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On the Limit of some Diffusion-Reaction System with Small Parameter 

Es wird ein Reaktions-Diffusionssystem mit kleinem Parameter a betrachtet, das einen Poly-
kondensationaprozeB beschreibt, in dem die chemische Reaktion schneller als der Massen-
transport verihuft. Für e-* 0 ergibt sich cine nichtlineare Evolutionsgleichung vom Typ • 

= 4 1(v). - 
PacclaTpnBaeTcH cucreMa c MaJmJM napaMe'rpoM a C peaxiuu 11 jjtt44y3Hett H OflUChi- 
Ba}oLuaE npoiecc 110Jll1KoHl1C4l4fl, B KO'FOOM xMMw1eclaH peaiuuH npoTe}caer 6icrpee 
rpancnopra BeluecTB. ,Ini a -+ 0 noiyaecn HeJlHHeflHoe aBorno[uoHHoe ypaneiiue THfl 
Vt '=A /(v) .	 - 
A diffusion-reaction system with small parameter a is considered describing some process of 
polycondensation in which the chemical reactions are faster than the mass transport. For 
a -* 0 results a nonlinear evolution equation like vg = 

Let U R" be a bounded domain, aG = D = U Dk its smooth boundary with the - 

components Pi: .Dk n D1 = 0 (k + 1). In this note we want to study the following 
•	diffusion-reaction system for . x EU, t € (0, T] = 8,s> 0: 

eAu = /(v) - u, Bu = 0 on D X 8,	
1 

ev,=u—/(v),	v(x,0)=v0=const0.on U 

Where A is an elliptic differential operator with a suitable boundary operator B. 
A problem of this kind occured when we tried to reduce some model of a poly-

condensation process in the so-called transport-limited case (see [7: eq. (5.3)]). The 
main question in that case was the convergence of the spatial L'-norm of v at each 
time £ because that implied the convergence of some other measurable quantity - 
the average degree of polymerization. 

Now we will show that under certain assumptions the solutions of (1) converge 
with —* 0 to the solution of	 - 

V + A/(v) = 0,	v(x, 0) = v0,	u = 1(v)	.	 (2). 

in L2(Gx8). A corollary will answer the question mentioned above. But (1) may 
be interestingeven from a broader point of view. The second equation can be trans-
formed to 

vt +A1(v):= v + A(I +eA)-1/(v)= 0.	 (3) 

Here, A is of course the Yosida approximation of A. Thus, our convergence problem 
is a special case of the general question of the convergence of this approximation 
with inclosed nonlinerity. 
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Investigations of a similar kind in the case Of accretive operators in L' can he 
found in [2] and [3]. Other interesting diffusion-reaction equations with small para-
meters, even with mixed concentration terms on the right side of the equation, 
and their relationship to some nonlinear limit equation were studied by L. C. EVANS 
in[4]..  

We assume the follow: ing conditions to be satisfied: 
(F) /: it -> II is an increasing function of class C1, /' is locally Lipschitz conti-

nuous, /(a) = afor some a 0. 
' 

(A) 'Au
	( E a 1u , + au} + a0u on 0, 

=1	i j1 

Bu = 6k ( a 1u, + a iu) v 1 + b0u on Dk ,	1 k r, 
=I ,l 

a 1 (= a 11 ),	a1 € C"(G),	,	n,	a0 € C(G),	b0 € C'-'(D); 

there exists a x >0 such that ' a 15(x)	x II 2 for all x € 0 and € R'1; 

a0 0; div=0,' ôkä . ii+2bo0, 1	k	r, where d=(a1,...,a), 
i7l= (v 1 , ...) v,) - exterior normal to D; 
ôk E{0,l},bk = O implies bO=lonDk;bO*0. 

Here and in the following an index x or t to some function will mean the partial 
- derivative of this function with respect to the named -variable. 

The notations C', C', H' describe the usual spaces (see e.g. [8]). C(Gx H) u 
means u( . , y) € C°(G), u(x,•) E , CI(H) (x € 0, y € ii). By (., .) we will always describe 
a pure L2 - scalar product, not distinguishing - if there can be no misunderstanding 
- between the scalar products in L2(G), L2(S, L2(G)) or similar spaces. 

