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On an Evolution Equation for a Non-Hypoelliptic Linear Partial 
Differential Operator from Stochastics 

K. DoPPEL and N. JACOB 

Neulich hat E. B. DYNKN [2] einen nichthypoelliptischen 1inearen partiellen Differential-
operator von gera'der Ordhung (mit konstanten'Koeffizienten) eingeführt' und untersucht, 
der aus der Theorie der mehrparametrigen stochastischen Prozesse entstanden ist. Von diesen 
Betrachtungen von DYNXIN angeregt, haben die Verfasser in der Abhandlung [1] schon 
ein verallgemeinertes'Dirichlet-Problem für diesen Differential operator gelost. Unser Ziel in 
der vorliegenden Arbeit ist, das Cauchy-Problem für die entsprechende Evolutionsgleichung 
(in der Zeitveränderlichen von erster Ordnung) zu untersuchen; ein solches Cauchy-Problem 
könnte Anwendungen auf Fragen der Stochastik haben.  

Heaniio E. B. JaIHxHH [2] BBOJI H ncc1eJoBa.n HerMnep6oJIia1e6uI nHHeflHwf JH44epeH-
1HaJ1bHut onepaop qeTHoro nopRKa C nOCTOHHHbIMH HoaHuMeHTaMH, BOBHBHWH(1CH B 
TeopitH MHoronapaleeTpwlecxHx CTOXCTH q CFCHX npoIecco. B036yweHM paccyaceHHMH 
E. B' aIHHHHA-a13T0ph1 pauee pewuii B [1] inn aToro onepaopa o6O6ueHHy10 aaay 
EHpifxJie. UeJIb HacToHEIeI1 pa60m1 - }1ccJIe0BaTb aaay HORJB 1JIH CooTBeTcTByIöu.ero 
BBo1110IH0111-foro ypaBHeHHH, neporo nopøjxa oTHocHTeJlbHo BpeMenHon nepeMeHhIo. 
Tai(an 3aaa Roll!!! Mor 6b1 UMeTI, npHMeHeHHR K BOflOCM cToxacT!!KI!. 

Recently E. B. DYNKIN [2] introduced and studied a non:hypoelliptic linear partial differential 
operator of/ even order (with constant coefficients) which originates from the theory of multi-
parametric stochastic processes. Motivated by the consideiations'of DYNKIN the authors have 
solved a generalized Dirichlet problem for this differential operator in their work [1]. Oum 
aim in the present paper is to investigate the Cauchy problem for the corresponding evolution 
equation (in the time variable of first order); such a Cauchy problem could have applications 
to some questions from the stochastics. 

1. Introduction 

1.1 We consider in a bounded open 'set 0 c W' (which satisfies some conditions, cf. 
Property P in 1.2) the non-hypoelliptic linear partial differential operator L(D) of 
order 2k (k E N, k n) introduced by E. B. Dii,rxc [2]; the exact definition of 
L(D) will be given below, in 1.3. In this paper we want to investigate an initial-
boundary' value problem, which we call the Cauchy problem, for 'the "abstract" 
evolution equation  

u(t) + Lu(t) = 1(1) 

where L is the closure of the differential operator L(D) in .L2(0), / a given function 
defined on the positive time axis with values in L2(G) and the solutions u(t) are 
searched among functions defined on the positive time' axis with values in a certain 
subspace of L2 (G) which coincides with the domain D(L) of L. 

1.2 Let us first recall some notions; notations and results from our earlier paper [1].. 
Let 0 be a set in R" with

/
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Property P: The bounded open set ,G c R" is the Cartesian product 

G=al'x::.xak	
V	 V 

o/ bounded open sets 'G5 cRrn,(1 	k),ml+...±?nk	n, IV 	RrnX...XR7nk,

with sufficiently smooth boundaries a0 i (if the boundaries 3G1 are of class Coo all our 
considerations surely will be valid).	.	 . 

