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Remarks on Duality Mappmg and the Lax-Milgram Property .

.

" J. KoLoMY

1]

Es werden einige Bedmgungen abgeleitet, die sicherstellen, daB dle Dualitits- Abbxldung ein
Homeomorphismus von einem Banach-Raum X auf X* ist, der iiberdies auf einer dichten
Teilmenge von X oberhalbstetig ist. Es werden ferner einige weitere Eigenschaften der Duali-
tits-Abbildung bewiesen, die mit der Struktur des Banachraumes X zusammenhingen, und’
es wird die sogenannte Lm{ -Milgram Eigenschaft der betrachteten Bilinearformen unter-
sucht. 7

HaxopaTca ycaosua, npi KOTOPHX AyaibHoe 0TOGparkeHue ABIACTCA roMeoMOPHU3MOM 113 .
Banaxosa mpocrpancrBa X Ha X* u ABNAETCA [ONYHENPEPLIBHAIM CBEPXY HA HEKOTOPOM
n:aoTHOM B X MHOkecTRe. PaceMaTpupaiorcs AaNbHelflNe CBOMCTBA JIYaTIbHOTO oTo6parenus
B-CBA3M C ICOMETPHYECKOIl CTPYKTypol Banaxosa mpocrpaHcTe X u csoifcrBo Jlakc-Mui-
rpama OunuHeliHbIx ¢opM.

L] ' -
—

Some conditions under which the duality map is a homeomorphism from a Banach space X
onto X* and upper-semicontinuous at some dense subset of X are derived. Some further pro- .
perties of the duality mapping are established in connection with the structure of the Banach
-space X. The so-called Lax-Milgram property of the bilinear forms is also investigated.

1. Introduction

N

The concept of duality mapping introduced.independently by BEURLING and LiviNG-
sTON [2] and Cupia [4] has been used in several branches in functional analysis and
its applications theory of monotone and accretive operators, fixed point theory of
nonexpansive (and related) operators, theory of approximations and geometry of
Banach spaces.

Cupia [4] proved that the duality mapping J is always upper-semicontinuous on X
when X has the norm and the dual space has the O’(X* X)-topology, while KEN-
DEROV. (18] extended this result to maximal monotone operators. Upper semi-
continuity of duality mapping and subdifferential maps has been studied by GIiLEs,
GRrREGORY and Sims [13] and GREGORY [14], where upper-semicontinuity is characte-
rized in terms of slices of the closed unit ball and upper-semicontinuity properties
are related to the geometric structure of the spaces and properties of convex func-
tions. ' .

The purpose of this note is to derive some conditions under which the duality map J
isa homeomorphism of X onto X* and upper-semicontinuous at the dense subset of
the given space. Some further properties of the duality mapping are derived in con-
nection with the structure of Banach spaces. Furthermore, so-called Lax-Mllgra,m
property of the bllmea,r forms is investigated.

~
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. ’ i
2. Definitions and notations
Let X be a real normed linear space, X* its dual space, (-, -) the pan‘mg between X*
and X. Let B,(0), B,*(0), B,**(0) denote the closed unit balls; $,(0), S,*(0) S,**(O)
their boundaries in X, X*, X** respectively. Denote by O'(X X*), (Y* X) the
weak and weak* topologles on X, X*, respectively and by 7: X — X** a canonical

mappmg of X into X**, We use the notion of rotundity (or strict convexmy) of spaces
* in usual sense. A normed linear space X is said to be:

(i) smooth at u € S,(0) if its'norm ||| is Gateaux differentiable at u;
(i) ‘smooth, if the norm of X is Giteaux differentiable on S$,(0);
(ii1) an (F)-space, if its norm is Fréchet differentiable on S 1(0);
(iv) u,ealclz/ locally unzformly rotund (WLUR) at u € S,(0) if for every sequence (%)
, ‘< 8,(0) with |ju, + u|| — 2 there is u, — u in the o(X, X*)-topology;

(v) WLUR at the points of some subset Q of S,(0), if X is WLUR at each point » of -
Qs
(vi) an (h)-space if for each sequence (u,) in X cnnvergmg in the o(X, X*) topology

of X.to ugand {ju,|| — |luel| we have that w, — %y in the norm topology of X.

