Remarks on Duality Mapping and the Lax-Milgram Property

J. Kolomý

Es werden einige Bedingungen abgeleitet, die sicherstellen, daß die Dualitäts-Abbildung ein Homeomorphismus von einem Banach-Raum X auf X^* ist, der überdies auf einer dichten Teilmenge von X oberhalbstetig ist. Es werden ferner einige weitere Eigenschaften der Dualitäts-Abbildung bewiesen, die mit der Struktur des Banachraumes X zusammenhängen, und es wird die sogenannte Lax-Milgram Eigenschaft der betrachteten Bilinearformen untersucht. . Es werden einige Bedingungen abgeleitet, die sicherstellen, daß die Dualitäts-Abbildung
Homeomorphismus von einem Banach-Raum X auf X^* ist, der überdies auf einer dich
Teilmenge von Z oberhabbsteig ist. Es werden ferne

Находятся условия, при которых дуальное отображение является гомеоморфизмом из Банахова пространства X на X^* и является полунепрерывным сверху на некотором плотном в X множестве. Рассматриваются дальнейшие свойства дуального отображения в связи с геометрической структурой Банахова пространств X и свойство Лакс-Мил-
грама билинейных форм.

Some conditions under which the duality map is a homeomorphism from a Banach space X onto X^* and upper-semicontinuous at some dense subset of X are derived. Some further properties of the duality mapping are established in connection with the structure of the Banach space X . The so-called $\text{Lax-Milgram property}$ of the bilinear forms is also investigated.

.1. Introduction

The concept of duality mapping introduced independently by BEURLING and LIVING- $S_T(2)$ and CUDIA [4] has been used in several branches in functional analysis and its applications: theory of monotone and accretive operators, fixed point theory of nonexpansive (and related) operators, theory of approximations and geometry of Banach spaces.

CUDIA $\bar{[}4]$ proved that the duality mapping J is always upper-semicontinuous on X when X has the norm and the dual space has the $\sigma(X^*, X)$ -topology, while KEN-DEROV [18] extended this result to maximal monotone operators. Upper-semi continuity of duality mapping and subdifferential maps has been studied by GILES, GREGORY and Sims [13] and GREGORY [14], where upper-semicontinuity is characterized in terms of slices of the closed unit ball and upper-senhicontinuity properties are related to the geometric structure of the spaces and properties of convex func-
tions. 1. Introduction

The concept of duality mapping introduces

srow [2] and CUDIA [4] has been used in s

its applications: theory of monotone and

nonexpansive (and related) operators, the

Banach spaces.

CUDIA [4] proved

The purpose of this note is to derive some conditions under which the duality map *J* is a homeomorphism of X onto X^* and upper-semicontinuous at the dense subset of the given space. Some further properties of the duality mapping are derived in connection with the structure of Banach spaces. Furthermore, so-called Lax-Milgrani property of the bilinear forms is investigated.

2. Definitions and notations

Let X be a real normed linear space, X^* its dual space, $\langle \cdot, \cdot \rangle$ the pairing between X^* and X. Let $B_1(0)$, $B_1^*(0)$, $B_1^{**}(0)$ denote the closed unit balls; $S_1(0)$, $S_1^*(0)$, $S_1^{**}(0)$ their boundaries in X, X^* , X^{**} , respectively. Denote by $\sigma(X, X^*)$, $\sigma(X^*, X)$ the weak and weak* topologies on X, X^* , respectively and by $\tau: X \to X^{**}$ a canonical mapping of X into X^{**} . We use the notion of rotundity (or strict convexity) of spaces in usual sense. A normed linear space X is said to be: and X . Let $D_1(0), D_1^{(1)}(0)$, $D_1^{(1)}(0)$ denote the closed tifit bans; $D_1(0)$,
their boundaries in X , X^* , X^{**} , respectively. Denote by $\sigma(X, X^*)$
weak and weak^{*} topologies on X , X^* , respectively and b

-
- (ii) *smooth*, if the norm of X is Gâteaux differentiable on $S_1(0)$;
- (iii) an (F) -space, if its norm is Fréchet differentiable on $S_1(0)$;
- *(iv) weakly locally uniformly rotund (WLUR)* at $u \in S_1(0)$ if for every sequence (u_n) $\subset S_1(0)$ with $\|u_n + u\| \to 2$ there is $u_n \to u$ in the $\sigma(X, X^*)$ -topology;
- (v) WLUR *at the points of some subset Q* of $S_1(0)$, if X is WLUR at each point *u* of
- (vi) an *(h)-space* if for each sequence (u_n) in X converging in the $\sigma(X, X^*)$ topology of X to u_0 and $||u_n|| \to ||u_0||$ we have that $u_n \to u_0$ in the norm topology of X.

