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On the ,Exjstence of Solutions for a General Form of Variational
and Quasi-Variatiopal Inequalities ) '
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“In der Arbeit werden Aussagen iber die Existenz von Losungen fiir cine allgemeine Form von
Variations- und Quasivariationsungleichungen gemacht. Dazu findet eine Modifikation der:
klassischen Koerzivititsbedingung und eine Monotonie der Ungleichung Verwendung.
. . . - ‘ -
B naunolt paboTe M3y4aeTCA CYIECTBOBAHUE PelleHA BAPHALMOHHEIX U KBasHBAPUALMOHHEIX
HepaneHCTB HekoToporo ofbwero suaa. [las aroro MomudHIMpyeTca Kaaccityeckoe ycjioBue
KODPUHTHBHOCTH M UCMOAb3YETCA HEKOTOPAA MOHOTOHHOCTH HEPaBEHCTR.
. " . s '

The paper studies the existence of solutions f_c')r a general form of variational and quasi-varia-
tional inequalities. For this therc is used a modificatiop of the classical coerciveness condition
and a monotonicity of inequalities. -

.
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1. Introduction : o
This paper studies the existence of solutions for a genefal form of variational and
. quasi-variational inequalities by using a modification of the classical coerciveness
condition and a monotonicity of inequalities. Spécifically, let X be a real Hausdorff
locally convex space, C a closed convex subset of X, f a function from CxC into R
and Q a multivalued mapping from C into C. The monotonicity used in the.paper
is that of the function f (see the definition in Section 2). We shall deal with the
_following general form of variational inequalities: .
Find z€C such that fle,y) =0 forall yeC.

'

The coerciveness condition.used in our investigation of this problem is the following.
There exists a convex compact set B C such that for each z € C"™\ B there is
y € B satisfying f(z, y) > 0.-In this condition, the existence of y € B may depend
on 'z € C\ B. Here it is important to note that in the classical coerciveness condi-
tion the existerice of such an y € B is required independently of z € C \ B (see
Theorem of Mosco-{9] given in Section 2). - ) )

Well known results for variational inequalities, obtained by using the classical
coerciveness condition, can be found, for instance, in BROWDER [4], HarTMAN and
StanmpaccHia [5], Lions [8] and Mosco [9]. The coerciveness condition in. the above
form was first used by -ALLEN [1] for an extension to non-compact sets of the in-
equality of Ky FaAX [7]. Another extension of this inequality is the result of BrEz1s,

' NIRENBERG and Stampaccuia [3] obtained by using the classical coerciveness
condition. o ' ~

The general form of quasi-variational inequalities considered in this paper is the

- following: ' o ' . ' :

. Find .x € C suchthat z€Q(x) and f(z,y) = 0 forall ye Q(x)..
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Our coerciveness condition for this problem is the following: There exists a convex
compact set B C such that for each z ¢ B and each y € Q() \'B ‘there is
z € Q(z) n B satisfying f(y, 2) > 0. As we can see, the existence of z in this condition,
may depend on the pair (z, y). This is in contrast to the classical coerciveness condi-
tion used for instance in Mosco [9] where the point z is required to exist independently-
of the pair (z, y) (see Remark 3.4).. ’ '

The results obtained in this paper are extensions of some classical results. We

“shall see their efficiency in some cases to which classical results cannot be applied _

(sec the example given in Section 2). The results obtained for variational inequalities
are presented in Section 2 and for quasi-variational inequalities in Section 3. . ‘

]
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2. Variational inequalities

Leﬁ X be a real 'Haﬁsdorff\]ocally convex space, C — X a closed convex subset

. and f a function from C x C into R. We consider the following problem:

Find z€C suchthat [(z,y) <.0° for all yeC. B (2.1

The \fur\wtio_n /s .séid‘ to be monotone if f(z, y) + f(y, ) = 0 forall z, y € C, and /
is said to be kemi-conténuous if the function /(:1: + Hy — ), y) of the real variable

£ € [0, 1] is lower-semicontinuous for arbitrary given z, y ¢ C/

The existence of solutions to problem (2.1) is established in the following theorem.