By the gauge function u: R* — R* we mean a real valued strictly increasing con-
"tinuous function such that ux(0) =0 and lim u(¢) = 4-00. A set-valued mapping

t—o0
J: X — 2%° js said to be a duality mapping of X mto X* with the gauge /unctwn pif
J(0) = {0} andforeachueX u F 0,

J(u) = fu* € € X*: (uk)uy = ¥ - Jful, ol = pella)}

- For u € X, J(u) is non-empty convex and o(X*, X)-compact subset of X* X is

smooth at u € §,(0) if and only if J is single-valued at « (see [4]). The duality map-
pingof X*into X**isdenoted by J* and the duality map J*: X — 2X** with the gauge
function u* = pu~!is called the associated-duality map with J (see [23]) and we denote -
it by J;*. By normalized duality mapping we mean the duality mapping with gauge
function u(s) = s. Let ¢ denote the o(X*, X), o(X, X*), or norm topology on X*. The
duality mapping J: X — 2X° is said to be upper-semicontinuous at u, € X from the - -
norm topology of X to-the t-topology of X * if for any t-open set'V in X* with J(uo) = V
there exists an open neighborhood U of %, such that J(U)— V. We shall use the
following result of SMuLiaN [26]. Let X ‘be a Banach space, then the norm of X is
Gateaux (Fréchet) differentiable at u, € §,(0) if and only of the following implica-
tion holds: when (u,*)= 8,*(0), (u,*, o) —> |luoll = 1, then (u,*) is a weak* (strong)
Cauchy sequence. Similarly, necessary and sufficient condltlon for the fact that the
norm of X* is Gateaux (Fréchet) differentiable at u,* € §,*(0) is that the following
1mpllcat10n is valid: if (u,)= Sl 0), {ue*, u,) —1, then (u,) is a weak (strong) Cauchy
sequence in X

3. Some propertles of duality mapping

We shall use the followmg result, which is a spemal case of the more general statement
proved by GILEs {9) (compare alsc [4, 11]) on the base of the Bismop- PHELPS' [3]
" theorem.

Lemma 1: I / X 7s a Banach space and X*7dsan (F,)-.space, then <Y 18 reﬂem‘ve.

Proof: Let u,* € S,*(0) be arbitrary. We show that there exists u, € S,(0) such
that (u*, ug) =’1. Choose a sequence (u,)= S,(0) such that .(uof, u,y — 1. By the
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Smuljan theorem (u,) is a Cauchy sequence in X. Hence u, —ug and u, € §,(0), while
(uo*, up) = 1. By the JamEs [17] characterization of refle‘uvnty\X is reflexive L)
Lemma 2: Let X be a Banach space. Then the /ollowmg stalements are valid:

(i) (GILEs [10]). 4 duality mapping J is an homeomorphism of X onto X* if and
only if X and X* are both (F)-space, then X is an (F)-spaces. '
(i1) If X <s smooth re/lexwe and X* vs an (h)-space, then X-is an (F)- space

Proof: We give it for the sake of completeness.

(i) In comparison with [10] we use here a slnght different a.rgument Assume that

X, X* are both (F)-spaces. By Lemuma 1 X is reflexive. Moreover, J is one-to-one,

’ onto and-J, J~! are continuous. Conversely, assume that J is a homeomorphlsm of -

X onto X*. Then X is reflexive and X is an (F)-space. Since J,* = 7J! (see [23)) ) and
J.* is continuous, J* is also continuous from X* into X** Hence X* is an (F)-
space.

(11) Tt is sufficient to show that J is continuous on §,(0). Let Uy E S,(O) (uy)= X,
u, — ug. Then u(llu,ll) — u(lluoll) and hence [l (u,)l| = |l ()]l @as » — oo. Since X is
smooth and reflexive, J is single-valued and continuous from the. norm. topology. of

X to the o(X, X*)- topology of X*. As X* is an-(h)-space we conclude that J(u,)

— J(#%,) in the norm topology of X*

Theorem 1: Let X be a reflexive smooth (h)-Banach space. len the ‘following state-
ments are valid:

(i) J~7s a proper map (i.e. /or each compact set G of X* the set J~\ Q) us compacl m

X). In addition, +f X is rotund, then J-! ¥s continuous on X*.

