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Remarks on Duality Mapping and the Lax-Milgram Property 

J. KOLOMYC 

Es werden einige Bedingtingen abgeleitet, die sicherstellen, daB die Dualitats-Abbildung em 
Homeomorphismus von einem Banach-Raum X auf X ist, der uberdies auf einer dichten 
Teilmenge von X oberhaibstetig ist. Es werden ferner ëinige weitere Eigenschaftcn der Duali-
thts-Abbildung bewiesen, die mit der Struktur des Banachraumes X zusammenhangen, und' 
es wird die sogenannte Lax-Milgram Eigenschaft der betrachteten Bilinearformen unter-
sucht. 

Haxo)HTca yc.JIon}TH, npu HOT0hIX gyaju.tioe oT06paeuHe clB3uieTcH FOMeOMOP(I)U3MOM Ha 
BaHaxoba npoc'paucTI3a X Ha X" u rr nBJjneTc nojyHerrpepLInHJM csepxy jia HeKoropoM 
HJIOTHOM n X Hoecrne. PaccllaTpHBaloTcfl laJlbHeflwHe cB0cTJ3a jAyaJIbHoro oTo6paHeHH 
B -CBH3II c reoMeTpll4ecHoB crpyHTypot Banaxona npocrpaHcrB X It Cu0lcTBO JlaRc-MLIjI-
rpaa 611J1u11eflHbIx 4JopM.	 - 

Some conditions under which the duality map is a homeomorphism from a Banach space X 
onto X* and upper-semicont.inuous at some dense subset of X are derived. Some further pro-
perties of the duality mapping are established in connection with the structure of the Banach 
space X. The so-called Lax-Milgram property of the bilinear forms is also investigated.' 

.1. Introduction 

The concept of duality mapping introduced independently by BEuaIG and Lrvrt-
S'rON [2] and CUDIA [4] has been used in several branches in functional analysis and 
its applications: theory of monotone and accretive operators, fixed point theory of 
nonexpansive (and related) operators, theory of approximations and geometry of 
Banach spaces. 
CUDIA [4] proved that the duality mapping J is always upper-senlicontinuous on X 

when X has the norm and the dual space has the o(X* , X)-topology, while KEN-
DEROV [18] extended this result to maximal monotone operators. Upper-semi-

- continuity of duality mapping and subdifferential maps has been studied by GILE5, 
GREGORY and Sims [13] and GREGORY [14], where upper-semicontinuity is characte- 
rized in terms of slices of the closed unit ball and upper-senhicontinuity properties 
are related to the geometric structure of the spaces and properties of convex func-
tions.	 - 

The purpose of this note is to derive some conditions under which the duality map J 
is a honleomorphisnl of X onto X* and upper-seniicontinuous at the dense subset of 
the given space. Some further properties of the duality mapping are derived in conk 
nection with the structure of Banach spaces. Furthermore, so-called Lax-Milgrani 
property of the bilinear forms is investigated.
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2. Definitions and notations 

Let X be a real normed linear space, X its dual space, (, .) the pairing between X' 
and X. Let B 1 (0), B1 *(0), B 1 **(0) denote the closed unit balls; S 1 (0), S, *(0), S**(o) 
their boundaries in X, X, X**, respectively. Denote by u(X, X*) , a(X*; X) the 
weak and weak* topologies on X, X*, respectively and by t: X - X a canonical 
mapping of X into X. We use the notion of rotundity (or strict convexiy) of spaces 
in usual sense. A normed linear space X is said to be: 
(i) smooth at u E S 1 (0) if itsnorni	is Gâteaux differentiable at U; 
(ii) smooth, if the norni of X is Gàteaux differentiable on 
(iii) an (F)-space, if its norm is Fréchet differentiable on 
(iv) weakly locally uniformly rotund ( WLUR) at u e S(0) if for every sequence (un) 

c S(0) with llu + ulJ - 2 there is u —* u in the a(X, X*)topology; 
(v) WLUR at the points of some subset Q of S(0), if X is WLUR at each point u of 

(vi) an (h)-space if for each sequence (us ) in X converging in the a(X, X*) topology 
of X. to u0 and llu,ll --> lluolI we have that u,, -- u0 in-the norm topology of X. 