(iv) *weakly locally uniformly rotund* (WLUR) at $u \in S_1(0)$ if for every sequence (u_n)
 $\subset S_1(0)$ with $||u_n + u|| \to 2$ there is $u_n \to u$ in the $\sigma(X, X^*)$ -topology;

(v) WLUR at the points of some subset Q of $S_1(0)$, if X

 $J: X \to 2^{X^*}$ is said to be a *duality mapping* of X into X^* with the gauge function μ if $J(0) = \{0\}$ and for each $u \in X$, $u \neq 0$,

$$
J(u) = \{u^* \in X^* : \langle u^*, u \rangle = ||u^*|| \cdot ||u||, ||u^*|| = \mu(||u||).
$$

For $u \in X$, $J(u)$ is non-empty convex and $\sigma(X^*, X)$ -compact subset of X^* . X is smooth at $u \in S_1(0)$ if and only if *J* is single-valued at *u* (see [4]). The duality mapping of X^* into X^{**} is denoted by J^* and the duality map $J^*: X \to 2^{X^{**}}$ with the gauge function $\mu^* = \mu^{-1}$ is called the associated duality map with *J* (see [23]) and we denote it by J_a^* . By normalized duality mapping we mean the duality mapping with gauge function $\mu(s) = s$. Let *t* denote the $\sigma(X^*, X)$, $\sigma(X, X^*)$, or norm topology on X^* . The duality mapping $J: X \to 2^{X^*}$ is said to be *upper-semicontinuous* at $u_0 \in X$ from the norm topology of X to the t-topology of X^* if for any t-open set V in X^* with $J(u_0) \subset V$ there exists an open neighborhood *U* of u_0 such that $J(U) \subset V$. We shall use the following result of SMULIAN [26]. Let X be a Banach space, then the norm of X is Gâteaux (Fréchet) differentiable at $u_0 \in S_1(0)$ if and only of the following implica-Gateaux (Frechet) differentiable at $u_0 \,\epsilon \, S_1(0)$ if and only of the following implication holds: when $(u_n^*) \subset S_1^*(0)$, $\langle u_n^*, u_0 \rangle \to ||u_0|| = 1$, then (u_n^*) is a weak* (strong) Cauchy sequence. Similarly, necessary and Cauchy sequence. Similarly, necessary and sufficient condition for the fact that the norm of X^* is Gâteaux (Fréchet) differentiable at $u_0^* \in S_1^*(0)$ is that the following implication is valid: if $(u_n) \subset S_1(0)$, $\langle u_0^*, u_n \rangle \to 1$, then (u_n) is a weak (strong) Cauchy sequence in X .

3. Some properties of duality mapping

We shall use the following result, which is a special case of the more general statement proved by GILES $[9]$ (compare also $[4, 11]$) on the base of the BISHOP-PHELPS $[3]$ theorem.

Lemma 1: *If* X *is a Banach space and* X^* *is an* (F)-space, then X *is reflexive.*

Proof: Let $u_0^* \in S_1^*(0)$ be arbitrary. We show that there exists $u_0 \in S_1(0)$ such that $\langle u^*, u_0 \rangle = 1$. Choose a sequence $(u_n) \subset S_1(0)$ such that $\langle u_0^*, u_0 \rangle \to 1$. By the Smuljan theorem (u_n) is a Cauchy sequence in X. Hence $u_n \to u_0$ and $u_0 \in S_1(0)$, while $\langle u_0^*, u_0 \rangle = 1$. By the JAMES [17] characterization of reflexivity X is reflexive **I**

1e m in a 2: *Let X be a Banach space. Then the /ollowing statements are valid:*

(i) (GILES [10]). *A duality mapping J is an homeomorphism of X onto* X^* *if and only if* X and X^* are both (F) -space, then X is an (F) -spaces.

(ii) If X is smooth reflexive and X^* is an (h)-space, then X -is an (F)-space.

Proof: We give it for'the sake of completeness.

(i) In comparison with [10] we use here a slight different argument. Assume that X, X^* are both (F)-spaces. By Lemma 1 X is reflexive. Moreover, J is one-to-one, onto and J , J^{-1} are continuous. Conversely, assume that J is a homeomorphism of X onto X^{*}. Then X is reflexive and X is an (F)-space. Since $J_a^* = \tau J^{-1}$ (see [23]) and J_a^* is continuous, J^* is also continuous from X^* into X^{**} . Hence X^* is an (F)space. **Proof:** We give it for the solution P , X^* are once in the sample of X , X^* are both F)-spaces. By onto and J , J^{-1} are continuous X onto X^* . Then X is reflexive J_a^* is continuous, J^* is also s

(ii) It is sufficient to show that *J* is continuous on $S_1(0)$. Let $u_0 \in S_1(0)$, $(u_n) \subset X$, $u_n \to u_0$. Then $\mu(||u_n||) \to \mu(||u_0||)$ and hence $||J(u_n)|| \to ||J(u_0)||$ as $n \to \infty$. Since X is smooth and reflexive, *J* is single-valued and continuous from the norm topology of X to the $\sigma(X, X^*)$ -topology of X^* . As, X^* is an (h)-space we conclude that $J(u_n)$ \rightarrow *J*(*u*₀) in the norm topology of X^* onto and J , J^{-1} are continuous. Conversely, assume that J is a homeomorph
 X onto X^* . Then X is reflexive and X is an (F) -space. Since $J_a^* = \tau J^{-1}$ (see $[2]$
 J_a^* is continuous, J^* is also continu

Theorem 1: *Let X be a reflexive smooth (h)-Banach space. Then the'/ollowing stale'-*

(i) J ^{*is a proper map (i.e. for each compact set G of* X^* *the set* $J^{-1}(G)$ *is compact in*} *X*). In addition, if X is rotund, then J^{-1} is continuous on X^* .

(ii) If J is a local homeomorphism of X into X^* , then J is a homeomorphism of. X onto X^* .

Proof: It is sufficient to prove our assertions for normalized duality mapping.