We write	
V 

•	 .	:	aG:=GlX ... XQJl X3G,XG1+ l X ... XGk .	•. •.	-, :	 V 

By N0" we denote, as usual, the set of all ordered systems ofn nonnegative integers 
(multi-ii'idices). For a = (a 1 , .. .,a) E N0" and	=r	 a) € NQ" we write 

.l a I =, a +	+ a and a fi if a, 	j for 1	1	n.  
- V	

With n, k, m1 € N as in Property P we put	..	
V	 V 

V	
V V

	 11 =0, -. 1j	mi	(2j!5:k).V	 .	..	 V 

Foreach j'(I	j	k) we define 'm multi-indices e, € N 0" with jEt, J	each having	
V 

its only nonvanishin.g coordinate in the t,-th position, 1, + 1	1)	l .+ mi. We

introduce the set  

	

k	 V	

V 

V	 P:=laE No" Ia=Eet,'.	 V	
V 

V	
' 

V	

V 

V	

V	 V	
V 

Note that P has m1 ... mk elements. Further, we write	. V	

V -
	 V	

V 

V	

CV,	 k	'	
V	

V 

- 	 ' := J yENo"I' = E ejj	(1^jk) P 	 V	

V 

V	 I	 '=1	 ,,	 V 

V	

V	 ,	 - j: j	,	 V 

• ' V	 1.3 Now we can introduce the differential operator  

S	 V	 - 

where we use the 'abbreviation	
, V 

with Di —f'_1 axi: 
V 

This operator has also the expression	
'V	 V	 . •,•• 

V	 V 

V	 V	 / 

where	1	 V	 V	

V	

-	 V 

m 5 .	V	

V	
V 

V	'J 1 =''D,+3	. (1<	lc)	 V	 ,	

V 

V 

denotes the Laplace operator which' acts on functions defined , on subsets of 
Rm,( R"). As we have shown in [1] the operator L(D) is not hypbelliptic. 

1.4 Let C"(G),k € No,.' be the linear space of all complex valued functions u which 
are k times continuously differentiable in G. By C0"(G) we denote the space of all 
functions u € C'(G) each having a compact support in G. We write also C0oo(G) 
= fl C(G). Further let be  

kEN, .	 V	 ,	 V	 -	 V 

V	 , 

• . C(G) := {u € Ck(G) I D'u E L2(G), a € N0", !I ^S k}.
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In C" (G) (with K from 1.2) we associate with the operator L(D)-the sesquilinear 
form.	 • 

B(t,v):=X fDu(x)D"v(x)dx.	 (1.1) 
' E F 0	 S 

We put	.	..	•'	 .	 - 

(u,v)r:B(u,v)'-f-(u,v)0	 S.	 (1.2) 

where (., .) denotes the scalar product in D(G), (u, v)0	f u(x)v(x) dx. Thus, we 

have a scalar product (., .)r..on C*k(G) with the corresponding norm I.Mr. We denote 
the completion of C"(G) with respect to the scalar product (1.2) by H'(G). For the 
closure of -C,°°(G) in Hr(G) we write H0r(G).	 :	 - 

On the space H0 1 (G) the sesquilinear form (1.1) defines a scalar product equivalent 
to (1.2), in particular-one has the inequalities 

B(u, u)	IIu r2 :!E^ c*B(u, u) for all u€ H01 (G)	 (1.3)


with a constant c* (cf.[1: Lemma 2]). The norm induced by B(., .)\on H0'(G) will 
'be denoted by IIIllIr. 

Theelementsof H01 (G) can be interpreted as functions with generalized homo-
geneous boundary data: Namely, for each U'  E H0r(G) n çk_1() the relation 

D fluja,G = 0 

holds for all ffE N0" with fi -;5y for some.y E f' (1	j	k) (we proved-this asser- 
tion in [1: Theorem 4], cf. also [4: p. 28]).	 S 

Further for every u E H01 (G) the strong L2-derivative D'u exists for all T E N0" 
with -r < a for some a E I' (the corresponding assertion for 'a E Hr(G) is not valid; 
cf. [1: Lemma 1], and also [5: Theorem 1]).	 -. 

Because the relation (1.4) is valid for functions 'a E H(G) n C"-'(G) one can

apply partial integration for functions from the set . X := H0 1 (G) n C(G) and gets. 

•	f D'u(x) Dv(x) dx = f D"u(x) v(x) dx -	.	 (1.5) 
0	, -	 0' 

'for all 'a, v E X and all oc E P (cf. [1: Lemma 5]). 