Theorem 2.1: Let X be a real Hausdorff locally convex space und C a closed convex
subset of X. Let [:CxXC — R ‘be a monotone and - hemi-continuous function with
f@, ) £0 for all = € C and for which the function f(x, ) is concave and upper sema-
continuous for each x € C. Assume that there exists a convex compact subset B = ¢
such that for euck .z € C\ B there 18 an element y € B satisfying f(z,y) > 0 (the.
coerctveness condition). _ , - .

Then the set of all solutions to Problem (2.1) ©s non-empty, convex and compact.

In order to prove Theorem 2.1 we need some results from Mosco [9].

N

‘Lemma 2.2 [9: Cor. 1 of Th.6.1]: Let C be a non-emply convex compact subset
of a real Hausdorff locally convex space X and f: CxC — R a monotone hemi-con’
tinuous function such that f(z,z) < 0 and f(z,:) s a concuve and upper semi-con-
tinuous function for each x € C. ' S
t Then Problem (2.1) admats a solution.

"~ Lemma 2.3 [9: Lemma 3.1]: Let C be a convex closed subset of a real Hausdorff
locally convex space X and f: CxC — R « monotone and hemi-continuous Junction

such that f(x, x) < 0 and f(z, -) 25 a concave and upper semi-continuous function for =
each x € C. For each y € C set . . .
A 4

Gly) = (@ e C: fla,y) <O, - Hiy) = {z€ C: f(y, 2) = 0}
and F(y) lI'Le closure of G(y) n the spdce X, . ‘ |
Then ' " . ' B

NGy) =N Fly) =N H(y)
yeC yec .

yee . ' N

and each of these intersections is a closed convex subset of C. - \

\

v
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Proof of Theorem 2.1: For each y € C we define

K@%=x6Bf@y%<m

and let Q(y) denote the closure of K(y). Tt is easy to check that K(z/) is non- empby
In fact, if we define D to be the convex hull of the set B u {y}, then D is convex
and compact. By Lemma 2.2, the Problem - :

z€D .
Hz,y) =0 forall yeD .

*, admits a solution. Let Z be such a solution. Then by the ccoerciveness condmon

~ we obtain Z € B. That means K(y) = 0.
We shall now show that o=

©NKw =new. _ T e

vee
Tt is obvnous that m Ky < m Qy). Therefor_e, we have onl'y.to show the converse
inclusion. Let G(y ) {x € C /(x y) = < 0} and let F(y) be the closure of G(y). Tt is

_ clear that K(y) = G(y) n B, hence ﬂ K(y) = N G(y) n B. But, from the coerciveness

yeC .
condition it follows that the set of all solutions to Problem (2.1) is.contained in B,
that means G(y) <= B. Thereforc 4

yec ¢ .
0K =06, o : | (2.3)
yeC ’ .
From ]\( ) S Gly) we get Qy F(y), hence ﬂ Qy) C ﬂ F(y). By Lemma 2.3

we have m F(yy = ﬁ G(y). Therefore, togcther w1th (2 3) we obtam m Qy) = N ]\(y),

yeC
which mcans (2.2) holds
By using the finite intersection property for the family of the. closed sets Q(
in the compact set BB, we now show the existence of a solution to Probiem (2.1)1).
Let y,, ..., ya be arbitrary points of C. Let Cy denote the convex hull of the set
Bu{y, ..., ya}. Then C, is a convex compact set. Hence, from Lemma 2.2 the
Problem - , ' . : :
! x € Co . . \ .
/(x) 7/) éo fO[‘ a’“ yeCO ' ’

\ . {
admits a solution. Let z, be such a solution. So we have z, € B (by virtue of the
coerciveness condition) and f(z,, y;) < 0 for all 7 = 1, ..., n. That means *

n

7€ N\ K(y) S nQ(y.) < ‘ /
Thereforc t,he family {Q(y) y € C} has the finite intersection property. Hence there
exists x € M Q(y). Together with (2.2) and (2. 3) we obtam x € ﬂ G(y). That means x -~

AN

isa solutlg)n of Problem (2.1).
The convcut,y and the compactness of the set A of all solut,lons of (2.1) follow
from the coerciveness condition, the relation (2.3) (shown above) and Lemma, 2.3.

JII is then a closed convex subset of the compact,.set g |

1) The techmque of using the finite intersection property here is similar to that used in ALLEX .