By the gauge function a: R . —	we mean a real .valued strictly increasing con-




tinuous function such that 1u(0) = 0 and lim 4u(t) = -foo. A set-valued mapping 

J: X 2 is said to be a duality mapping of X into X* with the gauge function if 
J(0) = (0) and for eah u E X, u 0, 

J(u) = {u* E X*: (u* , u) = llu*ll . lull, llu*ll = i(llull)}. 

For u E X, J(u) is non-empty convex and a(X*, X)-compact subset of X*. X is 
smooth at u € S(0) if and only if J is single-valued at u (see [4]). The duality map-
ping -of X" into X is denoted byJ* and the duality map J*: X --> 2' with t. he gauge 
function u' = z' is called the associate&duality map with J (see [23]) and we denote - 
it by Ja*. By normalized duality mapping we mean the duality mapping with gauge 
function ,u(s) = s. Let t denote the a(X*, X), a(X, X*), or norm topology on X*. The 
duality mapping J: X — 2 1 is said to be upper-semicohtinuous at u0 € X from the 
norm topology of X to-the t-topology of X* if for any t-open set'V in X* with J(v 0) V 
there exists an open neighborhood U ofuu0 such that J(U)c V. We shall use the 
following result of MULIAN [26]. Let X be a Banaeh space, then the norm of X is 
Gât.eaux (Fréchet) differentiable at u0 E S 1 (0) if and only of the following implica-
tion holds: when (u*) S 1 *(0) , (u* , u0) -- Il uoll = 1, then (u*) is a weak* (strong) 
Cauchy sequence. Similarly, necessary and sufficient condition for the fact that the 
norm of X* is Gâteaux (Fréchet) differentiable at u 0 € 8 1*(0) is that the following 
implication is valid: if (u)	Sj(0),(uo*, u,,) —*1, then (un ) is  weak (strong) Cauchy

sequence in X. 

3. Some properties of duality mapping 

We shall use the fqllowing result, which is a special case of the more general statement 
proved by GILES [9] (compare also [4, 11]) on the base of the BISHOF-PHELPS [3] 
theorem. 

L e iii ma 1: 1/ X is a Banach space and X* is an (F)-space, then X is reflexive. 

Proof: Let u0' € S1*(0) be arbitrary. We show that there exists uo € S 1 (0) such 
that (u* , u0) = 1. Choose a sequence (u)c 2(0) such that (uo*, u,,) --> 1. By the
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muljan theorem (n,) is a Cauchy sequence in X. Hence u,, -*-ito and tz0 E S 1 (0), while (*, u0) = 1. By the JAMES [17] characterization of reflexivity'X is reflexive 
1e m in a 2: Let X be a Banach space. Then the /ollowing statements are valid: 
(i) '(GrLES [101). A duality mapping J is an horneomorphisim of X onto X" if and 

only if X and X" are both (F)-space, then X is an.(F)-spaces. 
(ii) If X is smooth reflexive and X* is an (h)-space, then X'-is an (F)-space. 
Proof: We give it for' the sake of completeness. 
(i) In comparison with [10] we use here a slight different argument. Assume that 

X, X are both (F)-spaces. By Lemma 1 X is reflexive. Moreover, J is one-to-one, 
onto and J, are continuous. Conversely, assume that J is a homeomorphism of 
X onto X*. Then X is reflexive and X is an (F)-space. Since Ja* = rJ (see [23]) and 
Ja * is c ntiniious, J is also continuous from X into X**. Hence X is an (F)-
space.

(ii) It is sufficient to show that J is continuous on S(0). Let u0 € S(0), (u,)c X, 
it. u0. Then iz ( Ilu I) — /L(u) and hence I!J(u)I —> IJ(u0 )l as n —> Co. Since X is 
smooth and reflexive, J is single-valued and continuous from the. norm. topologyof 
X to the a(X,'X.*)topology of X". As, X* is an (h)-space we conclude that J(u) 
—* J(u) in the norm topology of X*I 

Theorem 1: Let X be a reflexive smooth (h)-Banach space. Then the'/ollowing stale'- 
ments are valid:	 . 

