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On the Existence of Solutions for a General Form of Variational 
and Quasi-Variatioia1 Inequalities 

LE VAN CRóNG

/	I 

1n der Arbeit werden Aussagen uber die Existenz vn Losungen für cine allgemeine Form von - 
Variations- und Quasi variatibnsungleichungen gemacht. Dazu findet eine Modifikation der 
kiassisehen Koerzivitätsbedingung und eine Monotonic der. Ungleichung Verwendung. 

B U1H110 pa6oTe uayiaect cy[uecTBobaHLie peluellila napIIauHOHHbIX H KBa311BapHa1H0HHbIX 
n.epaneHcTB HelcoToporo o6iuero uua. JJTn 3TOro MojunI1qHpyeTc1 HjIacci1qec1oe ycJIOBHe 

lco3puIimBIlocTu H ucno1b3yeTcH ueoopai M0HOTOHIIOCTh HepaBelicTa. 

The paper studies the existence of solutions fr a general form of variational and quasi.varia- 
tional inequalities. For this there is used a modifieatio of the classical coerciveness condition 
and a monotonicity of inequalities. 

1. Introduction 

This paper studies the existence of solutions for a general form of variational and 
quasi-variational inequalities by using a modification of the classical coerciveness 
condition and a monotonicity of inequalities. Specifically, let X be a real Hausdorff 
locally convex space, C a closed convex subset of X, I a function from C x C into R 
and Qa multivalued mapping from C into C. The nionotonicity used in thepaper 
is that of the function / (see the definition in Section 2). We shall deal with the 
following general form of variational'inequalities: 

Find x € C such that f(x, y) :^—, 0 for all y € C. 

The coerciveness condition.used in our investigation of this problem is the following. 
There exists a convex compact set B C such that for each x E C \ B there is 
y € B satisfying /(x, y) > 0. In this condition, the existence of y € B may depend 
on x E C \ B. Here it is imjortant to note that in the classical coerciveness condi-
tion the existence of such an y € B is required independently of x € C \ B (see 
Theorem of Mosco{9] given in Section 2). 

Well known results for variational inequalities, obtained by using the classical 
coerciveness condition, can be found, for instance, in BROW-DER [4], HAItTMAN and 
STAMPACdHIA [5], LioNs [8] and Mosco [9]. The coerciveness condition in, the above 
form was first used by ALLEN [1] for an extension to non-compact sets of the in-
equality of KY FAN [7]. Another extension of this inequality is the result of BREzIs, 
NIRENBERO and STASII'ACCHIA [3] obtained by using the classical coerciveness 
condition.	 - 

The general form of quasi-variational inequalities considered in this paper is the 
following:	 - 

Find x € C such that x € Q(x) and /(x, y)	0 for all y € Q(x).
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Our coerciveness condition for this problem is the following: There exists a convex 
compact set B C such that for each x E B and each y E Q(x) \'B there is 
z € Q(x) n B satisfying /(y, z) > 0. As we can see, the existence of z in this condition 
may depend on the pair (x, y). This is in contrast to the classical coerciveness condi- 
tion used for instance in ilosco [9] where the point z is required to exist independently. 
of the pair (x, y) (see Remark 3.4).. 

The results obtained in this paper are extensions of some classical results. We 
shall see

'
 -their efficiency in some cases to which classical results cannot be applied 

(see the xample gien in Section 2). The 'results obtained for variational inequalities 
are presented in Section 2 and for quasi-variational inequalities in Section 3. 

2. 'Variational inequalities 

Let X be a real HausdorffJocal1y convex space, C X a closed convex subset 
and a function from C xC into R. We consider the following problem: 

Find x . EC such that /(x, y)	for all y E C.	,	( 2.1) 
The function / is said' to be monotone if /(x, y) + /(y, x) 0 for 'all x, y € C, and 

is said to be hemi-continuons if the function /(x + t(y - x), y) of , the real variable 
€ [0, his lower-sem icon tin uous for arbitrar y given x, i/ E Cf 
The existence of solutions to problem (2.1) is established in the following theorem. 
Theorem 2.1: Lt X be a real Iiausdor// lothlly convex space and C a closed convex 

subset of X. Let /: C  C - It 'be a 'monotone and henii-continuous /unction with 
/(, x)	0 for all x E C and for which the -function /( x, .) is concave and upper semi- 
continuous for each x € C. Assume that there exists a convex co1npat subset B C 
such that for each. x € C \ B there is an element y € B satisfying /(x, y) > 0 (the, 
coerciveness condition). 