(4]

N
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We consider now a special case of Problem (2.1). Let X be a reflexive Banach
space, X* the dual space of X, C — X a closed convex subset, 4 an operator from
C into X* and ¢ a function from C into R. For the following variational inequality

(zeC . ' :
) . ' . 4
{<Ax—v',x—y>+qo(z>—qa(y)go. forall ye0, o @4

where v’ is an arbitrary given element of X*, Theorem 2.1 has an immediate corol-"

lary.

\

+Corollary 2:4: Let the space X and the set C be given as'above. Let A be a monotone

..and hemz- continuous operalor and ¢ a convex and lower-continuous function. Suppose
that there exists a bounded set By — C such that sup {p(x): z € Bo} +oo and for
each x € C there vs y(x) € B, satisfying

Az, = — y(x) + ¢(z)
Ml

Tken the set of all solutums to Problem (2 4) 7s non-emply, convex and compact.

_>+'oo' as ||x||—>+oo.' L (2.5)

" Proof: Apply Theorem 2.1 w1th the weak topology on X, f(z,y) = (dz — 7/,
x — y)+ p(x) — @(y) and the convex compact set B = {z € X: |jz]| = 7} nC with
r > O.sufficiently large> The coerciveness condition is then satisfied, since the set
B :=({x€C:f(x,y) =<0 Vy € B} is now bounded (by virtue of (2.5)) and thus
we can take B D By u B’ for.sufficiently large r > 0. The set B so defined has the
desired property of the convex compact set’in the coerciveness condition 1

We would like here to note that by using the subdifferential of the furiction ¢~

and the indicatorfunction I for C we can write (2.4) in the form v’ € Az 4 8(I¢ + ¢)

X (z). The assertion of Corollary 2.4 then follows also from the surjectivity criterion )

of ROCKAFELLAR [10].

s

Remark 2.5: From BROWDER [4] and HarTMAN and StampaccHIA [5] we have - :
- the followmg result: Let X, C, 4 and »" be given as in C'orollary 2.4. Suppose that

there is a point y, € C such that

@ﬁ_l’lc?”_i?_,+w as |] > o0, zeC.

Then the variational‘inequality, ! v
z € O ' ) o
(Axx~y)<(?, z — y). forall ?/EC' oy )

\

'adnuts a solutlon We obtam this rcsult by applymg Corollary 2.4 with P: =0 and '

- the bounded set By:= {y,}-

The fo]lowmg existence theorem is proved by Mosco [9: Theorem 3.1]. Let X

_be a real Hausdorff topological linear space and™C a closed convex subset of X.’

~Let /:CXC — R be a monotone and heml continuous function with f(z,z) < 0
for all z € C and for which the function f(z, -) is concave and upper semi-continuous
. for each x € C. Suppose that there emsts a.compact subset B C and a point

Yo € B such that f(z, o) > 0 for each x € C\\ B (the coerciveness condition). Then -

the set of all solutions to Problem (2.1) is non-empty, convex and compact. A con-
nection between this result and Theorem 2.1 above is given.in the foon'ving remark.

Y
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Remark 2.6: In the case where X is'a Banach space, Theorem 2.1 is a generaliza-
tion of Theorem 3.1.in [9].. Since in a Banach space the closed convex hull of a
" compact set (weakly compact set) is a compact set (weakly compact set, respectively),
it is easy to sec that from the coerciveness condition in Theorem 3.1 [9] we get the
. coerciveness condition in Theorem 2.1. Theorem 3.1 [9] follows then from Theorem
2.1. - .

\Ve give now an example from statlonary point problems, to which Theorem 3.1

.. [9) cannot be applied, but Theorem 2.1 above implies the existence of a solution.

* Let C'< R be a convex set and A an operator from C into R". A point z € C is
said to be a stationary point of the variational problem deflned by the pair (4, O)
lf the mequallty ‘

Ax(x—y)T <0 for a.ll S C

K sablsfled (seée [6]). Here we also say that z is a solution of the statlonary point
- Problem (A C) (the superscript 7' denotes the'transposition).” Our example is the
- statxonary point problem (4, C) where : ,

C=R" . :
N Az = (Ty, — 21, Ty, — Tz, -y Tny, —Tu1), B €VED
T = (xl’\'"’ xn)'

For the above example we define [ as f(z, y) = Az(z — y)T.

