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Wir betrachten ein Steuerproblem, bei dem der Zustand durch die Losung einer linearen Rand. 
wortaufgabe für eine gewohnhiche Differcntialgleichung zweiter.Ordnung beschrieben wird. Der 
Koeffizient der ersten Ableitung in der Zustandsgleichung jst dabei die Steuerfunkton. Es wird 
die Existcnz optimaler Steuerungen bewiesen und deren Eindeutigkeit diskutiert. Des weiteren 
werden sowohi notwendige als auch hinreichende Optimalitatsbedingungen forinuliert. 

PaccMaTpuBaeTca aaa qa onTHMa.nbHorO ynpaB.neHHf, npu HOTopOfI cocTociuDe HaJ1s4eTca 
peu1eueM JIMieAH6ri rpaitH q uoil oaja'iu AJIFI 06I&iH0I3eHlIoro u14epeHIuaJIbHoro ypaB-
JieHMg noporo nopsijua. YnpaBr1eIIue - Hoa(JHUneHT nepsofl npou3BoIrorI ypaBilellufi. 
JIoEa3bu3aeTcn cynecTBoBaHne onTuMaJlbHoro ynpaaiieiiun ii uay4ae'rca ero eJuHcTBeLIHocm. 
Fpoie Toro (0p1MyJ1Hpy10Tc H Heo6xouMaIe is AOCTaToqubie yCJI0BHH onTHMaThHocTu.	- 
In this paper we deal with a control problem whose behaviour is described by the solution of a 
linear boundary value problem of a second order ordinary differential equation. The coefficient 
of the first derivative in the state equation is assumed to be the control. We prove the existence - 
of optimal control and discuss its uniqueness.-Moreover, we formulate both necessary and suffi-
cient optimality conditions.  

1. Introduction 

The present paper is devoted to the study of an optimal control problem for a second 
order ordinary differential equation. The characteristi feature of the problem is the 
occurence of the control as the coefficient of the first derivitive in the state equation. 
Both existence of optimal controls is proved and a necessary optitnality condition is 
given without any additional requirements. Uniqueness of optimal control is shown 
and a sufficient optimality condition is formulated under assumption that the given 
data are in a certain relation to each other. It is worthwhile to hint at the fact that 
this assumption can be easily fulfilled by appropriate choice of the parameters and 
o in the cost functional (1). We remark that our problem is related to an inverse prob-
lem in Geophysics about which we shall report in a later paper. 

	

We start with the statement of the problem, and then we consider the questions	-' 
mentioned above in separate paragraphs. In each of them we we begin with some remarks 
concrning the method applied in it and relevant literature. 

2. Problem Statement, Preliminaries 

Throughout the whole .paper we use the following notations. R is the set of all real 
numbers, (a, b) is a bounded interval. L2 (a, b) with the scalar product (.,.) and the 
,norm and L(a, b) with the norm II . I are he usual Lebesgue spaces of real- 
valued functions defined on (a, b). Hm(a, b) is the known Sobolev spacepf order m. Its 
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scalar product and norm will be denoted by (., •)m and Illlm respectively. 110 1 (a, b) 
is the subspace of 11 1 (a, b) whose elements vanish at the ends of the interval (a, b). 
11 1 (a,-b) is the dual space of H0 (a, b); (.,.) will be used for the generalized scalar 
product between these both spaces. (X, Y) stands for the Banach space of all linear 
bounded mappings defined on the whole Banach space X with values in another 
Banach space Y. - 

	

The optimal control problem in question is the following:	 - 
inf J(y, u),	J(y, u) = il - g 1l 2 + 6 1ju - h11 2 ,	 -	(1) 

subject to

—y"(x) +u(x)y'(x) +y(x) =/(x),	x- E (a, b)	
(2) 

y(a)=y(b) =0,	 J	 I 

and

U E U. = {u € L2 (a, b)	u(x)	2 (x) a.e. x E . (a, b)},	 (3) 

where the functions/, g, h € L2(a, b) and the constants e > 0,6 0 are given as well 
as the functions 12 E L(a, b) which are supposed to fulfil the inequality 

	

2 (x)^S1	a.e.x€(a,b).	 (4) 

We start the consideration of the control problem (l —) with rewriting the bound-
ary value problem (2) in form of an operator equation. To this end we recall that for 
any fixed u € 'Ud 'an element y E H0 1 (a, b) is said to be weak solution to (2) if 

H(y, z) + 'H(y, z) = (F, z) Vz' € H01 (a, b),	 (5), 
where	 -	 . 

H(y,) = f{y+(x) z+(x) + y(x) z(x)) dx =(y," 

f J1,(y, z) = fu(x) y'() z(x) dx.,	 ..	(6) 

(F, z) 
= / /() z(x) dx = (/, z).

 
Both 17(•, .) and 1i(•, .) are bilinear forms defined on H0 1 (a, b) x H01 (a, b). From the 
generalized Lax-Milgrarn Theorem and from  

17(', y) = liy iii2 ,	11(y, z)	liyIi jjzjjj V y, z E H01 (a, b) 

it follows that the linear operator A: 1101 (a, b)	11 1 (a, b) induced by IT(, .) via 

(Ay, z) = J7(y, z) Vy , z € H01 (a, b) 

is bounded and invertible; we have 

-	llAi12(H'o(a.b).H(a.b)), If A' 211 (a.b).Ho'(a.b))	1 .	 (). 
(In (8) we could write the equality sign, because A is the duality operator of H01 (a, b).) 
But the bilinear form H(•,.) is only bounded because 