Let us denote 

D'= U{Dk : ôk +01,	H={u€H1(G)Bu=OonD\D'}. 

Now we can identify the pair of operators (A, B) with the operator A: H -± 
given by

('Au, v) = f	dx + f auv dx + f auv dx + f buv dx. 

	

G 1.5=1	 a	 C 1=1	U 
It is known that A has a continuous and isotone inverse (see e.g. [1, 8, 5]). The same 
is true for the "symmetric' part" A8 given by 

(A,u, v) = f Z	dx '+ f a0uv dx. 

	

Gi,j=l	 C 

Both, A and A 8 are continuous operators themselves and strongly monotone. For 
A 8 this is quiet , clear, in the case of A it follows from the monotonicity of the "rest 
operator' A =A — A,: 

(Aru, u) 
=	

. grad (u2) dx	b0-u2 dx 

	

2 f	f 
= f U2(d . jj± 2b,,) dx .0.;
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Moreover, A 3 defines some new scalar products and equivalent norms in H and H*: 

(u,v)11 = (A3"u, v),	(g, h)11 0 = (A8 1g, h).. 
We, will use these new norms throughout this paper and note that thus A 3 becomes 
the duality mapping between Ii and 11* . Further, we should renark that 
Ar: L2(G) -* H is a continuous operator. 

To prove convergence of the solutions to (1) we have first to make sure that 
there is anything to speak about at all. The solvability of (1) was already stated 
in [7] in a somewhat less general form. Nevertheless, the idea of the proof remains 

• unchanged'.	 - 

TheoIem 1: Problem (1) has for /ixed e> 0 exactly one solution 
u E C2f/2(dx),	V E C+12(Gx ) 

and it holds au:^,/(v0),av v0. 

Proof: (1) is equivalent to 

U = (I + eA'/(v), 

=	(I - (I +CA)-1)f(v),	v(0)	V. 

(I ± eA)-' is continuous in C .1 +12(X) (see [1, 8, 5]), the same is true for 
because of (F) So there exists a unique solution of the ordinary differential equation 
in v, local in time. To prove the global existence of this solution it suffices to show 
the maintained inequalities. The iterations 

Ui = (I + eA 1 /(v1 _ 1 ),	 .	. 

v, = u, - /(v,), . . v1 (0)	v0	(1	1) 

together with the maximum principle and the monotonicity of / imply the monoto-
nicity of the sequences	 S 

a	.. :E,- ui+i	;5... ^s /(v), 

a = = v1+1 = V1 = = V0.	 . 

(To prove the validity of the bounds it suffices to note that A/(v0) 0 and Aa 0, 
a = 1(a) and a v0 .) Dini's Theorem and the uniqueness of the solution now guar-
antee the convergence of these iterations to the solution of (1) and thus the asserted 
inequalities I	. 

Corollary: The solutions IL, v of (1) 'belong to C21 (Gx 2). 
This fact follows from the regularity assertion of Theorem 1 and the theorem 

about solutions of ordinary differential equations depending on parameters I 

The following theorem will will be the main result of this paper. It gives an answer 
to the question what happens to (1) if e —* 0. To distinguish. between solutions for 
different parameters we will keep e as an index to these solutions. Further, set 
Q=GxS. 

Theorem 2: Fore . 0 the solutions (u,, Ve) o/(1) converge in the following sense: 


u,--/(v),	v->v inL2 (Q),	 -	 - • 
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where v is a function satisfying the following conditions 
(1)	vEL°(Q),	avv0, 
(ii) / v E Hl(S, H*) ,	/(v) E L2(S, H), 
(ill)	v is the unique solution of 

vg + A/(v) = 0,	v(x, 0) = v0 a.e. in G 
with the properties (i), (ii) mentioned above. 