In this case, it is easy to check that the set {z € C: f(z,'y) < 0} is unbounded
for each y € C. Hence, it is impossible to find a compact set B and a point y, € B
satisfying the coercnvenes‘s condition in Theorem 3.1 [9]. Conversely, by taking
B={z=(z,..,%,) € C:2; € [—1, +1]for7i =1, ,m} we can verify that the
coerciveness condmon in Theorem 2 1 is satisfied. The other assumptions in Theorem
2.1 are also satisfied. Hence, in the above cxample Problem (2.1) admits a solution,
. that means, the above stationary point problem admits a solution.

\

3. Quas1 vanatlonal mequalltles

: VVe assume again that X is a real Hausdorff locally convex space and C=Xa
closed convex subset. Let ¢ be a multivalued mapping from C into C and f a function
from C’ XC into R. We consider the following problem: '

Find z€C suchthat z€Q(x) and f(z,y) <0 forall ye€ Q=)
S | ©l (3.1)
The ma.ppmg Q is “said to be closed if for every genera,hzed séquence {(Z., ¥a)}
convergmg to (z, y) in C X C and satisfying y, € Q(=,) we have in the limit y € Q(=).

@ is said to be lower semi-continuous with respect to f if for every genera.lxzed se-

quence {(,, ¥.)} -converging to (z, y) in CXC and satisfying

Ya € Q(z.) 5 o
f(¥s,2) =0 forall ze Q(z,) B . o

“and for every z 6 Q(=) there is z, € Q(xa such that
Jim [/(xﬂ, z) — f(Zay 2)] = 0.
" For Problem (3.1) we shall pr(\)vg ‘the following existence theorem.

35 Analysis Bd. 3, Heft 6 (1984) .

!
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Theorem 3.1: Let X be a real Haiisdorff locally convex space and C « closed convex’ .
subset of X.- Let f: CXC — R be a monotone and hemi-continuous function such that
fx,2) =0 and f(z, -) %s a concave, upper semi-conttnuous function for each 'z € C.”
Let the mapping Q: C — 2¢ be closed and lower semi-continuous with respect to f.

- Assume thafthere exists a convex compact subset' B = C' such that for each x € B and

-each y € Q(x) \ B there is z € B n Q(x) satisfyjing f(y,z) > O (the coerciveness condi-

/.

tion). ‘

- Then Problem (3.1) admats als‘olutz'on.
In order to pron Théoi‘em 3.1 we use ATheorem é.l and the fo;]lowing Lemuma.
Lemma 3.2: Under lhe,as‘sumptzbns of TI;eorem 3.1, for each x € B the problem

yel,  yeQ)
‘ {/‘(?/, z) £0 forall z€Qz) . : (3.2) |

. . . { : .
admits a solution. Moreover, if we define S(z) to be the set of all solutions of this problem,

- theri the multivalued mapping S: x — S(x) ¥s closed.

Proof: '].‘h;: existence of a solution to Problem (3.2) follows from Theorem 2.1

.above. We now show that-the mapping S is closed. Let G be'the graph of S, that
means ¢ = {(z,y) € C XC: 2 € B,y € S(z)}. Let {(z,, .)} be a given sequence in G

converging to (z, y). We have to show that (z, y) € G. By (2., %.) € G we'have:

{ya € Q(xa.) ot

Yy 2) £0 forall zeQ(z) . i (3.3)

Since Q is lower serxli:continﬁous with respect to f, for every z € Q(x) there is 2, € Q(z,)
such that lim [f(y., 2) — f(¥., 2.)] = 0. Hence, if follows from (3.3) that lim /(y,, 2)
= 0. Therefore, by taking account of the monotonicity-of / we get Iim f(z, ,) = 0.
By this, it follows from the upper semi-continuity of f(z, -) that :

fmyzo. | (3.4)

 On the other hand, the zﬁapping @ is closed and as above {(z,, ya)}'COnverges to .

(%, Y), Ya € Q(%,). Therefore y € Q(z). In (3.4) z € Q(z) is arbitrary. Thus y is exactly

a solution of the problem

\

y€Qz) -
" f(z,y) 20 for gll zE€ Q(i{).

By Lemma 2.3, y s then a solution of the problem

y € Q=) .
Hy,2) =0 forall ze€ Q).