1.5 In the Hilbert space L2(G) we associate ,to the differential operator L(D) a 
linear. operator L by	 - 

D(L) := X(c L2(G)).,	 •.	 '	 - 

5 

	

• L'a-:=L(D)ü for all uEX.	-	 S 

This operator is densely defined and has an adjoint- operator L*, and by. partial 
integration one sees thatD(L*) X and that L* is also densely defined. The ope-
rator L is therefore closable with the closure (smallest closed extension) L = L**. 
On the other hand, we have on X a scalar product defined by 

•	(U, v) := (L(D)u, L(D) v)0 + ('a, v)0 .	 •	 (1.6) 

The completion of I with respect to- the scalar product is a Hilbert space H(")(G). 
In [1: Theorem 6] we proved that the domain of the closure L' of L in L2(0) 

coincides with the Hubert space H(G), D(L) = H(")(G). On H(k)(G) we have hence 
the scalar' product ('a, V) = (I-u, 17v)0 + ('a, v). Partial integration in (1.5) 
yields  

-	B(u, )	'(L(D)u, )o	-	•	 S	 -	 •	 '	
(1.7) 

-	 / 

/
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for all u EX and 4 E C0°(G) and since (1.7) depends continuously on u in the topo-
logy defined by (1.6) we have further 

B(w, ) = (17w, (k)	 (1.8) 

for all w €B"(G) and 4 E G060(G). 
In [1]'we proved that the elements of H(k)(G) have the same boundary behaviour 

as the elements of H0r(G) , i.e., 

H(k)(G) n H r(G) = HM(G).	 (1.9) 
1.6 In [1] we proved the existence and uniqueness of the solution of a generalized 

Dirichiet problem. We formulate the results for homogeneous boundary data: 
For a given f € L2(G) there exists a unique element .0 E , H0 1 (G) such that 

•	 B(u, 4) = (I, I')o	 (1.10) 
holds for all 0 E Co-(G).	 5 

•	From' the regularity result of [1: Theorem .9] it follows that the solution u of 
(1.10) lies in H(")(G)	.	 . 

2. The resolvent of L-

2.1  We first derive a priori estimates for the operator L. Take a finite open inter-
vall J : = It E R J —T < t < T} and let 0 be a bounded open set in R with Pro-
perty P. The set of all functions which obey the condition .	 S 

•	 W(x,..) E c0°°(J)	for each x E 0, 
co(., t) E X	for each t E J 

will be denoted by WIG X J). On this set we introduce the norm 

II wIJk.2).GXJ := f f { I L(D ) w(x,t2 + a2w(x, t) 1 2 + k(x, t)J 2} dt dx	(.1) 

where we use the notation for the differential operator a/at. 

Lemma 1: The estimate 

111L(D) + ei0 d21 0111 GXJ	Ik0 IIk,2).GxJ	IWIIO.GxJ	
S 

holds for each 0 E R with 'v/2	0	3/2 and for all w 	'(0x J). - •	•'' •	-	S 

Proof: For co € '(GXJ) we have	 S	 • • • 

111L(D) + eil 021 WGXJ =ff {L(D) ±	a 2} w(x, t) 1 2 dt dx	•	
• • 

If { I L(D) w(x, ) I 2 + 3g 2W(X, t)1 2} dtdx + e°+ e-° 

= I1(0 Ikk.2).GJ - IJWJlo,G>J + 2 Re (e10 )	•	 •	 ( 2.2) 
with	 • S	 •	 • 

x :=ff L(D) w(x, t) a 2w(x, t) dl dx.	•
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By partial integration one gets (note that the boundary terms vanish) - 

=f f Dw(x, t) 2o(x 1) dt dx 

= I f E D'co(x, t) Di" 2 o(x, 1) dt dx	- 
-T G F 

-f .1 E lD aw(x,t)1 2 dt dx. 
-T GEJ	 S 

Thus one has x € R, x 0. We get therefore by the assumption 2 Re (e°) 
= 2x cosO	0, and (2.2) gives the desired result U 

Lemma 2: Let G be a bounded open set with Property. P. To the operator L there 
exist two real constants c' > 0 and ).0 > 0 such that') 

c lI(L	Al) W loc	(I +'IA I) llWl!o,c 

for all w  HM (G) and for all A € C with J AI	and ReA :5: 0. 

Proof: We choose a real valued function 0 € C 0 '°(R) satisfying the conditions 

(1	for	ItI	1 

	

= 0 for tI > 2	
5 

and .0 0(t)	1 elsewhere. For an arbitrary function u € X and an arbitrary

ju € R we define the function co by 

w(x t) := u(x) e(t) e1. 

