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Redundancy Conditions for the Functional Equation 
f(x + h(x)) f(x) +I(hx)) 
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Es wird die Funktionalgleichung /(x ± h(x)) = /(x) + /(h(x)) betrachtet, wobei h: K--* R

eine gegebene stetige Funktion mit h(0) = 0 ist. Es wird bewiesen: falls die Nulistellen von h

und die Stelleri, wo h(x) = —x gilt, nicht ,,zu dicht liegen", dann 1st die stetige und im Ur-




i sprung differenzierbare Losung der obigen Funktionalgleichung /(x) = xf'(0) für nile reellen x. 

Pacc1aTpasaeTc (yHxIuoHamHoe ypaul-leHue /(x + h(x)) = f(x) + /(h(x)), rle ii: R R 
ecm aajaii,ian IIenpepJInHaH 4y1u<1luH C ycaoBHeM h(0) = 0. rIyCTb MHoHecrno Bcex HyJre 

Y}IHUI1H h u Bcex To1eH x c h(x) = —x ne CJIHWKOM ,,ryc'ro". floKaaainaeTcn, qTo Torpa 
Henpepiaaiioe It a Haq aJie ROOIIHT jkwj4epeHunpyc.Nioe pewene aTor'O ypaiiennn ilMeeT 
BH /(x) = xf'(0) jun ilcex 13eu.ecTnenh1I.1x x.	 . 

Consider the functional equation /(1+ h(x)) = /(x) + /(h(x)), where h: R -* R is a given 
continuous function,h(0) = 0.It is proved if the set of all zeros of h and of all points where 
h(x) = —x is not "too much dense", then the continuotcs and at x = 0 differentiable solution 

R - It of the functional equation under consideration is /(x) = xf'(0) for all real x. 

1. This paper deals with the functional equation 

/(x' + h(x)) = /(x) + t(k(x)),	x E R,'  

where h: R R is a given function with h(0) = 0. Equation (1) has been studied 
by many authors in order to obtin conditions of redundancy, that is conditibhs. 
on the given function h and on the class of solutions which ensure that 

/(x + h(x)) = /(x) + /(h(x)) i/I /(x + y) = /(x) + 1(y),	x, y R 

(see [1-41). In [2] we got redundancy in the class of the continuous functions dif- 
ferentiable at zero, by requiring the continuity of h and that its graph (for'x + 0) 
lies in one of the following regions of the-plane: 

= {(x, y): xy> 0),	2=	y) —1 < 

= {xY):- < 
_4 ..	. 

Herein we achieve redundancy under considerably weaker conditions, essentially by 
requiring that the set of all zeros of h and of all points where h(x) = —x be not 
"too much dense". In the proofs we use the techniques developed in [2], so for the 
details we refer to that note.	-
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2. From now on we assume the continuity Of h on R and we shall use the following 
notations:	. 

Z+={x->0:h(x)=€},	Z_={x<0:h(x)=0},	Z=Z,uZ; 

•

	

	K,={x>0:h(x)+x'O},	K={x<0:h()+x=0},

K=KuK_; 

-	B+={x>0:h(x)+x<0},	B_={x<0:h(x)+x>0}; 

= B, \ (—B4;. A = B\ (—B); 
E+ = Z u {K n [(—K4 u (—Z4]},- E_ =Z u {K_n [(—K) u(—Z,)]}, 

if T is a subset of R,byD'(T)we denote the set of the limit points of  and, for 
every n > 1, D"(T) = D1(D1(T)). 

Lemma 1: Assume that A	A_ = 0 and let /: It - It be a solution of equation 
(1). For every x j E, x	0, there exist z and ,i such that jzl < jxJ, jyj < j xj and 

•	 < AX) ̂ . 