Then the set'o/ all solutions to Problem (2.1) is non-empty, convex and compact. 

In order to prove 'Theorem 2.1 we need some results from Mosco [9]. 

Lemma 2.2 [9: Cor. 1 of Th. 6.1]: Let C be a non-empty convex compact subset 
of a real Hausdor// locally convex space X and /: C  C - It a monotone hen'ti-con 
tinuons /unction such that f(x, x) 0 and /(x, .) is a concave and upper semi-con-
tinuous function. / or each x € C. 

Then, Problem (2.1) admits a solution.  

Lemma 2.3 [9: Lemma 3.1]: Let C be a convex closed subset 0/a real Hausdor7/ 
locally convex space X and f: C x C -> It a monotone and hemicontinuous function 
such that /(x, x) :5 0 and /(x, .) is a concave and upper semi-continuous Junction for 
each x E C. For each y € C set  

G(y) = {x€ C:/(x,y)	01, ' R(y) = {x€ C:/(y,x)>0} 

and F(y) the closure of G(y) in the' space X. 
Then  

fl G(y) = fl F(y) =. fl 11(y)'  
yEC	i/CC	i/CC 

and , each of these intersections is a closed convex subset .o/ C.
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Proof of Theorem 2.1: For each yE Cwe define 

K() = {xEB:/(x,y)	O} 

and let Q(y) denote the closure of K(y). It is easy to check that K(y) is non-empty. 
/ In fact, if we define D to be the convex hull of the set B u {y}, then D is convex 

and compact. By Lemma 2.2, the Problem 

JXED 
1/(x, y) :!^: 0 for all y  D 

admits a solution. Let T be such a solution: Then, by the coerciveness condition, 
- we obtain E B. That means K(y) . ø.	 - 

LI

	We shall now show that	 - 

-	flK)=flQ(y).	 (2.2)' 
yEC	 yeC	 - 

It is obvious that n K(y)	fl Q(y). Therefore, we have only to show the converse 
yeC	 yEC	 - 

inclusion. Let G(y) = {x E C: '/(x, y) < O} and let F(y) be the closure of G(y). It is 
clear that K(y) = G(y) n B, hence fl K(y) = fl G(y) n B. But, from the coerciveness 

y(C	 y€C 
condition it follows that the set of all solutions to Problem (2.1) is contained in B, 
that means fl G(y) B. Therefore 

yEC 

fl .K(y) = fl 0(y).	 (2.3) 
y€C	 y(C 

From K(y) ç G(y) we get Q(y) fly), hence fl Q(y) fl ll'(y) . By Lemma 2.3 
ycC	 yeC 

we ha.e fl F(y) = fl G(y). Therefore, together with (2.3) we obtain fl Q(y)	fl K(y), 
yeC	 yeC	 LIE 	y€C 

which means (2.2) holds. 
By using the finite intersection property for the family of the closed sets Q(y) 

in the compact set 13, we now show the existence of a solution to Problem (2.1)1). 
Let y, ..., y,, be arbitrary points of C. Let C - denote the convex hull of the set 
B u {, ..., y. Then C0 is a convex compact set. Hence, frbm Lemma 2.2 the 
Problem	0 

/ 
IXEC0	 0 

/ (x, y)	0 for all y  Co
0	 I 

admits a,solution. Let x0 be such a solution. So we have x0 € B (by virtue of the 
coerciveness condition) and /(x0, y)	0 for all I = 1, . .., n. That means	- 

xO € nK(y)	nQ(y).  