Now let us take T > 2. Then one has w € '(GxJ), and we get by Lemma 1 for	- 
0ER.,712031i/2, 

lko lI(k.2.GXJ	ll{L (D) +	at2)	li 2	+ llwll.j .	 (2.3)


We estimate now the first term on the right hand side of (2.3): 

II{L (D) + &	'} IlQ.GxJ 

=1 1 L(D) (x, t) + e1u(x)e'{"(t) + 2i'(t) - 2e(t)} 1 2 dt dx 

2 f f {le( t )l 2 L(D) u(x) - /22 eu(x)12 + iu(x)I 2 lo ll (t) + 2i'(t) 2 dt dx 

^ C1 f L(Du(x) _/22 eb0u(x)1 2 dx +C2   u( 2 dx	- 

= C 1 JI{L(D) - /22 e} UJIG + C2 lll.c	 -	 (2.4) 

with to positive constants C1 and C2 (independent of u and T).	- 

1) By I we denote the identity operator on L'(G).
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The second term on the right hand side of (2.3) satisfies the estimate 

IIJ'f I	dt dx	C3 uJ	-	 (2.5) 

with a third 'positive constant C3 .	 S 

By (2.1) we receive for the left hand term of (2.3) 

IWk2)GxJ'	f f {L(D) o(xt)I 2 + 3g2, t ) 1 2 + I(x, t) 1 2 ).dt dx 

2 IJL (D ) UIJc 42LIIU11 2 + 2 IIU11 2 
^ (2	+2) I IU11 2

c.	 .	 (2.6) 

From (2.3) we get by the estimates (2.4)7(26) 
(2 4 +2— C2	iiij. :5 c II{L(D) -,	ei} u. 

We choose )0 	1 + (C2 + C3)h/2. Then for all 2 = i2 e1° with y €	2 20 and 
•	 .0	3i/2 the inequality	 .	 .	. 

c II(L (D )	2) u lloc	(1 + ), l) llHo.a 
with c* 	+C1 1 "2 is , valid for all u EX. By continuous extension to H(k)(G) we get

the assertion of the lemiiia I 

2.2 Analogously to the 'elliptic case we prove now 

• Lemma 3:Let G be a bounded open set with Property P. Then the range of the ope-
rator L - 21: H( k)(G) — L2(G) coincides with the whole space L 2(G) for all 2 E C 

•	with Re).	0, and the operator L —2 I is bijective. - ' • . 

Proof: Let be 2 E C, Re). 0; and take an arbitrary element fE D(G). We have 
to prove that there exists a uniquely determined element 71 7 E H")(G) with 
(L—)J)u=/. 

We define  
Bi (u, v) := B(u, v) - 2(u, V)O	for all u, v € X..	

- 

Now one has by (1.3) (as Re 2 0) the estimate  
ReB(u,u) = B(u,u)— 1e2(u,u)0	'lil'z lllr2.	 (2.7) 

On the other hand, the sesquilinear form B.) ( . , .) is bounded on X, B2(ü, v)l 
(1 ± 1; 1) I jullp 11v1jr. AsB 2 ( . ,.) can be continuously extended to a bounded sesqui-

linear form with' proerty (2.7) to B0 1 (G), we get by the theorem of LAX-MILRAM 
• •	 (cf. [3: pp. 41-46]) the existence of a unique element u E H0r(G) such that (/, B COX 2 (u, 0) is valid for all 4 € C0-(G). By the regularity result for the solution 

€ H(C) of' the homogeneous Dirichiet problem 'mentioned in 1.6 we have 
EH(0).	 •	 / 
By partial integration (see (1.5)) we get further'	•	 ..	 S 

