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Redundancy Conditions f(’;r the Function‘al.Equat,ion ) ' ' -,

(@ + (@) = f@) + (@)

G. L. ForTI

- ’

Es wird die Funktionalgleichung f(z + h(z)) = f(z) + f(k(z)) betrachtet, wobei 2: R —~ R

einc gegebene stetige Funktion mit A(0) = 0 ist. Es wird bewiesen: falls die Nullstellen von A
und die Stellen, wo k(z) = —=z gilt, nicht ,,zu dicht liegen*, dann ist die stetige und im Ur-
_ sprung differenzierbare Lésung der obigen Funktionalgleichung f(z) = zf'(0) fir alle reellen z.

PaccmarpuBaerca QyHKUHOHAIbHOE ypasHeHue f(z + k(z)) = f(z) + f(k(z)), rne h: R - R
‘ecTh 3a/laHHAA HenpepHBHAA QYHKIMA ¢ yciaoBueM k(0) = 0. Hycu, MHOMECTBO BCeX HyJIel
Gyurun A u BCeX TOUEK z C h(z) = —2 He CJMIIKOM ,,rycro‘‘. TlokasmiBaercd, 4TO TOTAA
HEeNnpepHBHOE N B HAYade KOOPAUHAT uud)(bepenuupyewoe pellieHHe 3Toro ypasnemm HMeer
BHJ /(:1:) = zf’(0) A Beex checmelmm\ x. .

Consider the functional equation f(x’ + kz)) = f(2) + f(M=)), whore R:R—> R is a given
continuous function, A(0) = 0.'It is proved if the set of all zeros ‘of k and of all points where
k{z) = —z is not “too much dense”, then the continuous and at z = 0 differentiable solut,lon
/: R — R of the functional equation under consideration is f(z) = :z/ (0) for all real z. :

9 . ot

1. This paper deals with the functional equation

i + b)) = f2) + fb),  we R S S

where : R — R is a given function with 2(0) = 0. Equatlon (1) has been studied

by many authors in order to obtain conditions of rediundancy, that is conditions.

on the given function A and on the class of solutions which ensure that

flo+ M) = @) + [(4@) i fa+ )= f@) + i) myE R

(see [1—47). In [2] we got redundancy in fhe class of the continuous functions dif-
ferentiable at zero, by reqmrmg the contmunt,y of » and that its graph (for'z =i= 0)
lies in one of the following regions of t,he plane:

v . R . y .
"ﬂl:{(x’y):xy>0}’ ‘722= (9«,?/)?—1<;<0,

’
!

Ry = {(x, y): % < —1}.‘

A\

Herein we achieve redundancy under considerably weaker conditions, essentially by

requiring that the set of all zeros of 4 and of all points where &(z) == —z be not
- “too much dense”. In the proofs we use the techmques developed in [2], so for the

~details we refer to that note. -
. A}
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~ everyn > 1, DYT) = Dl(D"“(T) IR

550 G.L. FORTI

2. From now on we assume the continuity of 7 on R and we shall use the followmg
notatlons

Z,={&>0:hz) =0}, Z —{(z<0:hz)=0}, Z=2, 02
K, ={z>0:h(z) +2=0}, K_={z<0:k@@) +2z=0},
K=K, uvK; : .
B+=.{x>0:’h(x)+z<0}, B = {z <0:h(@) + 2> 0};
L AV=BANCB), 4 =B (B | v
B =Z, v [(—K) u(=Z)), E. =27 u{K.n[(—K,) Z;>]},
. E=E,UE;

if T is a subset of R, by D'(T) we denote the .set of the limit pomts of T and, for

°

. Lemma 1: Assume that Ay = A_ =0@andletf: R - R be a solution of equatwn

(1). For every x ¢ E, x == 0, there exz.st z and y such that ]zl < |z|, ly| < || and