- (i) Since X is smooth, *J is* singlevalued on X. Reflexivity of X implies that *J is* onto. Indeed, each $u^* \in X^*$ is $\sigma(X, X^*)$ -continuous and $B_1(0)$ is $\sigma(X, X^*)$ -compact. By the Weierstrass Theorem each $u^* \in X^*$ attains its supremum on $S_1(0)$. Hence $J(X) = X^*$. Let G be a compact subset of X^* . Take $(u_n) \subset J^{-1}(G)$ and set u_n^* $= J(u_n)$. Then $(u_n^*) \subset G$ and in view of the compactness of *G* in X^* there exist a point $u^* \in G$ and a subsequence of $(u_n^*),$ say (u_n^*) , such that $u_n^* \to u^*$. From $||J(u_n)||$ $= ||u_n*||$ we conclude that (u_n) is bounded in X. Hence there exist $u_0 \in X$ and a subsequence of (u_n) , say (u_n) such that $u_n \to u_0$ in the $\sigma(X, X^*)$ -topology of X. As $||u_n||$ \rightarrow $||u^*||$ we have that lim $||u_{n,i}|| = ||u^*||$. Furthermore, *1 ^I* ^uoIJ i.ijn II^u ,II = lim IIu,II = **lirn** *IJ(u,)* IIuII **7 7**

$$
||u_0|| \leq \lim_{j} ||u_{n_j}|| = \lim_{j} ||u_{n_j}|| = \lim_{j} ||J(u_{n_j})|| = ||u^*||,
$$

\n
$$
\lim_{j} ||u_{n_j}||^2 = \lim_{j} \langle J(u_{n_j}), u_{n_j} \rangle = \langle u^*, u_0 \rangle.
$$

Hence $||u^*||^2 = \langle u^*, u_0 \rangle \le ||u^*|| \cdot ||u_0||$, which implies together with the first inequality that $||u^*|| = ||u_0||$ and $\langle u^*, u_0 \rangle = ||u_0|| \cdot ||u^*||$. Since *J* is single-valued, $u^* = J(u_0)$ and therefore $u_0 \in J^{-1}(G)$. Moreover, $u_{n_j} \to u_0$ in the $\sigma(X, X^*)$ -topology of X and $||u_{n_j}||$ \rightarrow $||u^*|| = ||u_0||$. As X is an (h)-space, we get that $u_{n_i} \rightarrow u_0$, which proves that $J^{-1}(G)$ is compact in X .

In addition, assume that X is rotund. Then J is onto and one-to-one by reflexivity and rotundity of X. Let $(u_n^*)\subset X^*$, $u_0^*\in X^*$, $u_n^*\to u_0^*$ in X^* . From the previous considerations it follows that each subsequence (u_{n_j}) of (u_n) , where $u_n = J^{-1}(u_n^*),$ contains a subsequence converging to $u_0 = J^{-1}(u_0^*)$ in the $\sigma(X, X^*)$ -topology of X. Hence $u_n \to u_0$ in the $\sigma(X, X^*)$ -topology of X and $||u_n|| \to ||u_0||$. Therefore $u_n \to u_0$, which proves the continuity of J^{-1} .

(ii) J is proper by *(i)*. Since *J* is a local homeomorphism of X into X^* , by the Banach-Mazur theorem (see [24]) *J* is a global homeomorphism of X onto X^* .

(iii) This assertion follows at once from Lemma 2 \blacksquare

Note that under stronger assumptions on X, X* it was proved in [6] that *J* is a proper map.

Among others, YORKE [27] proved the following assertions:

(i) If a Banach space X is WLUR at $x \in S_1(0)$, then X^* is smooth at the points of $J(x) \subset S_1(0)$.

(ii) If X is WLUR at some $x^* \in J(x)$, then X is very smooth at x (i.e. every support mapping on X is norm to $\sigma(X^*, X^{**})$ continuous at x). In fact, these results are given in Theorem 2(i) where 'a different proof method is used..

Let X be a Banach space, G a subset of $S_1(0)$ of all functionals of $S_1^*(0)$ which attains its norm on $S_1(0)$. By the Bishop-Phelps' theorem G is norm-dense in $S_1^*(0)$. For each $u^* \in G$ there is some $u \in S_1(0)$ such that $\langle u^*, u \rangle = 1$. Denote by Q the set of such points $u \in S_1(0)$ having the above property, where in Q is included just one point *u* for each $u^* \in G$. In next we can assume without loss of generality that *J*, J^* are normalized duality mappings on X , X^* , respectively.

The*ore* **^m** 2: *Let X be a Banach space. Then the following conclusions are valid:*

(i) If X is WLUR at the points of $Q \subset S_1(0)$, then J^* is single-valued at the points of *dense set G of* $S_1^*(0)$ *. In addition, if* X^{**} *is* WLUR *at the points of* $J^*(G) \subset S_1^{**}(0)$, *then* J^* *is upper-semicontinuous at the points of G from the norm topology of* X^* to the $\sigma(X^{**}, X^{***})$ -topology of X^{**} .