• f, CO.G = B(u, ) = ((17 - 21)u, 
for all q E Co-(G). This proves that the operator 17 — 21 : R"(G) -- L2(G) is bi-. 
jective I	• .	.	 'S	 S	 •
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2.3 By Lehmia 3 the domain of the resolvent ()1— 17)_ 1 of the operator 17 
- coincides with the whole space L2 (G) for all 2€ C with Re A 0, hence for every 
• such A the operator (21 - 17) 1 is bOunded. Furthermore we prove the fbllowing 

estimate for the resolvent. 
Lemma4: Let Gbeabounded open set with Property P. Then the resolvent (11— 17)-' - 

of the operator 17 satisfies the estimate	
0• 

11(21 - L1II	 (2.8) 

for all A € C with Re 2	0 where c is a positive constant.	 - 

Proof:The operator(AI - L')' is bounded for eyery 1€ C with Re  ^ 0,i.e., 
for every . such A there exists a positive constant c2 such that ll(AL— I7) 1I1 c. 
Then every A E C with Re). 0 has a neighborhood U2 in C for which 

•, 

	

Ly' ^5 2cA for all A' e-U2.	
\ 

Thus, the resolvent (Al - L)- 1 is uniformly bounded on each compact subset of 
the half plane Re). ^ 0, and we have with a constant c0 > 0 (which is independent 
of 2)

11(21 -	)-'lJ	c	 V	
(2.9) 

for all 2 E C with Re). 0 and 2I	2 (for 2 see Lemma 2). On the other hand,

by Lemma 2 we have - 

II()f	L1II	
±121 

V	 (2.10) 

for all 2 E C with Re). :^-, 0 and IA!	A. Hence with c := max {c*, c0(1 + A)} it 
follows from (2.9) and(2.10) that the relation	 V 

	

- 
Ly'	V C	

V	 V	

V 

1+121 
holds for all A E C with Re  ^ 0 I	V	

V 

3. The -Cauchy Problem	
V	

V	

V	

V 

3.1 We will now investigate the generalized Cauchy problem mentioned in the 
Introduction. Because of (1.9) this problem is an initial-boundary value problem 

V with generalized homogeneous boundary values on aG and with non-homogeneous	V 

- V 

initial values on G. 
V	 Problem C: Let G be a bounded open set in W' with Property P. Further let2) 

_ 
T,2() be a given uniformly HOlder continuous (with an exponent 0 < 1) 

function on RV0 with valued in L2(G), / € C0P(R0+ , L2 (G)), and it0 . a given element of 
H(k)(G). We want to find all functions u: 11. —> H(k)(G) fromthe class Co (R.0+ L2(G)) 

V n C1 (Jt+ , L2(0)) which solve the generalied evolution equation	V 

V	V  7- u(t) + Lu(t) = f(t) for 't> 0	 V	

V	

- 

V	

V 
	

V 

and satisfy the initial condition: u(0) = u0.	
V 

2) We use the notations R	{r € R I r> O} and	:=	u {O}.
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3.2 We are now able to use for this problem the theory presented by A. FRIEDMAN 
in [3: Part 2, especially 2.1-2.13, pp. 101-158] (cf. also [6: pp. 85-109]). For this 
theory it is not necessary that 17 is the closure of an elliptic differential operator 
but that

D(17) = H(k)(G) 

iè dense in L2(G) and that with a constant c> 0 the estimate 

1\-- J A I 
is valid for all 2 € C with Re 2. 0. These conditions guarantee that the operator —L-
is an infinitesimal generator of an analytic semigroup of bounded linear operators in 
L2(G), with the help of this fact: one proves the existence and uniqueness of the 
fundamental solution V( . , r) for the operator+ 17. 

By a fundamental solution we mean a function3) 
V( . ,.) : It E R  r	1< oo} X IT € RI r	0} -->6(L?(G)) 

with the properties: 
I. The operator V(t, t) (€ .(L2 (G))) is strongly continuous in t, i for 0	t <00. 

H. The derivative	V(t, t) exists in the strong topology of (D(G)) and belongs
at 

to .(L2(0)) for 0 < t < oo and is also strongly continuous in t for r <t < 00. 
III: The range of V(t, r) lies in D(17) (= H( 1 )(G)) for all t, r with 0:!^ r <t < 00. 
IV. The function V( . , r) is the solution of the Cauchy problem 

V(t, ) + 17V(t, r) = 0 for r <t < o 

and V(T, i) = I.	 - 
Finally we get from the considerations of A. FRrEDi.&& [3: p. 1091. 
Theo rem 5: Problem C has a unique solution u. This solution has the expression 

U(t) := V(t, 0) u0 +1 V(t, s) -1(s) ds. 

The authors would like to thank I. S. LOUHrVAARA for his comments while writing 
this paper. 
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