(i) J'is a proper map (i.e. for each compactset G of X* the set J- 1 (G) is compact in 
X). In addition, if .X is rotund, then J1 is continuous on 

(ii) 1/ J is a local homeomorphism. of X into ,X*, then J is a homeomorphism. of. 
X onto X.	 .	 . 

(iii) If X*,is smooth and (h)-space, then J is a homeomorphism of Xonto X". 

Proof: It is sufficient to prove our assertions for normalized duality mapping. 
- (i) Since X is smooth, J is singlevalued on X. Reflexivity of X implies that J is 

onto. Indeed, each u'1' € X is a(X, X*)continuous and B 1 (0) is a(X, X*)conipact. 
By the Weierstrass Theorem each u* € X' attains its supremum on S(0). Hence 
J(X) X. Let 0 be a compact subset of X*. Take (u) J'(G) and set u* 
= J(u). Then (u*) 0 and in view of the compactness of 0 in X* there exist a point 
u* E 0 and a subsequence of (u*) , say (u*), such that u* --> u. From IJ(u)II 
= IIuI we conclude that (us) is bounded in X. Hence there exist u0 E X and a subse-
quence of (un ), say (us,) such that u,,, — u0 in the a(X, X*)topology of X. As IIu,,I 

IIu"II we have that lim IIu,j,II = IIu*II. Furthermore, 
1	 I 

u oIJ	i.ijn IIu ,II = lim IIu,II = lirn IJ(u,)	IIuII 

	

7	 7 

urn 11u.,11 2 = Jim (J(u,), un) = (u'', U0). - 

Hence u* 2 = u'', u0) Ju*IJ . I uoII, which implies together with the first inequality 
that IIu*JI = Iu II and Ku*, u0) = luoll . Iu*II. Since J is single-valued, u' = J(u0) and 
therefore n 0 E J'(G). Moreover, u, -> uO in the a(X, X*)topology of X and 11u.,11 

Mu'i = uo. As X is an (h)-space, we get that u,, ,.--> u0, which proves that J1(G) 
is compact in X: 

In addition, assume that Xis rotund. Then J is onto and one-to-one by reflexivity 
and rotundity of X. Let (u*)c X", uo* E X'', u* n.0 '1' in X*. From the pevious 
considerations it follows that each subsequence (un) of (un ), where u = J(u*), 
contains a subsequence converging to u0 = Jl(u0*) in the a(X, X*)topology of X.
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Hence u,, .-+ u0 in the, a(X, X*)topology of X and 11u,,11 	1u011. Therefore u,, -- u0,

which proves the continuity of J'. 

(ii) J is proper by (i). SinceJ is a local h9meomorphism of X into X*, by the Ba-
naëh-Mazur theorem (see [241) J is a global homeomdrphism of X onto XK. 

(iii) This assertion follows at once from 'Lemma 2 I 

Note that under stronger assumptions on X, X* it was proved in [6] that J is a 
proper map. 

Among others, YORKE [27] proved the following assertions: 
(i) If a Banach space X is WLUR at x E S 1(0), then X* is smooth at the points of 

J(x)S1(0). 
(ii) If X is WLIJR at some x' E J(x), then X is very smooth at x (i.e. every support 

niapping on X is norm to a(X*, X**) continuous.at x). In fact, these results are given 
in Theorem 2(i) where 'a different proof method is used.. 

Let X be a Banach space,, G a subset of S 1(0) of all functionals of S1*(0) which 
attains its norm on S 1 (0). By the Bishdp-Phelps' theorem G is norm-dense in S1*(0). 
For each u E 0 there is some u E S(0) such that (u*, u) = 1. Denote by Q the set of 
such points u, E S1 (0) having the, above property, where in Q is included just one point 
u for each u's' E G. In next we can assume without loss of generality that J, J'' are 
normalized duality mappings on X, X', respectively. 

