the' following
diffusion-reaction system forz € @, ¢ € (0, T] = S, ¢ > 0:

edu = f(v) — u, Bu=0 on DXS,
w,—u‘—f('u),' (z,0) = vy =const=0.on G

1)

-where A is an elliptic differential operator with a suitable boundary operator B.

A problem of this kind occured when we tried to reduce some model of a poly-
condensation process in the so-called transport-limited case (see [7: eq. (5.3)]). The
main question in that case was the convergence of the spatial L!-norm of » at each
time ¢ because that implied the convergence of some other measurable quantity —
the average degree of polymerization.

" Now we will show that under certain assumptions the solutxons of (1) converge
with ¢ - 0 to the solutlon of

v + Af(v) = 0, v(z,0) = v, u=/[(v) : ' 2

in L*@XS). A corollary will answer the que’stion mentioned above. But (1) may
be interesting.even from a broader point of view. The second equation can be trans-
formed to '

o+ Af(0):i= v, + A(I + ed)™ f() = 0. ' 3)

Here, 4, is of course the Yosida approximation of 4. Thus, our convergence problem
is a special case of the general question of the convergence of this approximation
with inclosed nonlinearity.

\
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'
\

! Investxgatlons of a similar kind in the case of accretive operators in L! can be
found in [2] and [3]. Other mterestmg diffusion-reaction equatlons with small para-
meters, even with mixed concentration terms on the right side of the equations,-
and their relationship to some nonlinear limit equation were studied by L. C. Evans
in [4]. -

We assume the followmg conditions to be satlsfled

/

(F) /:R — R is-an increasing function of class CY, /' is Iocally LlpsChltL conti-
nuous, f(a) = a.for some « < 0.

(A) 4 2._," ( 2 aiug, +a u) +agu on, G,
. . n n )
Bu=6*2(’za”u,,+au)v,+b0u on Dk, 1k<r,
i=1\j=1

Ca(=ap), G eCHH@), 13 j<n, a¢ Oﬂ(é), b, € CY+#(D);

there ex1sts a %> 0 such that Z a;(z) §&; =« |£]? for all z € ¢ and £ € R,
ij=1
a2 0, dlvd', 0, &a-7n +2b0> 0, 1k=r, where @ = (a,,..., a,),
7 = (v, ..., v;) — exterior normal t6 D; '
o€ {0, 13, 6k—0i1npliesbo_lonD,,,b;,$0 : .
' Here and in the following an index z or ¢ to some function will mean the partial
- derivative of this function with respect to the named variable.’
- The notations C', C'**, H' describe the usual spaces (see e.g. [8]). C“” (GXH)>u
means u(-, y) € C%QR), u(z, -) & C*(H) (x € G, y € H). By (., -) we will always describe
a pure L? — scalar product, not dlsmngmshmg — if there can be no misunderstanding

— between the scalar products in L2(G L2(S L2(G)) or similar spaces
Let us denote

~U{Dk & = 0}, H={ueH1(G)':Bd=OonD\.D’}

Now we can identify the pair of .operators (A4, B) with the operator A: H — H*:
given by )

(Au vy = fZ @i, v, dx + f agurdz —{—f Zauv,‘ da: + f bouv dx.

v G ig=1 G i=1

It is known that 4 has a continuous and isotone inverse (see e.g. [1 8, 5]). The same
lS true for the ‘‘symmetric: part” A, given by

(A,u, v) = f Z Wiy Ve, AT + faouz, dx.

Gt]l,

Both, A and 4, are continuous operators themselves and strongly monotone. For
4, this is quiet, clea.r in the case of 4 it follows from the monotomclty of the “‘rest
operator A, = A — A;: '

(A,u, u) = ——fa grad (u?) dx —}—fbou? dx

— %fzﬁ((i-ﬁ 1 2y dz = 0.

%



Diffusion-Reaction System with Small Parameter " 483

* Moreover, 4, defines some new scalar products and equivalent norms in H and H*:
(2 = (A, 0), (g, Bue = (4,7, B)..

We W]ll use these new norms throughout this paper and note tha.t thus 4, becomes
the duality mapping between H and H*. Further, we should remark that
4,: L¥G) — H* is a continuous operator. '
To prove convergence of the solutions to (1) we have first to make sure that
there is anything to speak about at all. The solvability of (1) was already stated
~in[7]ina somewhat less general form. Nevertheless, the idea of the proof remains
unchanged:

Theorem 1: Problem ( 1) has for /m:ed e>0 exaclly one solution

u € CPerl(GXB),  ve CrHHYGX S)
y anditholdsagugf(vo),a§v§vo, : ' ) S
Proof: (1) is equi'valent to

w=(I + ed) f(u), |
¢=__u_(+amﬂﬂ>,'wm=%-

(I 4+ e4)7! is continuous in- C“+“/2(G><S) (see [1, 8, 5]), the same is true for f

because of (F) So there exists a unique solution of the ordmary differential equation

in v, local in time. To prove the global existence of this solution it sufflces to show
- the mamtamed inequalities. The iterations

\
w = (I + eA) flv;-y),
= — ), - 50 2w (GZ1)

together with the maximum principle and the monotonicity of / imply the monoto-
nicity of the sequences !
Y as e Sua Sy s S o), !