(ii) If J^* is single-valued and upper-semicontinuous at the points of G when X^* , X^{**} *have the norm topologies, then the strong and weak convergence of sequences of* $S_1(0)$ *coincide at the' points of S(0). Conversely, if the last condition is satisfied and X is sequentially* $\sigma(X, X^*)$ -complete and J^* is single-valued at the points of G, then J^* is upper-semi*continuous at the points of C when X* and X** have the norm topologies.*

Proof: (i) It is sufficient to show that the norm of X^* is smooth at the points of dense set G in $S_1^*(0)$. Let $u_0^* \in G$ be arbitrary. Then there exists a point $u_0 \in Q$ $\mathcal{S}_1(0)$ such that $\langle u_0^*, u_0 \rangle = ||u_0^*|| = 1$. There exists a sequence $(u_n) \subset S_1(0)$ such that $\langle u_0^*, u_n \rangle \to \langle u_0^*, u_0 \rangle = 1$. Then $2 \ge ||u_n + u_0|| = \langle u_0^*, u_0 + u_n \rangle$. Since $\langle u_0^*, u_0 + u_n \rangle$ \rightarrow 2 as $n \rightarrow \infty$, we have that $||u_0 + u_n|| \rightarrow 2$. As X is WLUR at the points of Q, we conclude that $u_n \to u_0$ in the $\sigma(X, X^*)$ -topology of X. By the Smuljan theorem X^* is smooth at u_0^* .

Suppose, in addition, that X^{**} is WLUR at the points of the set $J^*(G) \subset S_1^{**}(0)$. Let $u_0^* \in G$, $(u_n^*) \subset X^*$, $u_n^* \to u_0^*$. Without loss of generality one may assume that $u_n^* \in S_1^*(0)$. Assume that $v_n^{**} \in J^*(u_n^*), n = 1, 2, \ldots$ By (i) J^* is single-valued at u_0^* . Put $v_0^{**} = J^*(u_0^*)$, it is sufficient to prove that $v_n^{**} \to v_0^{**}$ in the $\sigma(X^{**}, X^{***})$ topology of X^{**} . The properties of J^* imply that *2(IIum*² + *2(IIIum*² + *2(IIIUm*) $\langle u_n \rangle \rightarrow u_0$ in the $\sigma(X, X^*)$ -topology of X . By the simulant u_0^* ,

2(*G*, $(u_n^*) \subset X^*$, $u_n^* \rightarrow u_0^*$. Without loss of generality one may

2(0). Assume that $v_n^{**} \in J^*(u_n^*), n =$

$$
2(||u_n^*||^2 + ||u_0^*||^2) - \langle v_n^{**} - v_0^{**}, u_n^* - u_0^* \rangle = \langle v_n^{**} + v_0^{**}, u_0^* + u_n^* \rangle.
$$

Hence

topology of
$$
X^{**}
$$
. The properties of J^* imply that
\n
$$
2(||u_n^*||^2 + ||u_0^*||^2) - \langle v_n^{**} - v_0^{**}, u_n^* - u_0^* \rangle = \langle v_n^{**} + v_0^{**} \rangle
$$
\nHence
\n
$$
4 - ||v_n^{**} - v_0^{**}|| ||u_n^* - u_0^*|| \leq 2 ||v_n^{**} + v_0^{**}||
$$
\n
$$
\leq 2(||v_n^{**}|| + ||v_0^{**}||) = 4.
$$
\nTherefore $||v_n^{**} + v_0^{**}|| \to 2$ as $n \to \infty$. Since X^{**} is WLUR at the
\n $v_n^{**} \to v_0^{**}$ in the $\sigma(X^{**}, X^{***})$ -topology of X^{**} , which proves the

is WLUR at the points of $J^*(G)$, $v_n^{**} \to v_0^{**}$ in the $\sigma(X^{**}, X^{***})$ -topology of X^{**} , which proves that J^* is upper-

semicontinuous at $u_0^* \in G$ from the norm topology of X^* in the $\sigma(X^{**}, X^{***})$ -topology of X^{**} .

(ii) If J^* is single-valued and upper-semicontinuous at the points of $G \subset S_1^*(0)$ when X^* , X^{**} have the norm topologies, then the norm of X^* is Fréchet-differenti-
able at the points of G (see [11, 13]). Let $u_0 \in S_1(0)$, $(u_u) \subset S_1(0)$, $u_u \to u_0$ in the able at the points of G (see [11, 13]). Let $u_0 \in S_1(0)$, $(u_u) \subset S_1(0)$, $u_n \to u_0$ in the $\sigma(X, X^*)$ -topology of X. Then there exists $u_0^* \in S_1^*(0)$ such that $\langle u_0^*, u_0 \rangle = ||u_0|| = 1$. Hence $u_0^* \in G$. Since $\langle u_0^*, u_n \rangle \to \langle u_0^*, u_0 \rangle = 1$ and the norm of X^* is Fréchet-differentiable at the points of *G*, according to the Smuljan theorem (u_n) converges to u_0 in the norm topology of X. Conversely, assume that X is sequentially $\sigma(X, X^*)$ complete and that J^* is single-valued at the points of G. Then X^* is smooth at these points. Let $u_0^* \in G$ be arbitrary, $(u_n) \subset S_1(0)$ be such that $\langle u_0^*, u_n \rangle \to 1$. By the Smuljan theorem (u_n) is a weak Cauchy sequence in X. Hence $u_n \to u_0$ in the $\sigma(X, X^*)$ topology of X for some $u_0 \in X$. Clearly, $u_0 \in \mathcal{S}_1(0)$. According to our hypothesis $u_n \to u_0$ in the norm of X. Again, in view of the Smuljan theorem, the norm of X^* is Fréchet-differentiable at u_0^* . Hence *J* is upper-semicontinuous at u_0^* when X^* and X^{**} have the norm topologies (see, [11-13])