Theore m 2: Let X be a Banach space. Then the following conclusions are valid: 
(i) If X is WLUR at the points of Q S1 (0), then J* is single-valued at the points of 

dense set 0 of S1*(0). In addition,, if X** *is WLUR at the points of J*(0)c &S1*(0), 
then J* is upper-semicontinuous at the points of G from the norm topology of X * to the 

• a(X**, X***)lopology of X'"'. 
(ii) If J* is single-valued and upper-semicontinuous at the points of 0 when. X*, X'' 

have the norm topologies, then the strong and weak convergence of sequences of S(0) coin-- 

cide at the' points of S(0). Conversely, if the last condition is satisfied and X is sequentially 
• , 

cr(X, X*)scom,plete and J* is single-valued at the points of 0, then,,J* is upper-semi-
continuous at the points of C when X* and X** have the norm topologies. 

Proof: (i) It is sufficient to show that thenorm of X* is smooth at the points of 
dense set 0 in S*(0). Let u0 EG be arbitrary. Then there exists a point u0 E Q 

S(0) such that (u0*, u0) = luo*!l = 1. There exits a sequence (un) S1 (0) such that 
(u0* , u) ->- Kuo', u0) = 1. Then 2 lI u, + Q1 == uo'', u0 + u,). Since (uo*, u0 + u, 
--->- 2 as n -- oo, we have that I luo ± u,,!l -* 2. As X is WLUR at the points of Q, we 
conclude that u,' --u0 in the a(X, X*)topology of'X. By the muljan theorem X 
is smooth at ,u0. - 

Suppose, in addition, that X** is WLUR at the points of the set J*(G)c S**(o). 
Let u0* E C, (u*)c X, u,,* u. Without loss of generality one may assume that 

E S*(0). Assume that v,,'' E J*(u*) , n = 1, 2, ... By (i) J" is single-valued at 
u0'. Put v0 = J*(uo*), it is sufficient to prove that v,,"1' -* v0''' in the a(X** , X***) 
topology of X**. The properties of J* imply that 

2(I1u*11 2 + lluo*l) -- (v' — vo**, Un—. u0' = (v** ±	u0 + u,,*).

Hence

4 — 'Ilvfl'" — vo**II IIu n * — uo*Ip	2 liVn** + vo**II 

-	,;i I	I ^ 2(v **I	lvo *ll) = 4. 

Therefore IIvn** + vo*II -- 2 as n -- oo. Since	is WLIJR at the points of J*(G), 
v,'' —> v0'' in the cl(X**, X***)topology of X**, which proves that J* is upper-
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semicontifluous at u0 € 0 from the norm topology of X* in the o(X** , X***)topo 
logy of X. 

(ii) If J" is single-valued and upper-sernicontinuous at the points of 0c s*(0) 
when X, X have the norm topologies, then the norm of X* is Fréchet-differenti-
able at the points of 0 (see [11, 13]). Let it0 E S(0), (u)c S(0), u, it0 in the 

\O'(X, X*)topology of X. Then there exists u0 € S*(0) such that (u0*, u0) = MuoII = 1. 
Hence 'U0" € G. Since (u0", it,,) -> (u*, ) = I and the norm of X* is Fréchet-diffe-
rent.iable at the points of '0, according to the Smuljan theorem (it,,) converges to u 
in the norm topology of X. Conversely, assume that X is sequentially a(X, X*) 
complete and that J* is single-valued at the points of G. Then X* is smooth at these 
points. Let u0 ' € 0 be arbitrary, (u,,) S 1 (0) be such that (u0 , it,,) - 1. By the m111-
jan theorem (it,) is a weak Cauchy sequence in X. Hence u,, --> uO in the a(X, X*) 
topology of X for some u O € X. Clearly, u0 € S(0). According to our hypothesi 
it,, -- uO in the norm of X. Again, in view of the 8muljan theorem, the norm of X* is 
Fréchet-differentiable at u0'. Hence J is upper-seniicontinuous at u0'' when X* and 
X*t have the norm topologies (see, [11-13]) I 

We shall use the following 

Lemma.3 [23]: Let X be a real normed linear space, J: X --2, J*: .X*. * 21 
normalized duality mappings. Then an element u'' € X* lies in J(u) for some it € X if 
and only if r(u) € J*(u*). 