J@) < <@ <@ fy)
z z y

1

N

and k() —-,—(—) ‘Take z ¢ E a,nd consider -

. Proof: For ¢ 3= 0 we put g(¢) = ﬁ:_) g

"« + h(z); we have the following possibilities:

z A=) x4k ‘x'+h(x)<
x

“)'_?—>"1’ ﬂ)0<T<1, ¥) 0, 8 x4 hiz) =

«) There exists ¢y such that b + h{ty) =z, 0 < % <1, so it. is k(¢) > 0. It
f(to f{to + hlte)) — F(Rlto))

k(lo)’ <1, e(‘:{ua’tion (1 )Y1eld = - . then (see (2 Theorém :-3])
‘ - — |
0t Sglto + hito) = "(f‘) < g(htty) or glhlk) < (@) = gl (@)
o o
If k(¢y) > 1, from /( tO)) /(to + h(to) ) f(‘o)

= again we et, one of the relations
) i) 8 : | |

(2). Thus since |A(%)| < |z| we have the desired conclusion.

flw)- &+ h(x) — [(R(z))

B) From '-equa.tion () we have Z— = , .then (see f2:
Theorem 5]) z, _ z

"g(h(2) < g(2) S gl2 + h(z) or g(= + Ma) < gl2) < g( @), @)

Sinée Jh(x)] < |z] and |z + h(z)| < ||, from (3) we obtain the conclusion. S

+) Since A+=A =0, it is ;ﬁﬁw)‘ that isﬂ;—@> 1. By the

contmuxty of h there exists s such that —1 < = < 0 and k(s) = z. Equation (1)
f(8(s) ~ fs + hls) — fis). ,
"The) T ke |
9() S g(@) S gls +h() or gls +he) Sg@) Sgls). (4

bhcn (see [2: Theorem 4])
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Since |s + A(s)| < |x[, from (4) we get the conclusion.

oy If = 4 h(z) = 0, equation (1) glves f(x) = —f(—=z). By the hypothesis it is-

—2z + h(—z) % 0 and k(—z) = 0, so, as in the previous cases, we get z and y such

that [2] < [z |yl < [zl and g(z) = g(—=) S gly). Since g(~z) =g(z), the proof -

ends |

Lemma 2: Let h: R — R satusfy the /ollowmg oondztwns
i) Ay = A )
ii) for every x. # 0 there exists N N(x) such that {DN“(E) 0 (—lal, |2)} \ {0} = Q.

Let f: B — R be a continuous solution of equation (1), differentiable at zero. If z € K
then either there exvst z and y such that |z| < ||, lyl < |x| and ¢(z) < g(z) < g(y) or

g(x) = £'(0).

" Proof:Letze€ E, and suppose that do not exist z and y with the required prop-
erty. To make not uselessy intricate the proof, we assume N(z) = 2. We have to
prove that g(z) = f'(0). Since by ii) the set & has not interior points, there exists
an increasing sequence {f,} such that ¢, — =z and ¢, ¢ E. If z € Z; we can assume
‘that |h(2,)| < ¢, and we can split {¢,} in-two subsequences (one possibly empty or
finite) {t,,} and {¢,} such that A(¢ ) > O rt,,) <'0. By Lemma 1 we have = -

 9tn) S glta; + hltn) S glhta)) or | ()
g(h(ta)) S gltn, + ) Sglta)) - I (32)
and ' : ‘ : . .
glh(ta,)) < glta) =< g(ta, + h(tn)) or N (61
gltn, +Plts)) S glta) S glhta)). o - (62)
M ze K, n[(—K.) u(=Z-)], we choose {¢,} such that h(t,)\< 0 and {ta,}, {ta,} sUCh
- that A{t,,) > —t5, and h(ts,) < —ts, By Lemma 1 we have .
g(k(t”x)) é g(t"k)'ué g(t"k =+ h(t"k ) or ’ . . ' (71)
, 9tn, + Bltn,)) < gltn,) < g{k(ta,) ! (72)
and ' o B o
(un,) = gltn,) = g(un, + h(ua,)) or o (8)
 9lun, + Alun) < gltn) < glen), . B
Un,

where’ h(u,,‘) =ty and —1 < — < 0.