We shall use the following

Lemma.3 [23]: Let X be a real normed linear space, $J: X \to 2^{X^*}$, $J^*: X^* \to 2^{X^{**}}$ *normalized duality mappings. Then an element* $u^* \in X^*$ lies in $J(u)$ for some $u \in X$ if *and only if* $\tau(u) \in J^*(u^*).$

Proposition 1: *Let X be a non-reflexive normed linear space such that X* is smooth,* $J: X \rightarrow 2^{X^*}, J^*: X^* \rightarrow X^{**}$ duality mappings. If $R(J) = X^*$, then there exists a sepa*rable closed linear subspace* W of X^* such that J^* is not onto W^* .

Proof: It depends on the arguments of [23] and [5] and it is given here for the sake of completeness. First of all, we show that if X^* is smooth and $R(J) = X^*$, then $R(J^*) = \tau(X)$. Clearly, $\tau(X) \subset R(J^*)$. Indeed, if $u_0^{**} \in \tau(X)$, then u_0^{**} is $\sigma(X^*, X)$ continuous on X^* . Since $B_1^*(0)$ is $\sigma(X^*, X)$ -compact, by the Weierstrass theorem u_0 ^{**} attains its supremum on $S_1^*(0)$. Therefore $u_0^{**} \in R(J^*)$. We assert that $R(J^*)$ \subset $\tau(X)$. Assume that $u_0^{**} \in R(J^*)$, $u_0^{**} \neq 0$. Then there is $u_0^* \in X^*$ such that u_0^{**} $= J^*(u_0^*).$ As $R(J) = X^*$ there exists $u_0^* \in X^*$ such that $u_0^* \in J(u_0).$ By Lemma 3 $\text{Log}(f)$: It depends on the arguments of [23] and [5] and it is given here for the sake

mpleteness. First of all, we show that if X^* is smooth and $R(J) = X^*$, then
 $\text{Log}(f) = \tau(X)$. Clearly, $\tau(X) \subset R(J^*)$. Indeed, if u $R(J^*)$. According to our hypothesis X is not reflexive. The ball $B_1^*(0)$ of X^* is $\sigma(X^*, X)$ compact but it is not $\sigma(\bar{X^*}, X^{**})$ -countably compact. Indeed, if $B_1^*(0)$ would be $\sigma(X^*, X^{**})$ -countably compact, then $B_1^*(0)$ would be also $\sigma(X^*, X^{**})$ -compact by the Eberlein-Smuljan theorem, which is impossible, because the $\sigma(X^*, X^{**})$ and the $\sigma(X^*, X)$ -topologies agree on X^* if and only if X is reflexive. As $B_1^*(0)$ is not $\sigma(X^*, X^{**})$ -countably compact there is a sequence $(u_n^*) \subset B_1^*(0)$, having no $\sigma(X^*)$ X^{**})-convergent subnet. Since, $B_1^*(0)$ is $\sigma(\bar{X}^*, X)$ -compact, there is a subnet (u_*^*) $\subset (u_n^*)$ and a point $u^* \in B_1^*(0)$ such that $u_n^* \to u^*$ in the $\sigma(X^*, X)$ -topology. Put $W = \overline{\text{span}} \{ (u_n^*) \cup (u^*) \}$. Then *W* is closed separable subspace of X^* . For each fixed $u \in X \tau(u)$ is a $\sigma(X^*, X)$ -continuous linear functional on X^* and therefore $\langle \tau(u),$ $u_n^* \rightarrow \langle \tau(u), u^* \rangle$ for each (fixed) $u \in X$. Since (u_n^*) is a subnet of (u_n^*) and (u_n^*) contains no $\sigma(X^*, X^{**})$ -convergent subnet, we conclude that $u_*^* \rightarrow u^*$ in the contains no $o(\Lambda^*, \Lambda^*)$ -convergence subfice, we conclude that α^* is in the $\sigma(X^*, X^{**})$ -topology of X^* . Each z^{**} is a restriction of some u^{**} of X^{**} to *W* and conversely, each linear continuous functional z^{**} defined on *W* can be continuously extended on the whole space X^* . Hence there is $z^{**} \in W^*$ such that $\langle z^{**}, \rangle$ $(u_n^*) \rightarrow \langle z^{**}, u^* \rangle$. Thus z^{**} is not $\sigma(X^*, X)$ -continuous, i.e. $z^{**} \notin \tau(X) = R(J^*)$, which $u_x^* \rightarrow \langle \tau(u), u^* \rangle$ for each.
contains no $\sigma(X^*, X^{**})$ -c
 $\sigma(X^*, X^{**})$ -topology of X^*
and conversely, each linea
nuously extended on the v
 $u_x^* \rightarrow \langle z^{**}, u^* \rangle$. Thus z^{**}
proves the assertion \blacksquare

Proposition 2: Let X be a normed linear space such that X^* is smooth, M a bounded $\sigma(X, X^*)$ -closed subset of X. If $R(J) = X^*$ and J^* is continuous from the $\sigma(X^*, X)$ *topology of X* to the* $\sigma(X^{**}, X^*)$ *-topology of X**, then* $J(M)$ *is* $\sigma(X^*, X)$ *-compact.*