Proposition 1: Let X be a non-reflexive normed linear space such that X* is smooth, 
J: X -* 2, J*: X"' -*X duality mappings. I/R(J) = X* , then there exists asepa-
rable closed linear subspace W of X* such that J* is not onto W"'. 

Proof: It depends on the arguments of [23] and [5] and it is given here for the sake 
of completeness. First of all, we show that if X* is smooth and R(J) = X* , then 
J?(J*) = (X). Clearly, r(X) R(J*) Indeed, if u0** € r(X), then un"' is a(X*, X)-
continuous on' X"'. Since B 1 *(0) is a(X*, X)-compact, by the Weierstrass theorem 
u0 " attains its supremum on S 1 *(0). Therefore u' € J?(J*). We assert that R(J*) 

t(X). Assume that u0'' € R(J*), u0'"	0. Then there is u0 '' € X* such that u0''"

= J*(uo*) . As R(J) = X* there exists u0 ' E X"' such that u* € J(u0). .By Lemma 3 

= J*(u0*). Since	is smooth we get that T(u0) = u0'' and hence r(X) 
R(J") AccordingtoourhypothesisX is not reflexive. The ballBi*(0) of X* is a(K*, X)-

compact but it' is not c(X*, X**)countab1y compact. Indeed, if B 1 (0) would be 
c(X* , X**)countab1y compact, then B 1 *(0) would be also a(X*, X**)compact by 
the Eberlein-muljan theorem, which is impossible, because the a(X*, X**) and 

• the a(X*, X)-topologies agree on X* if and only if X is reflexive. As B1*(0) is not 
a(X*, X**)countably compact there is a sequence (u,,*) B 1 *(0), having no 
X**)conergent subnet. Since, B 1*(0) is a(X*, X)-compact, there is a subnet (u*) 

(U,,"') and a point u' € B 1*(0) such that u,' it"' in the a(X*, X)-topology. Put 
W = jiãrII {(u,*) u (u*)}. Then TV is closed separable subspace of X*. For each fixed 
it € X r(u) is a a(X*, X)-continuous linear functional on X* and therefore (r(u), 
u*) -* ((u), u"') for each.( ' fixed) it € X. Since (u*) is a subnet of (u,,*) and (u,,*) 
contains 'no a(X*, X**)cnvergent subnet, we conclude that u,,* -s* tt in the 
a(X*, X**)topology of X*. Each € W is a restriction of some u" of X** to W 
and conversely, each linear cdntinuous functional z''' defined on W can be conti-
nuously extended on the whole space X"'. Hence there is z'" € W* such that (z"", 

(z"'", it"'). Thus z'"' is not c1(X*, X)-continuous, i.e. z'' r(X) = R(J*) , which 
proves the assertion I	'
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Proposition 2: Let X be anornied linear space such that X* is smooth, M abounded 
a(X, X*)closed subset of X. If ]?(J) X'' and J* is continuous from the a(X* , X)-
topology of. X* to the a(X**,X*)topology of X'', then J(M) is a(X*, X)-compact. 

Proof: Since M is bounded we have that sup 111J (u)II: u E Mj < +oo Hence 
J(M) is relatively a(X*, X)-compact in X. Assume that u 0* E j(jf)a(x'.x)• Then 
there exists a net (u*)€j in J(M) such that u u0 in the a(X*, X)-topology of 
X*. Hence there are u € M such that u E J(ua)for each a E 1. By Our hypotheses 
J is single-valued and R(J*) = r(X) (see the first part of the proof of Proposition 2). 
In virtue of Lemma 3 tu) = J*(u*) for each a E 1 and J*(u*) J*(U *) in the 
a(X** , X*)topology of X**. Setting u0 ' = J*(u0*) we have that u 0 ' Et(X) and 
hence' u0	is a(X* , X),-continuous on X*.- There exists a point u0 € X such that 

= tu0). Now we have that x(u) -^ (u0) in the a(X** , X*)topology of X**. 
Since r is a linear homeóniorphism from the space (x, a(X, X*)) into the space 
(X**, a(X** , X*)) , we conclude that u -> 'a 0 in the a(X, X*).topology of X. Since M 
is a(X, X*)_closed, u0 E M. Because t(n) = J*(uo*) , by Lenima 3 we get that 
u0 '1' € J(u0) J(M), which concludes the proof I 

4. The Lax-Milgrain property of bilinear forms 

In [20-22] we established some characterizations of reflexivity of Banach spaces by 
means of the duality mapping. Now we derive once more characterization of reflexi-
vity of Banach spaces based on the so-called Lax-Milgrarn property of bilinear forms: 
This result is inspired by [15, 251. 