Therefore, the famil y {Q(y): y € C) has the finite intesection property. Hence, there 
exists x € n Q(y). Together with (2.2) and (2.3) we obtain x € n 0(y). That means x 

0EC	 SEC 

is a solution of Problem (2.1).	 0	
- 

The convexity and the compactness of the set Al of all solutions of (2.1) follow 
from the coerciveness condition, the relation (2.3) (shown abo'e) and Lemma 2.3. 
Al is then -a closed convex subset of the compactset B I	- 
') The technique of using the finite intersection property here is similar to that used in ALLEN - 
[1].
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We consider now a special case of Probleni (2.1). Let X be a reflexive Banach 
space, X* the dual spade of X, C X a closed convex subset, A an operator from 
C into X' and q a function from C into R. For the following variational inequality 

JXEC	 -	
(2.4) ((Ax —v',x—y)+9,(x)-92(y)	0 forall yEC, 

where v' is an arbitrary given element of X*, Theorem 2.1 has an immediate corol-
lary.	 - 

Corollary 2.4: Let the space X and the set C be given as'above. Let A be a monotone 
and hemi-continuous operator and 92 a convex and lower-continuous function. Suppose 
that there exists a bounded set B 0 C such that sup t(x): x E B0} < +oo and for 
each x E C there is y(x) E B0 satisfying 

•	 ' (Ax, x - y())	(x)

	

 llxM	
+oo• as	j jxjj -	 ,-	'	(2.5) 

Then the set of all solutions to Problem (2.4) is non-empty, convex and compact. 

Proof: Apply Theorem 2.1 with. the weak topology on X,f(x, y) = (Ax - v', 
x - y)+ (x) - q(y) and the convex compact set , B = {x E X: Ilx li :5 r} n C with 
r > 0-sufficiently large:' The coerciveness condition is then satisfied, since the set 
B' := {xE C: f(x, y) ^5 0 \/y E B0} is now bounded (by virtue of (2.5)) and thus 
we can take B B0 u B' for, sufficiently large r > 0. The set B so defined has the 
desired property of the convex compact set *in the coerciveness condition I 

We would like here to note that by using the subdifferential of the function ' 
and the indicatorfunction Ic for C we can write (2.4) in the form v' E Ax + i(Ic ± ç) 
X (x). The assertion of Corollary 2.4 then follows also from the surjectivity criterion 
of RocxAPEu&a [10].	 1 

Remark 2.5: From BROWDER [4] and HABTMAN and STAMPACCHIA [5] we have - -, 
the following result: Let X, C, A and v' be given as in Crollary 2.4..Suppose that 
there is a point Yo E C such that	 - 

•'(Ax,x—yo)

	

-* +oo as Ilx Ii	oo ,	xEC. 
lxii	- 

Then the variational inequality . - 

J XE ' C r	 - 

t(Ax,x - y) ^(v',x - y), for all y € C 

admits a solution. We obtain this result by applying Corollary 2.4 with	0 and
the bounded set B0 := {y0}. 

The following existence theorem is proved by Mosco [9: Theorem-3.11. Let X 
be a real Hausdorff topological linear space andC a closed convex subset of X. 
Let f: C><C -± R be a monotone and hemi-continuous function with /(x, x) 0 
for all x € C and for ,which the function /(x,.) is concave and upper semi-continuous 
for each x € C. - Suppose that there exists a compact subset B c: C and a point 
Yo € B such that f(x, Yo) > 0 for each x E C \ B (the coerciveness condition). Then 
the set of all solutions to Problem (2.1) is non-empty, convex and compact. A con-
nection between this result and Theorem 2.1 above, is given in the following remark.
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Remark 2.6: In the case where X is a Banach space, Theorem 2.1 is ageneraliza-
tion of Theorem 11.in [91 . . Since in a Banach space the closed convex hull of a 
compact set (weakly compact set) is a compact set (weakly comiact set, respectively), 
it is easy to see that from the coerciveness condition in Theorem 3.1 [9] we get the 
coerciveness condition in Theorem 2.1. Theorem 3.1 [9] follows then from Theorem 

•

	

	We give now an example from stationary point problems, to which Theorem 3.1 
[9] cannot be applied, but Theorem 2.1 above implies the existence of a solution. 

• Let C± It" be a convex set and A an operator from C into R'. A point x € C is 
• said to be a stationary point ofthe variational problem defined by the pair (A, C) 

if the inequality 

Ax(x - y)T :!E^ 0 for all y € C 

• is satisfied (see [6]). Here we als,o say that x is a solution of the stationary point 
Problem (A, C) (the superscript T denotes the transposition).' Our example is the 
stationary' point problem (A, C) where  

• . .	 . , Ax = (x2 , —x1 ,'x4 , —x3 , . .., x, ) —x_ 1 ), n even 
-	x = (x 1 ,..., xe). 