	

Z ' _ x - y	 --	S 

Proof: For I == 0 we put g(t) = .L. and k(t)	Take x q E and consider


x + h(x); we have the following pqssibilities: 
a) +h(x) 

>-, ' 0	x +h(x)	 +h(x)

	

< 0	x + h(x) = 0. 

to 

a) There exists t0 such that t0 + h(t0) = x, 0 <- < 1, so it is k(t0) > 0.' If 

k(t)	1, equation (1) yield	
=t(t0 + h(t0) — 1(h(t0)) 

then (see [2': Theorem 3]) 
to	

to 

g(t0 )	g(t5 + h(t0)) = g(x)	g(h(t0)) or g(h(10))	g(x)	g(t0).	(2) 

	

• f(t0 + h( 0)) — f(t0)	•.	• 
If k(t0) > 1, from	 again we get one of the relations 

	

T( to)	h(t0) 
(2). Thus sihce h(t0) < jxj we have the desired conclusion. 

•	 •	
-	 /(x) - !( + h(x)) — /(h(x)) 

fi) From equation (1) we have- = 	then (see [2: 
Theorem 5])	 X	 X 

•

	

	g(h(x))	g(x)	g(x + h(x)) or g(x + h(x))	g(x) 5 g(h(x)).	• 

Since h(x)j < Jx and Ix + h(x)J < I,'from (3) we obtain the conclusion. 
•	 •	 - 

) Since A =	—x+h(—x)	 h(—x) = 0, it is	 > 0, that is	> 1. By the 

continuity of h, there exists s such that —1 <	<0 and h(s) = x. Equation (1) 
/(h(s))	/(s + h(s)) — 1(s).- 

gives	=	, then (see [2: Theorem 4]) 
h(s)	•	 h(s) 

g(s'g(x)	g(s +h(s)) or g(s +h(s))	g(x)	g(s).	(4
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Since Is + h(s)i < l x i, from (4) -we get the conclusion. 
ô)' If x + h(x) = 0, equation (1) gives /(x) = —f(—. x). By the, hypothesis it is' 

—x + h(—x) =1= 0 and h(—x) =1=. 0, so, as in the previous cases, we get z and y such 
'that Izl < lxi, lI < lxi and g(z) 5 g(—x) g(y). Since g(—x) = g(x), the proof 
ends  

L e in ma 2: Let h: R R satisfy the following conditions: 

ii) /or every x .== 0, there exists N = N(x) such that {DN4I(E) n (— lxi, i xi)} \ {O} = 0. 
- Let f: R	be a continuous solution of equation (1), differentiable at zero. If x € E 

then either there eist z and y such that 1:1 < lxi, ii < lxi and g(z)	g(x)	g(y) or 
g(x) = /'(0).	 .	. 

Proof: Let x € E and suppose that do not exist z and y with the required 'prop-
erty; To make not uselessy intricate the proof, we assume N() = 2. We have to 
prove that g(x) = f'(0): Since by ii) the set E has not interior points, there exists 
an increasing sequence {t} such that t,, -- x and t j E. If x € 7,4- we can assume 
'that ih(t)i < t,, and we can split {t} in two subsequences (one possibly empty or 
.finit) {t} and {t ,} such that h(t) > 0, h(t' ,) <0. By Lemma 1 we have 

g(t)'	g(t + h(tnk ))	g(h(t fl )) or	 (5k) 

g(h(t fl ))	g(t, + h(t.,,) ) ,iS g(t,,)
	

(52) 
and

j(h(t , ))	g(t,,, )	g(t , + h(t ,)) or	.	 .	(61) 

g(t , + h(t . ))	g(t , )	g(h(l,)) .	 '	
(62) 

If x € K. [(—K_) u (--Z.)1, we choose {t} such that h(t) \< 0 and {tnk}, {t ,} such 
that h(tfl k ) > —t;,and h(t , ) < •—t,,, . By Lemma 1 we have 

-	g(h(tfl))	g(t) .	g(tn + h(t)) or	 .	(71) 

g(tfl + h(tnk ))	g(t)	g(h(t fl ))	 '	 (72)

- and

g(un,)	g(t,,)	g(u,, + h(u ,)) or	 (81) 

g(un, + h(u.)) ^S g(t,,, )	g(un,),	 ,	 (82)


where h(u) =tn. and —1 < -- <0.  