Proof: Since *M* is bounded we have that $\sup \{||J(u)|| : u \in M\} < +\infty$. Hence $J(M)$ is relatively $\sigma(X^*, X)$ -compact in X^* . Assume that $u_0^* \in \overline{J(M)}^{\sigma(X^*, X)}$. Then there exists a net $(u_{\alpha}^*)_{\alpha\in I}$ in $J(M)$ such that $u_{\alpha}^* \to u_0^*$ in the $\sigma(X^*, X)$ -topology of X^* . Hence there are $u_a \in M$ such that $u_a^* \in J(u_a)$ for each $\alpha \in I$. By our hypotheses *X*^{*}. Hence there are $u_a \in M$ such that $u_a^* \in J(u_a)$ for each $\alpha \in I$. By our hypotheses *J* is single-valued and $R(J^*) = \tau(X)$ (see the first part of the proof of Proposition 2). In virtue of Lemma 3 $\tau(u_a) = J^*(u_a^*)$ for In virtue of Lemma 3 $\tau(u_*) = J^*(u_*)$ for each $\alpha \in I$ and $J^*(u_*) \to J^*(u_0^*)$ in the $\sigma(X^{**}, X^*)$ -topology of X^{**} . Setting $u_0^{**} = J^*(u_0^*)$ we have that $u_0^{**} \in \tau(X)$ and hence u_0^{**} is $\sigma(X^*, X)$ -continuous on X^* . There exists a point $u_0 \in X$ such that $u_0^{**} = \tau(u_0)$. Now we have that $\tau(u_0) \to \tau(u_0)$ in the $\sigma(X^{**}, X^*)$ -topology of X^{**} . Since τ is a linear homeomorphism from the space $(X, \sigma(X, X^*))$ into the space $(X^{**}, \sigma(X^{**}, X^{**}))$, we conclude that $u_{\sigma} \to u_0$ in the $\sigma(X, X^*)$ -topology of X. Since *M* \rightarrow $(X^{**}, \sigma(X^{**}, X^{*}))$, we conclude that $u_s \to u_0$ in the $\sigma(X, X^{*})$ -topology of X. Since M is $\sigma(X, X^{*})$ -closed, $u_0 \in M$. Because $\tau(u_0) = J^{*}(u_0^{*})$, by Lemma 3 we get that $u_0^* \in J(u_0) \subset J(M)$, which concludes the proof

4. The Lax-Milgrain property of bilinear forms

In $[20-22]$ we established some characterizations of reflexivity of Banach spaces by means of the duality mapping. Now we derive once more characterization of reflexivity of Banach spaces based on the so-called Lax-Milgram property of bilinear forms. This result is inspired by [15, 251.

Definition 1: Let X , Y be normed linear spaces. We shall say that X has the $Lax-Milgram$ property (LMP) with respect to *Y* if there exists a bilinear form $Q \times Y \rightarrow C$ with the following property: For a given linear closed separable subspace *F* of *X* there exists a separable subspace *P* of *Y* such that *Q* is bounded on $F \times P$ and for each $u^* \in F^*$ there exists a unique point v_P in P such that $\langle u^*, u \rangle = Q(u, v_P)$ for each $u \in F$.

Similarly, we shall say that Y has the LMP with respect to X if there is a bilinear form $Q: X \times Y - C$ with the following property: For a given linear closed separable subspace *V* of *Y* there exists a separable linear subspace *L'* of X such that Q is bounded on $E \times V$ and for each $v^* \in V^*$ there exists a unique element u_E in *E* such that $\langle v^*, v \rangle = Q(u_{\mathcal{E}}, v)$ for each $v \in V$.

Proposition 3: Let X, Y be normed linear spaces. If X is sequentially weakly *complete and has the* LMP *with respect to Y, then X is reflexive.*

Proof: It relies on the argument of $[25]$. Let (u_n) be a bounded sequence in X. Put $F = \overline{\text{span}} \, \{(u_n)\}\$. Then *F* is a closed separable subspace of X. By our hypothesis there exist a separable linear subspace *P* of *Y* and a bilinear form $Q : X \times Y \to \mathbb{C}$ such that *Q* is bounded on $F \times P$, i.e. $|Q(u, v)| \leq M_{F,P} ||u|| \cdot ||v||$ for each $u \in F, v \in P$. such that Q is bounded on $F \times P$, i.e. $|Q(u, v)| \le M_{F, P} ||u|| \cdot ||v||$ for each $u \in F, v \in P$.
and some constant $M_{F, P} > 0$, and the representation of the elements $u^* \in F^*$ by, means of Q and the unique points v_P of P is valid. Let (v_n) be a dense sequence in \tilde{P} . Define the linear continuous functionals (u_n^*) by $\langle u_n^*, u \rangle = Q(u, v_n)$ for each $u \in F$ and $n \cdot (n = 1, 2, \ldots)$. Clearly, $u_n^* \in F^*$ for each *n*. We assert that (u_n^*) is dense in F^* . Indeed, if $u^* \in F^*$ is an arbitrary' point, then by our hypothesis, there exists a unique point $v_P \in P$ such that $\langle u^*, u \rangle = Q(u, v_P)$ for each $u \in F$. As (v_n) is dense in P.