That means y € S(z) or (z, y) € G. The pioof of Lemma 3.2 is compl"ete §
~ Proof of Theb_rerﬁ 3.1: For cach z € B, by Lemma 3.2 the prob]em

y € Q) X
A fy,2) =0 forall ze Q)
admits a solution ahd by the coerciveness condition the set S(z) of all solutions -
of this problem is contained in B. Thus, the closed mapping S: B — 22 has the

/ : . ~-
.
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7

compact image B. Therefore § is upper semi-continuous. By Kakutani’s fixed point
Theorem (see BErGE [2]) there exists a- pomt, z € B such that z € S(x) That means
z is & solution of Problem 311

We now conisider a special case. Let X be a reflexive Ba.nach space CcXa
closed convex subset, X* the dual space of X, 4 an operator from C into X*,Q
a multivalued mapping from C into C and ¢ a function from C into R. Let ¢’ be
a given point of X*.

The mappmg Q is said to be lower semi-continuous with respect to (A, ¢, v') if for
every sequence {(z,, y,)} converging to (z, y).in C X C and satisfying

N {yn € Q( n) .
4y — V' yn — 2 + @ya) — 9(2) S 0 forall z€Q(z)

and for every z € Q(z) there is z, € Q(z,) such that
“—m [(A(Z:" - 'l)', 2y — Z) + q’(zn) - <P(2)] =0.
For the quasi-variational inequality

‘.{;:‘EC,  ze Q) o
(Az — v,z —y) + o(z) —@(y) =0 forall ye Q)

we have the following corbllary. C N

" (3.5)

Corollary 3.3: Let C be a closed convex subset of a reflexive Banach space X, A a
monotone and hemi-continuous operator, Q a closed mappmg and lower senn~conlznuous
with respect to (4, @, v') and ¢ a convex and lower semi-continuous function. Suppose
that there exists a bounded set By, = C such that sup {p(z z):z € By} < o0 and for
each y € Q(C) there is 2(y) € By n Q(x) satisfying o

(Ay, y — 2(y)) + ¢(y)
‘ llyll

Then Problem (‘% 5) admzts a solution.

- 400 as |yl —>o0, yeQO) © (3.6)

.. Proof: Apply Theorem 3.1 with the wéak topology on X, the set C and mappmg

Q as above, the function f(z, y) = (Axz — ', z —y) + @(z) — @(y) and the convex
compact set B={r€ X: ||x[l ErpnC withr >0 sufficiently large. It is easy to
check that the set B':= {y€ QC): f(y,2) =0 Vz€ QC)n DBy is bounded (by
virtue of (3.6)). Therefore, we can assume that B contains B, u B'-for suffmently
large r > 0 and then the coerciveness condltlon is satisfied. Thus, there is a solution
of (‘3 3)

Bor convenience we shall say that Q is lower semi-continuous with respect to (A,v')
if Q s lower semi-continuous with respect to- (A @, V') (according to the defmmon
-above) wn,h p=0. A S

. Remark 3.4: From Mosco [9 Theorem 8.1 and. Remark 8.1] we have t,he follow-
ing result: Let X, C, 4 and v’ be given as in Remark 3.3. Let @ be a closéd multi-
valued mapping and lower semi-continuous with respect to (4, ). Suppose that
there exists a point z, € ﬂ Q( such that .

AN

. <Ay» Yy — 20>

L2 s oo as gl > o, v € Q).
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' Then the quasi- varlatlonal inequality - S
{x €C, z € Q(x) 7
Az, z — y) £ (W', 2 — y) forall y e Q) )

admits a solution. We obtain this result by applymg Corollary 3.3 w1th = 0 and
the sct By := {z,}:

Remark 3.5: By an argument analogous to t-hat, used in the proof of Theorenr
3.1, we can show that Theorem 3.1 still holds if the assumption “Q is lower semi-
continuous with respect, to [’ is replaced by the assumption: Q is lower semi-
continuous and f is lower semi-continuous on CxC”. The lower semi- contmulty
of the mapping Q: C — 2€ here means that if {z,} isa generalized sequence converging
to z in C, then for every y ¢ Q(z) there is y, € Q(x,) such that the sequence {7.}
converges to y in C.

/
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