'Definition 1: Let X, Y be ñormed linear spaces. We shall say that X has the 
Lax-Milgram property (LPvIP) with respect to Y if there exists a bilinear form 
Q x Y -->- C with the following property: For a given linear closed separable subspace 
F of X there exists a-separable subspace P of Y such that Q is bounded on F x P and 
for each u'' € F* there exists a unique point Vp in P such that (u* , u) = Q(u, Vp) for 
each u € F. 

Similarly, we shall say that Y has the LMP with respect to X if there is a bilinear 
form Q: X x Y - C with the following property: For a given linear closed separable 
subspace V of Y there exists a separable linear subspace L' of X such that Q is bounded 
on E x V and for each v € V there exists a unique element u 5 in E such that 
(v*, v) = Q(u5, v) for each v € V. 

Proposition 3: Let X, Y be norined linear spaces. If X is sequentially weakly 
complete and has the LMP with respect to Y, then X is reflexive. 

Proof: It relies on the argument of [25]. Let (us ) be a bounded sequence in X. 
Put F = äri {(u)). Then F is a closed separable subspace of X., By our hypothesis 
there exist a separable linear subspace P of 1' and a bilinear form Q : X x Y - C 
such that Q is bounded on FxP, i.e. Q(u, v) Iu! II v M for each u € F, v € P. 
and some constant M . > 0, and the representation of the elements u € F* by, 
means of Q and the unique points Vp of P is valid. Let (v,,) be .a dense sequence in P. 
Define the linear continious functionals (u*) by (u*, u) = Q(u, v) for each u € F 
and n'(n = 1, 2, .. .). Clearly, € F for each n. We assert that (u*) is dense in 
F''. Indeed, if u' € F* is an arbitrary'point, then by our hypothesis, there exists a 
unique point Vp € P such that (u*, u) = Q(u, Vp) for each u € F. As (v) is dense in P.
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there exists a subsequence of (va ), say (va ), such that v,,	Vp as n -. . Then 

	

Ku* - u,,", u)I = IQ(u, VP - v)I	JJuI IIVp - V 

for each u  F and 

	

- u,,	sup K - un, u)I	MF.P JJVP - V,J. 
IIuIl=1 

Hence (u*) is dense in F*. Now ((u1*, u))_ 1 is a bounded sequence of reals for each	- 
fixed i (1 = 1, 2, .. .). By the diagonal process one can extract a subsequence (Uk) 
of (un) such that ((u*, Uk))k.j is convergent for each i. In view, of ,the density of 
(u*) in F* we conclude that ((u*, uk)) is convergent for each u E F* . By the Hahn-
Banach theorem for each u E F* there exists some v* E X* such that v F = 
and 11011 = IIv*II. On the other hand each v E X* restricted to F is an element of 
F* . Hence (Uk) is the weak Cauchy sequence in X. Since X is sequentially a(X, X*) 
complete, there exists a point 'u € X such that Uk	u0 in the a(X, X*)topology of 
X. Hence X is reflexive I 

Corollary 1: Let X, Y be sequentially weakly complete Jianach spaces such that 
X has the LM	 M with respect to Y and Y has the LP with respect to X. ThenX, Y are 
both re/lexive. 

Problems: (i) It would be interesting to describe the properties of the set Q (see 
Theorem 2) in eonnectibn with the geometric structure of the Banach spaces. 

(ii) Definition I together with Proposition 4 and Theorem 1 [151 imply the follow-
ing question: Let Xbe a Banach space and assume that each closed separable sul'-
space F of X is isoh'iorphie (isometric) to its dual F*. What is the geometric structure 
ofthespaceX?  

f 
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