there exists a subsequence of (v_n) , say (v_n) , such that $v_n \to v_P$ as $n \to \infty$. Then

Remarks on Duality
sts a subsequence of
$$
(v_n)
$$
, say (v_n) , such that $v_n \to v_P$ as n
 $|\langle u^* - u_n^*, u \rangle| = |Q(u, v_P - v_n)| \le M_{F,P} ||u|| \cdot ||v_P - v_n||$
 $u \in F$ and

for each $u \in F$ and

ists a subsequence of
$$
(v_n)
$$
, say (v_n) , such that $v_n \rightarrow v_P$
\n
$$
|\langle u^* - u_n^*, u \rangle| = |Q(u, v_P - v_n)| \le M_{F,P} ||u|| \cdot ||v_P - u \in F
$$
 and
\n
$$
||u^* - u_n^*|| \le \sup_{\|u\|=1} |\langle u^* - u_n^*, u \rangle| \le M_{F,P} ||v_P - v_n||.
$$

Hence (u_n^*) is dense in F^* . Now $(\langle u_i^*, u_n \rangle)_{n=1}^{\infty}$ is a bounded sequence of reals for each fixed *i* (*i* = 1, 2, ...). By the diagonal process one can extract a subsequence (u_k) of (u_n) such that $(\langle u_i^*, u_k \rangle)_{k=1}^{\infty}$ is convergent for each *i*. In view, of the density of or (u_n) such that $((u_i^+, u_k))_{k=1}$ is convergent for each i . In view, of the density of (u_n^*) in F^* we conclude that $((u^*, u_k))$ is convergent for each $u^* \in F^*$. By the Hahn-
Banach theorem for each $u^* \in F^*$ there Banach theorem for each $u^* \in F^*$ there exists some $v^* \in X^*$ such that $v^* \mid F = u^*$ and $||u^*|| = ||v^*||$. On the other hand each $v^* \in X^*$ restricted to *F* is an element of F^* . Hence (u_k) is the weak Cauchy sequence in X. Since X is sequentially $\sigma(X, X^*)$ (u_n^*) in F^* we conclude that $(\langle u^*, u_k \rangle)$ is convergent for Banach theorem for each $u^* \in F^*$ there exists some *a*nd $||u^*|| = ||v^*||$. On the other hand each $v^* \in X^*$ re F^* . Hence (u_k) is the weak Cauchy sequence u_0 in the $\sigma(X, X^*)$ -topology of X. Hence X is reflexive \blacksquare for each $u \in F$ and
 $||u^* - u_n^*|| \leq \sup |\langle u^* - u_n^*, u \rangle| \leq M_{F,P} ||v_P - v_n||$.

Hence (u_n^*) is dense in F^* . Now $(\langle u_i^*, u_n \rangle)_{n=1}^{\infty}$ is a bounded sequence of reals for each

fixed i ($i = 1, 2, ...,$ By the diagonal process one

Corollary 1: Let X, Y be sequentially weakly complete Banach spaces such that *both re/lexive.*

Problems: (i) It would be interesting to describe the properties of the set Q (see Theorem 2) in eonnectibn with the geometric structure of the Banach spaces.

(ii) Definition I together with Proposition 4 and Theorem 1 [151 imply the following question: Let X be a Banach space and assume that each closed separable subspace *F* of *X* is isomorphic (isometric) to its dual *F**. What is the geometric structure of the space X ? Problems: (i) It would be interesting to describe the properties of
Theorem 2) in connection with the geometric structure of the Banach s
(ii) Definition 1 together with Proposition 4 and Theorem 1 [15] im
ling question:

f

- [1] BANACH, S.: Théorie des opérations lineaires. Warszawa 1932.
- [2] BEURI.ING, A.,'and A. E: LIVINGSTON: A theorem on duality mapping in Banach spaces. Ark'. Mat. 4 (1962), 405-411.
- [3] Bisnop, E., and R. R. PHELPS: A proof that every Banach space is subreflexive. Bull. Amer. Math. Soc. 67 (1961), 97-98.
- [4] CUDIA, D. F.: The geometry of Banach spaces; Smoothness. Trans. Amer. Math. Soc. 110 $(1964), 284 - 314.$
- [5] DAVIS, W. J., and W. B. JOHNSON: A renorming of nonreflexive Banach spaces. Proc. Amer. Math. Soc. 17 (1973), 486-488.
- [6] EKELAND, I., and G. LEBOURG: Generic Fréchet-differentiability and perturbed optimization problems in Banach spaces. Trans. Amer. Math. Soc. **224** (1976), 193-216.
- [7] FITZPATRICK, S. P.: Continuity of nonlinear monotone operators. Proc. Amer. Math. Soc. 62 (1977), $111-116$.
- [8] FITZPATRLCK, S. P.: Monotone operators and dentability. Bull. Austral. Math. Soc. 18 EKENCES

BANACH, S.: Théorie des opérations lineaires. Warszawa 193

BEURLING, A., and A. E. LIVINGSTON: A theorem on duality

Ark. Mat. 4 (1962), 405-411.