(i1) If J 7s -« local homeomorphzsm 0/ X into X*, then J is a homeomorphism of.

X onto X*.
(i) If X*.is smooth and (k)-space, lhen Jisa homeomorphism of X onto X*.

Proof: Itis suffncnent to prove our assertions for normalized duality mapping.

~(i) Since X is smooth, J is smglevalued on X. Reflexivity of X implies that J is
onto. Indeed, each u* € X* is (X, X*)-continuous and By(0) is ¢(X, X*)-compact.
By the Welerstrass Theorem each u* € X* attains its supremum on S,(0). Hence
J(X) X* Let G be a compa.ct subset of X*. Take (u,)= J~}G) and set u,*
= J(u,). Then (u,*) = G and in view of the compactness of G in X* there exist a point
u* € @ and a subsequence of (u,*), say (u,*), such that u,* -> u*. From ||J(u,)|
= |lu,*|| we conclude that (u,) is bounded in X. Hence there exist u, € X and a subse-
quence of (u,), say (u,) such that u, — %, in the o(X, X*)-topology of X. As |Ju,*||
— ||w¥*|| we have that lim llen)| = ||u*|]. Furthermore,
. i ;
lloll < lim [fun,|| = lim |fun,|| = lim ||J(up )} = |lu*]], .
: i i i .
.lim ||u,,,[|2 = lim (J (%), up,) = (u*, Ug) .
i j

Hence ||u*||2 = (u*, uo) < ||u*|| lll, which implies together with the first inequality

that |[u*|| = [luol] and (u*, ug) = |jugl - ||u*||. Since J is single-valued, u* = J(u,) and
therefore u, € J~1(G). Moreover, u,, — u, in the o(X, X*)- topology of X and [lu,,||
— fu¥|| = [|u0|| As X is an (h)-space, we get that u,, — u,, which proves that J-1(G)

is compact in X:

In addition, assume that X"is rotund. Then J is onto and one-to-one by reflex1v1ty
and rotundlty of X. Let (u,*)= X*, uo* € X*, u,* - up* in X*. From the previous
considerations it follows that each subsequence (un,) of (u,), where u, = J1(u,*),
contains a subsequence converging to uy = J~}(u,*) in the o(X, X*)-topology of X.
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"Hence w, — U, in the, o(X X#*)- topology of X and flu,|| = [loll- Therefore u, — u, -

which proves the continuity of J!
(ii) J is proper by (i). Since J is a local homeomorphism of X into X*, by the Ba-
nach-Mazur theorem (see [24]) J is a global homeomorphism' of X onto X * :

(111) This assertion follows at once from TLemma 2 §

Note that under stronger assump’mons on X, X* it was proved in [6] that Jisa
proper map.
Among others, YORKE [27] proved the following assertions:

(1) If a Banach space X is VVLUR at E $,(0), then X* is smooth at the pomts of

J(z)= 84(0).

(i) If X is WLUR at some z* € J(z), then X is very smooth at x (1 e. every support
mapping on X is norm to ¢(X*, X**) continuous.at z). In fact, these results are given
in Theorem 2(i) where a different proof method is used.,

Let X be a Banach space, G a subset of S,(0) of all functionals of S,* (0) which
attains its norm on S,(0). By the Bishop-Phelps theorem @ is norm-dense in S,*(0).
For each u* € @ there is some u € 8,(0) such that (u*, u) = 1. Denote by @ the set of
such points # € 8;(0) having the above property, where in Q is included just one point
u for each u* € G. In next we can assume without loss of generahty that J, J* are
normalized duality mappings on X, X*, respectively. .