Proof: The' proof of this theorem will be given in steps (a)—(t). 
(a) Theorem 1 and its corollary say that for every e > 0 we have u, v € C2"(Q), - 

-: a:!gu!!g/(vo),aivoinQ. 
(b) For every e > 0 it holds f(v)	u: 

• Put w = Uet, Z = v. (1) implies 

AW=f'(Ve)ZW, 

zt = w - f'(v) z,	z(0) =- (u(0) - /(V))	0.	 (4) 

This problem has (in the sense of "=" replaced by "" in every equation) the 
supersolution W = Z = 0. For the iterated system 

Aw. = f'(v) z_ 1 —w,,	 - 

	

= w - f'(vE ) z,,	z(0) = z(0),.	z0 = 0	(n	1) 

one shows with the usual. mechanism (R:= (I + EA)- 1 is an isotone operator!) 
that

0=	 - 
0=z=Zo-...ZnZn+1.... 

On the other hand, we have 

•	-	•w = .R(f'(v) z_ 1),	z -• .F(z_), 

where F is a continuous homomorphism on C(G) given by 

	

-Jf'v8 1	I 
F(y) = e 0	 e 0	R(f'(v) y) dr - z(0) . 

We want to prove that F is a contraction in C(G) for some norm equivalent to the 
original. This would give us the convergence of (we , z) to thq solution of (4) and 
thus the inequality z 0, which ii connection with (1) and the definition of z proves 
our statement. 

Because of (a), (F) and the Lipschitz continuity of R we have 

o _Jf'(ds	ff'(vc)da 
IIF (b) - F(d)Ic	e

	

f 

__ 
e e o •	11b - dIIc dr. 

Introducing he Bielecki norm  
IIyI = sup {e_Yt IIy (t )IIc : 1 E S} 

we get IIF (b ) - F(d)jIr	116 - d!I, 6 < 1 if y >
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(c) u -k u, Vt -k v, /(v) -k z at least for some subsequences ih the reflexive Banach 
space L2(Q) because of (a). (Here and in the following we will replace the whole 
(generalized) sequences by their converging parts not changing our notations.) 

(d) 11/(v.) - UtIIL(Q) –  -O: 

By (a), (b) and the second equation of (1) this sequence is bounded by e . const 
and this expression tends to zero if e -* 0. 

(e) II/(v ) - Ut!JLI(Q) -->0: 
This is true because /(v) and u, belong to L(Q) ((a)) and (d) holds. 

(f)
,
 From the above statements we can now deduce u = z a.e. in Q. 

(g) {u} is bounded in L2 (S, H):	 - 
Comparing the two equations of (1) we get Au = —V,t 0 ((b)) and because of'(a) 
{Au} is bounded in L'(Q). Thus, 

IIAu IIrw> ItUtIILoo(Q	(Aug , U)	C2IIUEIJ%(sJJ). 

Here we made use of the monotonicity of A in the new norm. 
(h) u - u in L2(S, H) at least for some subsequence: 

Because of (g) {u} àontains a weakly converging subsequence in this space. Because 
of (c) the limit of this subsequence must be u. 

(j) v -k vi in L2 (S, .11*) at least for some subsequence: 
{u} is bounded in L2(S, II) and A is continuous. So Vt = —Au, is bounded in 
L2(S, 11*). Now we can repeat the argument used in (h) and recall the definition 
of weak derivatives.	 . 

(k) {u} is bounded in L2(S, 11*): 
As before we have for w = ua: Aw, + w = /'(V,) v, =: h . At firstS we will show 
that {/}is bounded in L2(S, H*). It follows from (j) that {v} is bounded in this 
space. For an arbitrary q' € L2(S, H) we have, J E L2(S, II) and because of (b) 

•	(/	> = (/'(v) v,	sup (/ ' (v)) I VteIIL $ s.10 III	IL(S.H)	C3IIIILt(s.Jf). 
Here we used once more condition (F). Now we have 

E	S.H)	4 IItIIL(S.H) WtILs , jj)	 - 

because of the strong monotonicity of A. The continuity of A on the other hand 
gives

WtIIL'(S.Jf*)	eIiAwtIIvs,H . 4_ IItIIL' (S.H' ) ^5 C5 II WtIILI(SH) + I/LIIL(S.11') 

and these two estimates taken together give the claimed result. 
(I) From (g) and(k) it follows that {u} is compact in L2(Q) (see e.g. [9: Theorem 

5.1]):.
(m) This means the convergence of u. -> u, /(v)	u in L2(Q) (for some sub-

sequences). 
(n) u, v E L(Q), a^-, u /(v0), a v v0 a.e. in Q: 

We know already that u and v are weak limits in L2(Q) of some sequences which 
satisfy the given inequalities. Then there exist some subsequences and some convex 
combinations of them which converge in the strong sense (see e.g. [10: Theorem I, 
1.1.8]), but this implies the convergence of soe new subsequences a.e. in Q. Of 
course, u and v as their limits will satisfy the same inequalities. 