.q,'= ce = Vjyy = V) = o0 = 0.

(To prove the validity of the bounds it suffices to note that Af(vs) = 0 and 4a < 0,
a = f(a) and a < v,.) Dini’s Theorem and the uniqueness of the solution now guar-
antee the convergence of these iterations to the solution of (1) and thus the asserted
inequalities 1 S .

Ceroliary: The solutions i, v of (1) belong to C>}GX S).

This fact follows from the regularity assertion of Theorem 1 and the theorem
about solutions of ordinary differential equations depending on parameters il

The following theorem will be the main result of this paper. It gives an answer
to the question what happens to (1) if ¢ — 0. To distinguish. between solutions for
different pz{rameters we w1ll keep ¢ as an index to these solutions. Further, set
Q= G><S ' ,

Theorem 2: For ¢ — 0 the solutions (u,, v.) of (1) converge n the following sense:
u, = [(v), v.—>v i L¥Q),

31 "\
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A

where v 1s a function satisfying the following conditions

(%) ve L¥Q), a< v v, N
(@) , ve HY(S;H*), flv)€ L¥S, H), . ’
(722) v 1 the unigue solution of .

v, + Af(w) =0, v(z,0) = v, a.e. inG
with the properties (¢), (¥2) mentioned above.
Proof: The proof of this theorem will be given in steps (a)—(t).
(a) Theorem 1 and its corollary say that for every & > 0 we have Ue, Ve € C*Y(Q),
T e u, < flog), a0, S v in Q. '
(b) For every ¢ > 0 it holds f(v.)) = u,:
“Put w = u,, z = v,. (1) implies

Aw = ['(w) 7 — w,
a=w— )z, A0 == (w0 —fo)) SO. - (@)

” ”

This problem has (in the sense of ‘““=" replaced by “=
supersolution W = Z = 0. For the iterated system

Aw, = f(8) 20y — 0 ‘

o = w0y — P 0) 7 %0 =2(0), =0 (nZ1)

in every equation) the

one shows with the usual mechanism (R,:= (I + ¢4)! is an isotone 6perabor!)

that AN
0=W=u1= 2w, = Wy = -~ o :
0="z=zog 2 e =

On the other hand, we have '
Wy = RE(/'(UC) 2,,_1), 2y = F(zn—l): -

where F is a continuous homomorphism on C(G) giveh' by

~t r . .
—iff'(v )a | i Lf/'(u s
3 £ 1 ¢ €
F)=e 0 e Rrwa g ar - 20

0 : . .
We want to prove that F is a contraction in C(G) for some norm equivalent to the
original. This would give us the convergence of (w,, z,) to the solution of (4) and
thus the inequality z < 0, which in connection with (1) and the definition of z proves
our statement.
Because of (a), (F) and the Lipschitz continuity of R, we have

t . L4
: ¢ —%f/'(vg)da t -:—fl'(vt)da
L —F@lesSe S [ b diodr.

0 :
Introducing the Bielecki norm = - , . /

iyl = sup {e " y(@)lc: £ € S)
we get [F(5) — F(@), < b — dl, & < 1if y > —.

4 .
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(¢) v, = u, v, = v, f(v,) — z at least for some subsequences in the reflexive Banach
space L%(Q) because of (a). (Here and in the following we will replace the whole
{generalized) sequences by their converging parts not changlng our notations.)

(d)JIf(we) — ullpy@) = O:

By (a), (b) and the second equation of (1) this sequence is bounded by ¢ - const
and this expression tends to zero if ¢ — 0.

(e) lf(ve) — ullpngy = O:

~

- This is true because f(v,) and u, belong to L®(Q) ((a)) and (d) holds.

(f) From the above statements we can now deduce » = z a.e. in Q. .

(g) {.} is bounded in L%(S, H): o .
Comparing the two equations of (1) we get Adu, = —v,, = 0 ((b)) and because of'(a)
{Au,} is bounded in LY(@). Thus, . .

& = |l Awl| Loy el ooy = (Ate, Ue) = Collteellins,mr) -

Here we made use of the monotonicity of 4 in the new norm.

(h) w, — u in L%(S, H) at least for some subsequence:
Because of (g) {u.} contains a weakly converging subsequence in this space. Beca.use
of (c) the limit of this subsequence must be u.

(j) v — v, in L3S, H*) at least for some subsequence:
{u.} is bounded in L2(S, H) and A is continuous. So v, = —Au, is bounded in
L?(S, H*). Now we can repeat the argument used in (h) and recall the definition
of weak derivatives.