Theorem 2: Let X be a Banach space. Then the following conclusions are valid:
() If X s WLUR at the points of Q= 8,(0), then J* ¥s single-valued at the points of

~dense set G of 8,%(0). In addition, if X**'1s WLUR at the points of J*(G)= S,**%(0),

then J* s upper-semicontinuous at the points of G from the norm topology of X* to the )
PP , r gy

- a(X** ) X*¥*R*)fopology of X**,

topology of X**. The properties of J* imply that

(ii) If J* 7s single-valued and uﬁper semicontinuous at the-points of G u,ken X*, X**
haw the norm topologzes, then the strong and weak convergence of sequences of S (0) cotn-

 cide at the points of S,(0). Conversely, if the last condition s satisfied and X s sequentially
,o(X, X*)-complete and J* s single-valued at the points of G, then.J* ¥s upper-semi-

contmuou.s at the points of G when X* * and X** have the norm topologzes

Proof (i) It is sufflclenb to show that the 'norm of X* is bIDOUL}l at the points of
dense set G in S,*(0). Let u* € G be arbitrary. Then there exists a point u, € @
— 8,(0) such that (uy*, ug) = |lup*|] = 1. There exists a sequence (u,) = 8;(0) such that
(uo*, un) —> (up*, wo) = 1. Then 2 = |ju, + uol| = (uo , Uo - Uyy. Since {(we*, uy + u,)
— 2 as n — oo, we have that [luy + u,l| = 2. As X is WLUR at the points of @, we
conclude that u,,\—> ug in the o(X, X*)-topology of X. Bv the Smuljan theorem X*
is smooth at uy*.

Suppose in addition, that X** is WLUR at the points of the set J*(G)C S,**(O
Let uo* € G, (u*)= X*, u,* — ug*. Without loss of generality one may assume that

u,* € §,%(0). Assume that v ** € J*¥(u,*), n = 1,2, ... By (i) J* is single- -valued at
uo*. Put v** = J*(uy*), it is sufficient to prove that v,,** — vo** in the o( X **, X ¥¥*).

!
20w *)I? + llug*|?) = (va™* — v**, w,* — ug*) = (v** + vo™*, u* 4w, *).
Hence .
4 — floa** — ve*¥| [lien* — u*|| = 2 |lva** + vo**|l
v / = 2(oa ™+ lloe*) = 4.

Therefore ||, ** + v,**| — 2 as n — co. Since X** is WLUR at the points of J*(G),
v ** — p** in the o(X**, X***)-topology of X**, which proves that J* is upper-
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\

semicontinuous at u,* € G from the norm topology of X* in the o(X**, X ***)-topo-
logy of X**. .

(ii) If J* is single-valued and upper-semicontinhous at the points of G 8,*(0)
when X*, X** have the norm topologies, then the norm of X* is Fréchet-differenti-
. . able at the points of @ (see [11, 13]). Let u, € 8,(0), (u,)= 8,(0), u, — u, in the
- ,0(X, X*)-topology of X. Then there exists ug* € 8,*(0) such that (up*, 1) = lugll = 1.
Hence u,* € G. Since (uy*, u,) —> (u*, o) = 1 and the norm of X* is Fréchet-diffe-
rentiable at the points of G, according to the Smuljan'theprem (u,) converges to u,
in the norm topology of X. Conversely, assume that X is sequentially o(X, X*)--
complete and that J* is single-valued at the points of G. Then X* is smooth at these
points. Let uo* € G be arbitrary, (u,) = 5,(0) be such that {ug*, u,y - 1. By the Smul-
jan theorem (u,) is a weak Cauchy sequence in X. Hence u, — u, in the o(X, X*)-
topology of X for some u, € X. Clearly, u, € $,(0). According to our hypothesis
u, — U in the norm of X. Again, in view of the Smuljan theorem, the norm of X* is
Fréchet-differentiable at u,*. Hence J is upper-semicontinuous at u,* when X* and
X** have the norm topologies (see [11—13]) I ’

We shall use the following

Lemma.3 [23]: Let X be a real normed linear space, J: X —2X°, J*: - X* > 2X*°
normalized duality mappings. Then an element u* € X* lies vn J(u) for some u € X of
and only of T(u) € J*(u*). : -

Proposition 1: Let X be a non-reflexive normed linear space such that X* ©s smooth,
J: X — 2% J*: X* —» X** duality mappings. If R(J) = X*, then there exists a sepa-
rable closed linear subspace W of X* such that J* is not onto W*.