BISHOP, E., and R. R. PHELPS: A proof that every Banact

Amer. Ma
- [9] CILE5, J. R..: On a differentiability condition for reflexivity of a Banach space. J. Austral. Math. Soc. 12 (1971), 393-396.
- [10] GILES, J. R.: A Banach space with support homeomorphism is reflexive. Bull. Austral. Math. Soc. 5 (1971), 187-189.
- [11] CILES, J. H.: On a characterization of differentiability of the norm of a normed linear space. J. Austral. Math. Soc. 12 (1971), 106–114.-
- [12] CILE5, J. R.: Convex analysis with application in the differentiation of convex functions (Research Notes in Math. *58).* London: Pitman (Adv. Publishing Program 10) 1982.
- 576 J. KOLOMÝ
131 GILES. J. R., GREGORY, D. A., and R. [13] GILES, J. R., GREGORY, D. *A.,* and B. Sims: Geometrical implications of upper semicontinuity of the duality mapping on a Banach space. Pacific J. Math. 79 (1978), 99-109.
[14] GREGORY, D. A.: Upper semi-continuity of subdifferential mappings. Canad. Math. Bull.
- ⁵⁷⁶ J. KOLOMY

^[13] GILES, J. R., GREGORY, D. A., and B. SIMS: Geometrical implications of upper semi-continuity of the duality mapping on a Banach space. Pacific J. Math. 79 (1978), 99-109

^[14] GREGORY, D. A.: Uppe J. KOLOMÝ

GILES, J. R., GREGORY, D

continuity of the duality m

GREGORY, D. A.: Upper se

23 (1980), 11-19.

HAYDEN, T. L.: Representa

405-406. J. KOLOMÝ

GILES, J. R., GREGORY, D. A., a

continuity of the duality mapping

GREGORY, D. A.: Upper semi-con

23 (1980), 11 – 19.

HAYDEN, T. L.: Representation th

405 – 406.

MLLE, and R. S. PHILLIPS: F

Colloq. Publ. 3
	- [15] HAYDEN, T..L.: Representation theorems in reflexive Banach spaces. Math. Z. 104 (1968),
	- [16] HILLE, E., and R. S. PHILLIPS: Functional analysis and semi-groups (Amer. Math. Soc. Colloq. Publ. 31) Providence R. I.: Amer. Math. Soc. 1957.
	- [17] JAMES, R. C.: Characterization of reflexivity. Studia Math. **23** (1964), 205-216.
	- [18] KENDEROV, P. S.: The set-valued monotone mappings are almost everywhere singlevalued. Studia Math. 56 (1976), 199—203.
	- [19] KENDEROV, P. S.: Monotone operators in Asplund spaces. Compt. Rendus de l'Académie bulgare des Sciences 30 (1977), 963-964.
	- [20] KoLomý, J., and H. D. VIET: On duality mappings and metric gradient. Boll. Un. Mat. Ital. (5) 16-A (1979), 92-99.
	- [21] KOLOMÝ, J.: Duality mappings and characterization of reflexivity of Banach spaces. Boll. Un. Mat. Ital. (6) 1-B (1982), 275-283.
	- [22] KOLOMÝ, J.: Duality mapping and geometry of Banach spaces. In: General Topology and its relations to modern analysis and algebra V. Proc. Fifth Prague Topol. Symp. 1981 (ed.: J. NOVAK). Berlin: Heldermann Verlag 1982, 435-441. 405—406.

	HLLLL¹E. 2., and R. S. PHILLIPS: Functional analysis and semi-groups (Amer. Math. IColloq: Publ. 31) Providence R. I.: Amer. Math. Soc. 1957.

	JAMES, R. C.: Characterization of reflexivity. Studia Math. 23 (19 Colloq. Publ. 31) Providence R. I.: Amer. Math. Soc. 1957.
JAMES, R. C.: Characterization of reflexivity. Studia Math. 23 (1964), KENDEROV, P. S.: The set-valued monotone mappings are almost KENDEROV, P. S.: Monotone opera KENDEROV, P. S.: The set-valued monotivalued. Studia Math. 56 (1976), 199-203.

	KENDEROV, P. S.: Monotone operators in *A*

	bulgare des Sciences 30 (1977), 963-964.

	KOLOMÝ, J., and H. D. VIET: On duality 1

	Ital. (5) 16-A
	- [23] DE PRIMA, C. R., and W. V. PETRYSHYN: Remarks on strict monotonicity and surjectivity on a real normed linear spaces. Math. Z. 123 (1971), 49-55.
	- [24] PLASTOCK, R.: Homoomorphisms between Banach spaces. Trans. Amer. Math. Soc. 200
	- [25] SAUER, N.: Representation theorems in a reflexive B-space. Math. Z. 93 (1966), $202-205$.
	- [26] Шмульян, В. Л.: О некоторых геометрических своиствах единичной сферы пространства типа (В). Матем. сб. 6 (48) (1939), 77-94.
	- [27] YORKE, A. C.: Differentiability and local rotundity. J. Austral. Math. Soc. 28 (1979), $205 - 213.$ theorems in a reflet

	vopax reomerphyected

	cof. 6 (48) (1939), 77-

	ity and local rotundit

	(07. 1983; in revidierte

	(07. 1983; in revidierte

	iversity Karlovy

	– Karlin, Sokolovské

I

Manuskripteingang: 01.07. 1983; in revidierter Fassung: 22.03. 1984

${\bf VERFASSER}$.

Prof. Dr. JOSEF KOLOMÝ

Matematický Ústav University Karlovy $\text{CSSR} - 18600 \text{ Praha } 8 - \text{Karlin, Sokolovská} 83$