(o) u =/(v) a.e. in Q:  
X =V - (/(v) - ) E L(Q) ( > 0) and because of the monotonicity of / ((F)) 
we have	 . 

- /(x), /(v) - u> = lirn /(v) - /(x), Vt - Z) 0. 

	

•	e-+o_	-
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If -* 0, then this can be true only for u = /(v). 
(p) v -± v = /'(u) in L2(Q) at least for some subsequence: 

Because of (F) there exists / and is a continuous function. Our hypothesis now 
follows from (m) and (o) by Lebesgue's Theorem. 

(q) v: + A/(v) = 0 (as an equation in L2 (S, H*)): 
The statements (j) and (h) together with (o) ensure that the term on the left is well 
defined. Further, for an arbitrary q' E L2 (8, H) we have 

(v + 'A/(v), q,) = urn (v + Aug, ç) = 0.	• 

r) v(0, x) = v0 a.e. in G:	 S 

The proof of this fact amounts to a repetition of the arguments of (c) and (n) applied 
• to v(0, .) instead of v. 

(s) Uniqueness of the solution: 
Let vnd w be two solutions of the equation given in (q) which satisfy (i) and (ii), 
set z = v — w. For I E. S put S = (0, 1], Q = Ox S. Because of (F) we have 

- /(w), Z)LI(Q,)	M 11( v) - /(w)jfta(Q,) 

where 11M is the , Lipschitz constant of / in the interval [a, vol. The continuity of 
Ar: P _fl* on the other hand gives	

S 

IIA r(/(v) - /(w))IIL(s, F,.)	C611/(V) - /(W)!ILl(Q). 

Thus, weget	,•	 S 

0 = (; + A(/(v - 1(w)), Z)L(S,J,.) 

S	 = 	I IZ(t) 112  + (A 3-'(A S ± A) (/() - 7(w)), z) 

S	

=, 11 z (011 ,11 . ± (/(v) —/(w), z) +.:(A (/(v) - /(w)), Z)L(S,.H.) 

Ilz (t )lI	+ M 11/( v) - /(W)ll(Q,) - c(a) llZll(s,H.) 

- a062 111(v) - /(W)ll,i(Q,) 

We can now choose a sufficiently small to get M ac6 2 . This implies 

2c(a) f IIz (r)ll . dr	lIz ( t)Il . ,.	 -S 

a situation which by Gronwall's Lemma leads to z = 0. This ends the proof of the 
uniqieness statement. 

(t) The uniqueness of the solution now guarantees a psteriori'theconvergence 
of all those sequences fdr which we had upto now only shown the convergence of 
certain subsequences. This completes the proof of Theorem 2 I 

Cor'ollary: The convergence v(t) - v(t) in L 2(G) is true br all I of S. 

• Proof: By (c) and (j) in the proof of the preceding theorem it holds v -k v in 
Ii'(S, 11*)	C(S, 11*) . Moreover, 11v(t) - v(t)lI L'(G) ^ const ((a), (n)). Now, for an 
arbitrary h € L2(0) there exists a sequence	c H, h -> h in L2(G) and for fixed
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1€ S we have

- •v(t), h) = (v,(t) - v(t), h - h,,) + v,(€) —'v(t), h) 

C 7 IIh - hIJL' ( G ) + (v) - v(t), ha): 

We can now choose n to make the first expression on the right side smaller than a 
given bound and then choose ei to do the same with the second term I 

Remark 1: Because of (a) and (n) the definition of-f is important only in the 
interval [a, vol. This is true in the case of Theorem 1, too. Thus, we can weaken 
condition (F).	 - 

Remark 2: If/is only a nondcreasing function which satisfies the other condi-
tions of (F), then the prdof of Theorem 2 remains valid with the exception of step 
(p). In that case we can only prove the weak convergence of v, in L2(Q). 
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