- Proof: It depends on the arguments of [23] and [5] and it is given here for the sake
of completeness. First of all, we show that if X* is smooth and R(J) = X*, then
R(J*) = 7(X). Clearly, 7(X) = R(J*). Indeed, if uo** € 7(X), then u,**is o(X*, X)-
continuous on' X*. Since B,*(0) is o(X*, X)-compact, by the Weierstrass theorem
u,** attains its supremum on S,*(0). Thercfore us** € R(J*). We assert that R(J*) -
— 7(X). Assume that up** € R(J*), ug** % 0. Then there is u,* € X* such that u *¥
= J*(uy*). As R(J) = X* there exists ug* ¢ X* such that u,* € J(u). By Lemma 3
“T(ug) = J*uy*). Since X* is smooth we get that r(ug) = uo** and hence z(X)
S R(J*). According toour hypothesis X isnotreflexive. The ball B,*(0) of X*isg(X*, X)-
compact but it is not o(X*, X**)-countably compact. Indeed, if B,*(0) would be .
o(X*, X**)-countably compact, then B,*(0) would be also o(X*, X*¥)-compact by
the Eberlein-Smuljan theorem, which is impossible, because the ¢(X*, X**)- and
‘the o(X*, X)-topologies agree on X* if and only if X is reflexive. As B,*(0) is not
o(X*, X*¥)-countably compact there is a sequence (u,*) = B,*(0). having no o(X*,
X**)-convergent subnet. Since, B,*(0) is o(X*, X)-compact, there is a subnet (u.*)
< (u,*) and a point u* € B,*(0) such that u,* — u* in the o(X*, X)-topology. Put
W = §pan {(u,*) u (u*)}. Then W is closed separable subspace of X*. For each fixed |
u € X t(u) is a o(X*, X)-continuous linear functional on X* and therefore (z(u),
u,*)y — (7(w), u*) for each (fixed) u € X. Since (us*) is a subnet of (u,*) and (u,*)
contains no o(X*, X**)-convergent subnet, we conclude that u.* + u* in the
o(X*, X**)-topology of X*. Each 2** ¢ W* is a restriction of some u** of X**to W
and conversely, each linear continuous functional z** defined on W can be conti-
nuously extended on the whole space X*. Hence there is 2** ¢ W* such that (2*¥,
u*) + (2**, w¥). Thus 2** isnot o(X*, X)-continuous, i.e. 2** ¢ 7(X) = R(J*), which -

proves the assertion®”™ =
: ’ . e
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t

Pro positi on 2: Let X be a normed linear space such that X * is smo;)th, M u bounded
o(X, X*)-closed subset of X. If R(J) = X* and .J* is continuous from the o(X*, X)- .
topology of X* to the o(X **,’ X*)-topology of X**, then J(M) is o(X*, X)-compact.

Proof: Since M is bounded we have that sup {|lJ(u)||: u ¢ M} < +oco. Hence
J(M) is relatively o(X*, X)-compact in’ X*. Assume that u* € J(M)*X*X). Then
there exists a net (ua*)ses in J(M) such that u,* — uy* in the o(X*, X)-topology of
X*. Hence there are u, € M such that u,* € J(u,) for each « € 1. By our hypotheses
J is single-valued and R(J*) = 7(X) (see the first part of the proof of Proposition 2).
In virtue of Lemma 3 z(u.) = J*(u,*) for each « € I and J*(u,*) — J*(u,*) in the
o(X**, X*)-topology of X**. Setting uo** = J*(u,*) we have that u,** ¢ 7(X) and
hence' uo** is o(X*, X)-continuous on X*.- There exists a point %, € X such that
u** = t(up). Now we have that z(u,) — 7(%,) in the o(X**, X*)-topology of X**,
Since 7 is a linear homedmorphism from the space (X, o(X, X*)) into the space
(X**, o( X **, X*).), we conclude that u, — u, in the ¢(X, X*)-topology of X. Since M
is o(X, X*)-closed, u, € M. Because 7(u,) = J*(uy*), by Lemma 3 we get that
up* € J(up)= J(M), which concludes the proof ;