For the above example we define / as /(x, y) = Ax(x y)T. 
In this case, it is easy to check that the set {x € C: /(x,y) O} is unbounded 

for each y € C. Hence, it is impossible to find a compact set B and a point Yo E B 
satisfying the coerciveness condition in Theorem 3.1 [9]. Conversely, by taking 
B = {x = (x1 , .:., x) € C: x E [-1, +1] for i = J, ..., n} we can verify that the 
coerciveness condition in Theorem 2.1 is satisfied. The other assumptions in Theorem 
2.1 are also satisfied. Hence, in the above example Problem (2.1) admits a solution, 
that means, the above stationary point problem admits a solution. 

	

3. Quasi-variational inequalities	. 

We assume again that X is a real Hausdorff locally convex space and, C c X a 
closed convex subset. Let Q. be a multivalued mapping from C into C and / a function 
froiii C xC into R. We consider the following problem: 

Find x € C such that x € Q(x) and /(x, y)	0 for all y € Q(x). 
(3.1) 

The mapping Q is said to be closed if for every generalized squence {(x, y)} 
converging to (x, y) in C xC and' satisfying y € Q(x) we jiave in the limit y € Q(x). - 

Q is said to be lower semi-continuous with respect to/ if for every generalized se-
quence {(x, y)} converging to (x, y) in Cx C and satisfying 

•	JyEQ(xQ)	 . 
l/(ya, z)	0 for all z € Q(x)	 S 

and for every z € Q(x) there is z E Q(x) such that 

	

[AX., Z) —/(x,z)]	0. 

For Problem (3.1) we shall prove the following existence theorem.	• 

35 Analysis Bd. 3, Heft 6 (1984)	•	 S	 ,



546	LVANCHÔNG 

T h e ore in 3.1: Let X be a real HaLsdor// locally convex space and C a closed convex' 
subset of X. Let /: C x C - IL be a monotone and hemi-continuous function such that 
f(x, x) 0 and /(x, .) is a concave, upper semi-continuous function for each 'x E C. 
Let the mapping Q: C -* 2c be closed and lower semi-continuous with respect to /. 
Assume that/here exists a convex compact subset B c C such that for each x € B and 
each y € , Q(x) \ B there is z € B n Q(x) satisfying /(y, z) > 0 (the coerciveness condi-
tion). 

Then Problem (3.1) admits a solution. 
In order to prove Theorem 3.1 ,we use Theorem 2.1 and the following Lemma. 
Lem ma 3.2: Under the ,assunjtion,s of Theorem 3.1,/or each x € B the problem 

lY C,	y€Q(x)	
32) lf(y, z)	Q for all z € Q(x) 

admits a solution. Moreover, if we de/ine 8(x) to be the set of all solutions of this problen, 
then the multivalued mapping 8: x F-+ 8(x) is closed. 

Prbof: The existence of a solution to Problem (3.2) follows from Theorem 2.1 
above. We now show that the mapping ' S is closed. Let G be the graph ,Of 8, that'. 
means 0 = {(x, y) € C xC: x € B, g € S(x)}. Let {(x, y )} be a given sequence in 0 
converging to (x, y). We have to show that (x, y) € G. By (x, y ) € 0 wehave' 

Jy€Q(xa')	'	
(33) l/(y , z)	0 for all z € Q(x,) 

Since Q is lower serni-continious with respect to /, for every z € Q(x) there is z € Q(x) 
such that lim [/(y, z) - f(y, zn )]	0. Hence, if follows from (3.3) that urn f(y , z) 
^ 0. Therefore, by taking account of the nionotonicityof / we get lini/(z, y,)	0.
By this, it follows from the upper semicontinuity of f(z, .) that 

/(z, y)	0.	 '	 (3.4) 
On the other hand, the mapping Q is closed and as above {(x, y)} converges to 
(x, y), y € Q(x). Therefore y € Q(x). In (3.4) z € Q(x) is arbitrary. Thus y is exactly 
a solution of the problem 

J'yEQ(x) 
' /(z, y) ^ 0 for all z € Q().

0 
By Lemma 2.3, y is then a solution of the problem 

•	
IQ() 
l! (y, z) !E^ 0 for all z € Q(x). 