- (k) {u.} is bounded in L3S, H*):
_As before we have for w, = u,;: Aw, + 'u,t = f'(v,) vy =t fo. At first we w1ll show

, that {f:} is bounded in L¥*S, H*). It follows from (j) that {ve,} 18 bounded in this

space. For an arbxtmry ¢ € L¥S, H) we have |p| € L¥S, H) and because of (b)

(fes ?’) (f() ve, ) = SUP (/ v.)) oeelloes. 1oy Mpllzrs. = c;x]|<}f’||1,'(s )

Here we used once more condltlon (F). Now we have

~

€ [wellZes, o = < o lfellns. e Ihedlxs. m

because of the strong monotonicity of A. The continuity of 4 on the other hand
, gives
l[ewell L2cs. 1) < elldwdixs. e + Wellzns.ne) = €65 llwell s iy + Wollovs.en

and these two estimates taken together give the claimed result.

(1) From (g) and-(k) it follows that {u.} is compact in L¥Q) (see e.g. [9: Theorem
5.1)).

(m) This means the convergence of u, —u, f(v.) - w in L*Q) (for some sub-
sequences).
* (nu,ve L®Q), a= uS/(vo), eSS v vy ae in Q:
We know already that » and » are weak limits in L¥ Q) of some sequences which
satisfy the given inequalities. Then there exist some subsequences and some convex
combinations of them which converge in the strong sense (see e.g. [10: Theorem I,
"1.1.8]), but this implies the convergence of some new subsequences a.e. in Q. Of

. course, u and v as their limits will satlsfy the same inequalities.

(o)u—~/(z)a,ch
z=v— E(f(v — u) € L°°(Q) (5 > 0) and because of the monotonicity of f ((F))
we have .

5(7-5 - /(2}),/(?} - u) = lim </(’U¢) _/(x)) Ve — z>g 0.
. e—0 g .
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If £ -0, then thls can be true only for u — /(v)

(P) v = v = fY(u) in L¥Q) at least for some subsequence:
Because of (F) there exists /' and is a continuous function. Qur hypothe51s now
follows from (m) and (o) by Lebesgue’s Theorem.

'(q) v, + Af(v) = 0 (as an equation in L¥(S, H*))
The statements (j) and (h) together with (o) ensure that the term on the left is well
defined. Further, for an arbitrary ¢ € L*(S, H) we have :

<’U¢ + A/ (p) — hm <v€t + Auca ¢> = 0. '

_ (r)z,(O )——voa,emG : ,
The proof of this fact amounts to a repetition of the arguments of (c) and (n) applled
to (0, -) instead of v. . ) ,
. (s) Uniqueness of the solution: , .

Let v'and w be two solutions of the equa.tlon given in (q) which satisfy (i) and (ii),
set z=v —w. Forte§ put §; = (0, ¢], @, = G@X S,. Because of (F) we have

(/(1/ - f(w ), Z)ivan = M If(v) — f(w)llzxon

where 1/M is the Llpschltz constant of / in the interval [a 1,0] The contmulty of
A,: L* - H* on the other hand gives

||Ar( f(v) — fw))]| Lxs,.n0 = Ce”/("b‘) — /(w)”u(on-

¢

\

0—(z,+A</<v>—/( s uisonn
=5 I IOl =+ (4 14, + A) (1) = 1), 2~

Thus, we get

Ilz(t M + (/ - /(w), z) +-;(Ar(/(v) — f(w)), Z)L’(Sg,H‘)\

1 ‘ .
> 2 IO + M I v — G T— .

— ocg? [|f(v) — f(?U)”L'(o,) .

We can now choose ¢ sufficiently small to ;get M = ocg®. This i‘mplies ’

t \
2c<a) f lle(r)Fre dr = llz()llirs, .

a situation -which by Gronwall’s Lemma leads to z = 0. This ends the proof of the
uniqueness statement. v

(t) The uniqueness of the solution now guarantees a posteriori‘the convergence
of all those sequences for which we had upto now only shown the convergence of
. certain subsequences. This completes the proof of Theorem 2 1 '

Corollary: The convergence v.(t) — v(¢) 7n L*(G) s true for all t of S.

. Proof: By (c) and (j) in the proof of the preceding theorem it holds v, =~ v in
HY(S, H*) = C(8, H*). Moreover, |[v(t) — v.(!)llzxe = const ((a), (n)). Now, for an
arbitrary -k € L*G) there exists a sequence {ho} = H, hy — h in L*(() and for fixed
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t € S we have
A = ¢ e — RallLrcey 4 velt) — w(2), Ry

' 'We can now choose n to make the first expression on the right side smaller than a
glven bound and then choose ¢ to do the same with the second term 1

Rema.rk 1: Because of (a) and (n) the definition of f is important only in the

interval [a, vo] This is true in the case of Theorem 1, too. I‘hus we can weaken
condition (F). , i -

Remark 2: If fisonlya nondécreasing function which satisfies the other condi-
tions of {F), then-the proof of Theorem 2 remains valid with the exception of step -
(p). In that case we can only prove the weak convergence of v, in LZ(Q)
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