- Assume q( x) < f'(0). Then 1f x €-Z;, for infinite indexes k or s either. (5,) or (6,)
holcls if ze K, n[(—K_) u(—2.)), for infinite indexes k or s either (7,) or (8,)

holds. Sin¢e in (51) (or (6,), or (7)), or (8,)) we cannot have for each index the equa- -~

lities (otherwise g(z) = /'(0))-and since we have either two equalities or two strict
inequalities, we can infer the existence of g, and » with |y, < z, |u| < |y,| and
‘g(z) < glu) < g(yo) < f'(0). Moreover for any ¢ with |¢| < x we have g(z) < g(¢).

Let now {a,} be a strictly mcreasmg sequence such that g(u) < a, < g(yo) and .

a, = gly,) as n — +oco. For every n; let {a;,} be & strictly increasing sequence
such that glu) < ar; < @y, @y < Gpi < Apiy, and Gy, —> @, 88 k — 4-00.

Let u,,, be the element (or one of the elements) of minimum. modulus for which
g(u,,1) = g(u); obviously |u,,,| < |yl If %;,, = 0 we have acontradiction; so u,,; % 0

and (by Lemma 1) %, € E. By the continuity of f, we can take Y11 with the follow-

1

Y
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then u,, € £ and there ex1sts Y12 (I E, such that

~
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ing propertieé:

%

>1, a4 K, I9(1/11)<au .
Y1a !

By Lemma 1 there is a point z, |2| < |y, ,|, such that g(z) S g(y11). Let %, be the
element of minimum modulus such that gluy,) = g(yl ). As above it is u,, 0,
1,2

>1 and g(y12)<“11" ’

Y12
Contmumg the construction we obta,m a sequence {y1.m} such that

/

1Y1.ml < s, m| < [Y1.mals >1, gyrm) < are

lm

We can choose a subsequence {Y1.m,} of constanb sign and if y, m > Y188l —> +oo, .
it i '|yy) = min |y, ., gly) < ayy. If oy —O we have a contradiction; ‘suppose
y1 > 0; then uym, > y1m, > Uim, > Yiim, - > yy, hence y, € DNE) n (—|z], |z]).
Using ¥, and a, ,-instead of and @y,1, WE construct Yo With |y,| < yy, 9(y) £ @10
and y, € DYE) n (—|z|, |z]|). Fmallv we get -a sequence {yk} < DYE) n (—|z|, |x|),"
such that |y,.,| < |yl and g(y) < ayi < ay. ' ’

There is a subsequence {yj} convergent to z, and |z1] = min |y, | = min |y,|. It

k

is g(2) = a, and z;¢€ D2(E') n (—|z, |x|). Iteratmg the dcscrlbed procedure, we
obtain a sequence {z,} — D¥E) n (—|z|, |z|), such that |z,;,| < |2, and g(z,,) <a, -

< 9(yo)- Thus there exists a sibsequence {z,} convergent to a point z such that

g(z) < g(z) = g(yo); but, by construction, z € D}E) n (—|z|, |z]) so hypothesis ). -

implies z = 0. By contradlctlon we have g(z) = /'(0)

Theorem 1: Suppose that h: R —> R satisfies the hypotheses of Lemma 2. l/ :
f:R—> R 15 a continuous solution of equatzon (1), differentiuble at zero, then f(x) -
= zf'(0) for every z € R.

. v .
"Proof: Tet z€¢ R, 2z += 0. If.g(:z:) :%: 1 (0), by Lemmas | and 2 there exist 2z, y
such that |z] < |z], ly|'< |z| and g(z) < g(z) < g(y). Hence the set U = {z: |2| < ||,
g(z) = g(z)} is not empty; denote by 2* the point (or one of the points) of U of
minimum modulus. Then either z* = 0 or g(z*) = f'(0). Indeed if g(z*) = f'(0),
then by Lemmas 1 and 2 there exists z with |z| < ]z*[ and ¢(z) < ¢g(z), acontradlc-
tion. So f'(0) = g(z). Analogously we conclude that g(z) < //(0) I

The following examples show that if Z contains an mterval orif K; = —K_and -

K, contains an interval, then there are non linear solutions of equation (1 , conti-

© nuous on R and dlfferentlab]e at zero.