That means y E8(x) or (x, y) € G. The proof of Lemma 3.2 is complete U 

Proof of Theorem 3.1: For each x € B, by Lemma 3.2 the problem 

JyEQ(x)	- 
f(y, z)	0 for all z € Q(x) 

• admits a solution and by the coerciveness condition tIie set S() of all solutions 
of this problem is contained in B. Thus, the closed mapping 8: B -+ 2 B has the
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compact image B. Therefore S is upper semi-continuous. By Kakutani's fixed point 
Theorem (see BERGE [2]) there exists a.- point x E B such that x E S(x). That means 
x is a solution of Problem (3.1) I 

We now consider a special case. Let X be a reflexive Banach space, C c X a 
closed convex subset, X the dual space of X, A an operator from C into X', Q 
• multivalued mapping from C into C and 92 a function from C into R. Let v' be 
• given point of X*. 

The mapping Q is said to be lower semi-continuous with respect to (A, q,, v') if for 
every sequence {(x,,, y,,)} converging to (x, y).in C x C and satisfying 

Jy€Q(x,,) 
1(Ay,. - v', y,, - z) ± ,(y,,) - ç(z)	0 for all z € Q(x,,) 

and for every z E Q(x) there is z,, E Q(x,,) such that	 - 

!iia [(Ax,, - V' , Zn - z) + p(Z,,) - p(z)]	O.	 - 

	

For the quasi-variational inequality	 S 

Jx'€C,	x€Q(x)	.	
1

'(35).(Ax —v',x-y)+q()—q,(y)^50 for all yEQ(x) 
we have the following corollary.	 S 

Corollaey 3.3: Let C be a closed convex subset of a reflexive Banach space X, A a 
monotone and hemi-continuous operator, Q a closed mapping and lower semi-continuous 
with respect to (A, 99, v') and q, a convex and lower semi-continuous function. Suppose 
that there exists a bounded set B 0 c C such that sup {q(x): x € B0 < +00 and for 
each y E Q(C) there is Z(y) E B0 n Q(x) satisfying	 S	 - 

(Ay, y - z(y)) +	-+ +00 as jjy — 00,	•y € Q(C)	(3.6) 
Hyll 

Then Problem (3.5) admits a solution. 
•

	

	Proof: Apply Theorem 3.1 with the weak topology on X, the set C and mapping
Q as above, the function /(x, y) = (Ax — v', x — ' y) + q(x) — q(y) and the convex 
compact set B = {x E X: I x II	r} n C with r > 0 sufficiently large. It is easy to 
check that the set B' := {y 'c Q(C): f(y, z) 0 Vz € Q(C) n B01 is bounded (by 
virtue of (3.6)). Therefore, we can asuwe that B contains B0 u B'-for sufficiently 
large r > 0 and then the coerciveness condition is satisfied. Thus, there is a solution 
of(3.5)I 

For convenience we shall say that Q is lower sqmi-continuous with respect to (A, v') 
if Q is lower semi-continuous with respect to- (A, q,, v') (according to the definition 
above) with = 0.	 S 

- Remark 3.4: From Mosco [9: Theorem 8.1 and Remark 8.1] we have the follow-
ing result:Let X, C, A and v' be given as in Remark 3.3. Let Q be a closed multi-
valued mapping and lower semi-continuous with respect to (A, v'). Suppose that 
there exists a point z0 € () Q(x) such that	

- 
-	ZEC 

(Ay,y, — Z0) _ +00 as lIll	co,	y E Q(C). 
IIii 

35
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Then the quasi-variational inequality 

JxEC,	XEQ(x)	- 
(Ax,x—y)v',x_y for all yEQ(x) 

admits a solution. We obtain this result by applying Corollary 3.3 with op = 0 and 
the set B0 	{z0. 

Remark 3.5: By an argument analogous to that used in the proof of Theorem 
3.1, we can show that . Theorem 3.1 still holds if the assumption "Q is lower semi-
continuous with respect, to /" is replaced by the assumption: "Q is lower semi-
continuous and I is lower semi-continuous on CxC". The loweremi-continuity 
of the mapping Q: C - 2c here means that if {x} is a generalized sequence converging 
to x in C, then for every y € Q(x) there is y € Q(x) such that the sequence {y} 
converges to y in C. 
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