4. The Lai-Milgram property of bilinear forms

In [20—22] we established some characterizations of reflexivity of Banach spaces by
means of the duality mapping. Now we derive once more characterization of reflexi-
vity of Banach spaces based on the so-called Lax-Milgram property of bilincar forms.
This result is inspired by [15, 25]. R '

‘Definition 1: Let X, ¥ be normed lincar spaces. We shall say that X has the
Laz-Milgram property (LMP) with respect to Y if there exists a bilinear form
@X Y — € with the following property: For a given linear closed separable subspace
F of X there exists a’separable subspace P of ¥ such that Q is bounded on F x P and’
for each u* € F*.there exists a unique point vp in P such that (u*, u) = Q(x, vp) for
cach u € F, : o )

Similarly. we shall say that Y has the LMP with respect to X if there is a bilinear
form @ : X X Y — € with the following property: For a given linear closed separable
subspace V of Y there exists a separable linear subspace & of X such that Q is bounded
on Ex V and for each v* € V* there exists a unique element ugz in E such that
*, v) = Q(ug, v) for each v € V. '

Proposition 3: Let X, Y. be normed linear spaces. If X s sequentially weakly
complete and has the LMP with respect to Y, then X s reflexvve. \

Proof: It relies on the argument of [25]. Let (u,) be a bounded sequence in X.
Put ¥ = span {(u,)}. Then F is a closed separable subspace of X. By our hypothesis
there exist a separable linear subspace P of Y and a bilinear form Q: X x ¥ — C
such that @ is bounded on F X P, i.e. |Q(u, v)| < Mg p|lul| - ||¢|| for each v € F, v € P.
and some constant Mg p > 0, and the representation of the elements u* € F* by
means of @ and the unique points vp of P is valid. Let (v,) be.a dense sequencé in P. v
‘Define the linear continiious functionals (u,*) by (u,*, u) = Q(u, v,) for each u € ¥
and n-(n = 1, 2, ...). Clearly, u,* € F* for each n. We assert that («,*) is dense in
F*, TIndeed, if v* € F* is an arbitrary ‘point, then by our hypothesis, there exists a,
unique point vp € P such that (u*, u) = Q(u, vp) for each u € F. As (v,) is dense in P,

'
. -
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there exists a subsequence of (z,), say (v,), such that 7,,, —>vp as n > co. Then «
Ku* - un*’ u)l = |Q(u: vp _rvn)l = MF,P- ”u”- ”?’P — vl
for each u € F and - o

ffu* — u,*| §“SUP [(u* — up* u)l = Mrp “1’1’ — v,
Hence (u, ) is dense in F*. Now ({u;*, u,,) )n=1.is @ bounded sequence of reals for each
fixed 7 (z =1,2,...). By the dlagonal process one can extract a subsequence (%)
of (u,) such thab (u, s W) oy 1S convergent for each 7. In view, of the density of
(ux*) in F* we conclude that ((u*, u)) is convergent for each u* € F*. By the Hahn-
Banach theorem for cach u* € F* therc exists some v* € X* such that v* | F = u*
and [ju¥] = |lv¥||. On the other hand each v* € X* restricted to F is an element of
- F* Hence (%) is the weak Cauchy sequence in X. Since X is sequentially (X, X*)-

complete, there exists a point up € X such that uk — U, in the o(X X*) -topology of

" X. Hence X lS reflexive B

.Co rolla.rv 1: Let X, Y be aequentwlly weakly complete Banach spaces such that
X has the LMP with respect to Y and Y has the LMP with respect to X. J’ken X, Y are
both reflexive.

Problems: (i ) It would be interesting to describe the properties of the set ¢ (see
Theorem 2) in connection with the geometric structure of the Banach spaces.

(ii) Definition 1 together with Proposition 4 and Theorem 1 [15] 1mply the follow-
ing question: Let X be a Banach space and assume that each closed separable sub-
space F of X is 1somorphlc (1sor1lcbrxc) to its dual F*. What is the geometric structure
of the space X% - :

Ve . : )
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