Assume q(x) .f'(0) . Then if x €Z, for infinite indexes k or s either. (5 1 ) or (62) 
holds; if x € K.,, n [(—K_) u (—Z_)1, for infinite indexes k or s either ( 7 k ) or (81) 
holds. Since in (5) (or (62 ), or (7 1 ), or (8 k)) we cannot have for each index the equa-
lities (otherwise g(x) = /'(0))-and since we have either two equalities or two strict 
inequalities, we can infer the existence of Yo and u with l yoi <x, Jul < ioi and 
g(x) <g(u) <g(y0) <f'(0 ) . Moreover for any t with Itl <z we have g(x) <g(t). 

Let, now {a} be a strictly increasing sequence such that g(u) <a <g(y0) and 
an  g(y0) as n -±.+00. For every n let {afl .k} be it strictly increasing sequence 
such that g(u) <alk <a1, a_ 1 <afl,k <a1, and afl .k —k a as k -* +oc. 

Let ul, , be the element (or one of the elements) of minimum, modulus for which 
g(u) g(u); obviously iu i . i fr < lYoi. If u = 0 we have acontradiction; so u 11 + 0 
and (by Lemma 1) u 1.1 € E. By the continuity of f, we can take y,i with the follow-
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ing properties:	
0 

U11	 0• 

Yi, i > 1,
	Yi.i E,	g(y1,1) <a11. 

By Lemma 1 there is a point z, Izi < y I, such that g(z)	g(y11 ). Let u12 be the 
element of minimum modulus such that 9(u12 ) S g(y11 ). As above it is u12	01 
then u1,2 E E and there exists Y

1,2 E, such that --- > I and 9(y1 , 2) < Ui1. - 
Y1.2	 - 

Continuing the construction we obtain a sequence {?Ji.rn} such that 

I y i.rnI < U i .rnI < lYi.rn_iI	-	>1,	g(y1,,,,) <a1,1.  
Yi.rn, 

We can choose a subsequence {Yjrn,} of constant sign and if Yi,rn: --> Yi as 1 —1- ±00, 
it is Ji	Illifl lYlmi, g(y 1 )	a1,. If y j = 0 we have a contradiction; 'suppose 

1 y > 0; then Ulrn, > y irn, >,u1 ,> y1 rn	•.. > y, hence Yi € D1 (E) n (— I xp , IxI). Using 

y 

and a 12 -instead of u and a11 , we construct Y2 with 1Y21 < Y11 9(Y2)	a12 
and P2 E D'(E) n (—jxj, xj). Finally we get -a sequence {Yk}	D 1 (E) n (—l x i, Ix!), such that IYk+11 < Y-I and g(y)	a < a1. 

There is a subsequence {y,} convergent to z1 and jz j j = min I yk.I = min lyk i. It 
is g(z1 )	a 1 and 21 € D2(E) n (—l xi, xj). Iterating the described procedure, we 
obtain a sequence Jzj D2(E) n (—l xi, xi), such that < jz,, I and g(z) a, 
<g(y0). Thus there exists a subsequence jzj convergent to a point z such that 
g(x) -< g(z) 5 g(y0); but, by construction, z € D3(E) n (—JxJ, xl) so hypothesis ii)_ 
implies z = 0. By contradiction we have g(x) = f'(0) I 

Theorem 1: Suppose that h: R -^ B satisfies the hypotheses of Lemma 2. If 
I: R --> B is a continuous solution of equation (1), differentiable at zero, then /(x) 
=x/'(0) for every x  R.  

Proof: Let x E B, x	0. If. g(x)	/'(0), by Lemmas I and 2 there exist z, p 
such that jzj < I x I, Iy I'< lxi andg(z)	g(x) 5 g(y). Hence the set U . = (z: zl,< lxi, 
g(z)	g(x)} is not empty; denote by z the point (or one of the points) of U of

minimum modulus. Then either z = 0 or g(z*) = f'(0). Indeed if g(z*) + /'(0), 
then by Lemmas 1 and 2 there exists with	<	and g() 5 g(z), acontradi-
tion. So /'(0)	g(x). Analogously we conclude that g(x)	f'(0) I	 -. 

The following 'examples show that if Z contains an interval or if K = —K_ and 
K+ contains an interval, then there are non linear solutions of equation (I), conti-
nuous on R and differentiable at zero. 