<

Example 1: Let &: R — R be continuous, A(0) = 0 and

hiz)y <0 - for x<0 »

0<hiz)Sa—=z for 0 <2<a,

k(z) =0  for a<x=b,
- O<h()sa . for z>0,

where 0 < a < b. The function R
z for x<a and z>b,
V f(x) N {«zp(x)‘ for a =2z =0,
where @ is any continuous function such that q)(a) = a, ¢(b) = b, is' a solution of
equation (1). .

y -



. ! s A Functional Equation’ 553

Example 2: Let h: R — R be continuous, A(0) = 0 and
' )

“z<hlz)<0 '@ - for 0<z<a, :

Th@)=—z - ~ for asz<b,
—2x < h(z) < min (—b,a — z) for x > b,
8<.h(z) < —2z for’ —a<z < 0, .
hiz) = —z f'or b2 £ —a, .

. max (b, 2 — a) < hzy < —x for .z < —=b,
where 0'< @ << b.-The function S . .

z° for |z <a and |z >"b, » !
© ) = 4 elx) for a <2 <h, - ‘
—-(p() for —b=Zz< —a,

1
\

where ¢ is any continuous function such that pla) = a, q;(b) = b; is"a solution of
equation (l) ’

It remains an open prob]cm to fill the gap between hypothesns i) of Lemma 2
and the situation of the previous examples. - -

3. In Theorem 1 we assumcd A, = A_ = 0; in many situations we can weaken

such hypothesis and get again the lmeanty of/ Thc next theorem deals w1th one
possible situation. -

- Theorem ‘9. Let 0<a<b and suppose lhat h:R—R satw/zes the following

. . conditions:

i)—x<k(x)Sb/or—b<:v<—aa,ndh( a)y = «a; :
u)h() —a, h(z) =0 fora =z < b, h(x):i:—:cfora<z<b N s
iii) ¥f h{a) = —a, then there exists 6 > 0 suck that h(z)= —a /or a S xr <a-+é.

If f: R — R 45 a continuous slution of equanon (1) and f( x) =cx /or —a S x S a, .
then/(x)—cx/or —b=z=b -

Proof If —a = h(a) < 0, then by ii) h(z) <0 for 4 < z < b. There exlsts ay,
@ < a; < bsuch that ¢ < z < a, nnplles 0 <z +h(x) < «.and (by iii)) —a < A(z)
< 0. Whence for ¢« < z < a, we have flz) = /(x + h{: )) —'./(h(.x)) = cz. Let now

. ay, a,' = «,, be such that if —a1 <z = —a then ¢ < h(z) < a,; hencé'it isalso ~ ~

0 =z + A(z) < a;.. Thus for —a,’ < z £ —a we have f(z) = f(z + k(x)) — /(h(z )
. = cz. So, by the continuity of f, we have extended f lmearly on{—ay, a) .
Let [ x'y ax) be the largest closed interval contained in [—b, b] where /(x) = cx.
If ay < b then ay’ < a, and, as above, we can again, e\tend f linearly; a contradic-
tion: 86 «y = b and the constructlon above shows that a,’ = b.
If h{a) > 0, then by ii) k(z) > 0 for a < 2'< bs Lemma 1 and Theorem 1 give.
f(x) = cx for 0 =2z < b. Hence as above we get f(z) =cz on [—b, b] B

)

Theorem 2 holds also when a > 0, by assuming the existence of /’(O)i. The follow-
ing example shows that the hypothesis iii) in Theorem 2 cannot be dispensed with.
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’

Example 3: Take the function'/ of the form A o :

' —2x —'1 for z < —1, - )
. t ,
_-Ili — l f r 'x > 1
S B
whcre @ is a continuous function such that @(0) = 0, ¢(1) = —1, (1) = 1 and,
for x 40,1, —1, x«p(x) < 0, 2[z + ¢(x)] > 0. The following functlon
0 for z < —9,
’ ]z —2 for —2<z< —1,
. fB) =1y :
z . for —1l<2xz<1,
b 1 for z=>1,

- is a solution of equation (1) continuous and differentiable at zero.
: oo )
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