Example 1: Let h: B - B be continuous, h(0) = 0 and 
h(x) <0	for x <0, 
0<h(x)a—x for 0<x<a, 
h(x) =.O	for a	x	b, 
0 <h(x) :!E^ a	for x> b, 

where 0 <a < b. The function 
for x < a and x>b, 

1-99 (x ), for a	x^ b, 
where q is any continuous function such that (a) = a, (b) = b, is a solution of 
equation (1). .	 S
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Exam phi 2: Let h: R -+ R be continuous, h(0) = 0 and 

for 0<x<a, 

h(x) = —x	-	 for a ^ x b, 

—x < h(x) < min (—b, a — z) for x>b, 

o <.h(x) < —x	 for —a < x <0, 
\	 -	 S 

h(x) = —x	 for' —b :i^: x < —a, 

max (b, x - a) <h(x) < —x for x < —b, 

where 0< a < b. 'The function 

x	for jxj <a and jxj > b, 
Ax) =	(x)	for a x 

•	 —(x). for —b :!^ x	—a, 

where p is any continuous function suh that (a)	a, (b) = b, is 'a solution of

equation (1). 

It remains an open probleni to fill the gap between hypothesis ii) of Lemma 2 
•	and the situation of the previous examples.	- 

3. In Theorem 1 we assumed A, =	= 0; in many situations we can weaken - 
such hypothesis and get again the linearity of./. The next theorem deals with one 
possible situation.	 - 

Theorem 2: Let 0< a < b and suppose that h: R R satisfies the following 
• conditions: 

i) x<h(z) ;5b/or —b <x< —a and h(—a)=a 
ii) h(a)2^—a,h(x)+Q for akx<b,h(x)—x for a<x<b; 
iii) if h(a) = —a, then there exists 6 > 0 such that h(x) —a for a x < a + 6. 
• If /: B - R is a continuous so7ution of equation (1) and /(x) = cs for —a x a, 

• then /(x) = cx/or —b :!^ x !-:, b.	 S	 - 

Proof' If —a :!-, h(a) < 0, then by ii) h(x) < 0 for' a < x < b. There exists a1, 
a < aj b such that a < x <a 1 -implies 0 <x ± h(x) <a , and (by iii)) —a h(x) 
<0. Whence for. a < x < a 1 we have f(x) = /(x + h(x)) _/(h(x)) = cx. Let now 

• aj ' , a 1 '	a 1 , be such that if —a 1 ' <x :!^-, —a then a	h(x) <a1 ;• hence 'it is also

0 x + h(x) < a 1 .- Thus for —a 1 ' <x :51- —a we have ./(x) = f(x + h(x)) — /(h(x)) 
= cx. So, by the continuity of /, we have extended / linearly on,(—a,', all.,. 

• Let [—a* ', a,1,i be the largest closed interval contained in [—b, b3 where f(x) = cx. 
Ti a <b then a* ' <a and, as above, we can again. extend ./ linearly; a contradic-
tion ,. SO a, = b and the construction above shows that a' = b. 
• If h(a) > 0, then by . ii) h(x) >0 for a x< b.' Lemma land Theorem 1 give. 

Ax) = cx for 0 !-Qx :5, b. Hence as above we get /(x) =-cxon [—b, b] I 

Theorem  holds also when a 0, by assuming the existence of /'(0) The follow-
ing example shows that the hypothesis iii) in Theorem 2 cannot be dispensed with.



	

554	G. L. •F0RT 

Example 3: Take the functionh of the form 

—2x----1	for x<-1, 

h(x)	
99(x)	 for lxi  

X	1 •	
•'	 —j----	for x>1, 

where q, is a continuous' function such that 99(0) = 0, 99(1) = —1, q-1) = 1 and, 
for x=l= 0, 1, —1, x990) <0, x[x + 99(x)] >0. The following function 

0	for x<-2, 
—x-2 for —2<x-1, 
X.	for —1<x<1, 
1	for x>1,	 * 

- is a solution of equation (1) continuous and differentiable at zero. 
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