17(Y, z)	llu ll iiy 'll liz il	liyil llzlii Vu .E Uad, V y, z € H0 (a, b)
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	and not coercive on 1101 (a, b). The latter can be seen in case of constant control u(x)€
= u0 from the identity 

211u(Y, y) = 2uofy'(x) y(x) dx = uo(y2(b) - y2(a)) = 0 

which is obviously valid for any y € H 01 (a, b). This means concerning the linear 
operator Bu): H01 (a, b) -* H 1 (a, b) induced by 

- +5K B (it) y, z = !Iu(Y, z) Vy, z € H01 (a; b)	 -	(9)€

we may. state only its boundedness and the estimate 
•	

II B (U)II2(ii,(a.b).H(a.b))	1•	 (10) 

Here u is an arbitrary element belonging to Uad. Despite the last fact the operator 

• T(u)=A+B(u) 

being an element of 2(Ho'(a,b), H'(a, b)) with 

- II T (U)II(j1o'a.b,lfo,b)	2	 .•	 (11) 

is invertible and it yields 

T(u)'II(H-(o.b).fl.'(a,b)) '	2 

for any fixed u € Ua. This is a consequence of the estimate	 S - 

H(y, y) + 17.(Y, y) = Ily II 2 + fu(x) y'(x) y(x) dx 

IP y I! 2 - Iy'II IIYII	IIy II 2 -	( II012 + IIyI2) 

=	IIyI1 i 2 Vu € Ua, Vy € H01 (a, b)	 (12) 

showing the coercitivity of the bilinear form H(, ) +	.) for any fixed control 
U E Uad. 

Finally, taking,into account that F defined in the last equation of (6) lies in Ii'(a, b) 
we conclude the following: For fixed u € Uad an element y € H01 (a, b) is a solution'to 
the boundary probleni (2) if and only if it solves the operator equation 

T(u) y = F,	T(u) =A + B(u),	 (13) 

where A, B. and Fare defined by (7, 9),-and (6), respectively. The above considerations 
lead to the known 

L e m m a 1: (i) For any adnizssible control nE U d there exists an unique weak solu-
tion y E H01 (a, b) to (2) related to that control.	 - 

(ii) It yields Ilyll	2 11/11 for any admissible control and any weak solution to (2). 

We have seen that our control problem (1-3) can be interpretedas a control prob- 

1cm in Banach spaces with H01 (a, b) as the state space and L2(a, b) or L°°(a, b) as the


• control space. The state equation is given in (13), the set of admissible controls in (3), 

and the cost functional in (1). In the section on uniqueness of optimal control and 

1.
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on optimality conditions, respectively, we shall work within the framework just 
described. However, dealing with existence of optimal control we have to consider the 
boundary value problem (2) more intensively. This will be done in the next section. 

3. Existence of Optimal Controls 

There are no difficulties in proving the existence of at least one optimal control to 
(1-3) if the given set of admissible controls is replaced, e.g., by a convex closed 
bounded subset of the Sobolev space Ii'(a, b); cf. [2, 4, 51. Under this assumption 
even the top-order coefficient in the differential equation may depend no9linearly 
on the control. However, if we take Uad as given in (3) it is impossible to prove a 
general existence theorem for such a coefficient control problem. We refer to paper 
[8] where some. related counterexamples are given. We mntion also Theorem 1.17 
in [2] by means of which the existence of optimal controls can he proved provided the 
function h occuring in the cost functional (1) belongs to a certin dense subset of 
L2(a, b). However, since this subset is not described explicitly it is nearly impossible 
to decide in this way whether, an optimal control exists for a given h E L 2 (a, b). The 
aim of this section is to prove the existence of at least one optimal control for our 
model problem (1-3). 

First we have to deal again with the boundary value problem (2) for fixed u E Uad. 
The follo,wing lemma is essential for proving the existence of optimal controls. 

Lemma 2: (i) For fixed u E Uad the weak solution , to (2) lies in H2(a, b). 

	

(ii) There is a positive constant c not depending on i, u, and I such that 11Y112	cII/I 
for any admissible control and any weak solution to (2). 

To prove this lemma we study a.e.-solution of (2) which are defined as solutions 
y E Ii 0 (a, h), I1 0 (a, b) = 110 1 (a,,b) n 11 2 (a, b) of the operator equation 

A1 y = I,
	 (14) 

where A 1 is the second order differential operator given by 

A1y = —y"(x) + u(x) y'(x) + y(x),	y E H 0 (a, b). 

We have A 1 E (H 0 (d, b), L2 (a, b)) and 

Y 11YI12 with y = f3 Vy € I1 0 (a, b).	 (15) 

Obviously, if y is an a.e-solution to (2), then it is also a weak solution to (2). And vice 
versa, if y € 11 2(a, b) is a weak solution to (2), then y solves (2) almost everywhere in 
(a, b). Thus, because of Lemma 1 statement (i) is proved after showing t .hat (14) is 
Uniquely. solvable for arbitrary/ € L2 (a, b). 

LetA0 € 2(ll 0 (a, b), L2 (a, b)) be another second order differential operator defined 
by

A0y = —y"(x),	yE Ho(a, b). 

We have

-jJA0yJ	11y112 V E' H(a,b). 	 '	(16) 

In virtue of-[1O: p. 305, Satz 23.5] the operator A 0 is invertible, and its range is the 
whole L2 (a, b). In other words, A 0 has all the properties which we would like to have 

/ 
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orA 1 . Now we, introduce thç operator family A t E (Ho(a, b), L2(a, b)), t E [Q,1], by 
setting	 V 

A'=A0 + t(A 1 - A0),	t € [0, ii. 
The following two lemmas give basic properties of At needed to prove Lemma 2. 

Lern ma 3: There is a constant c> 1 which depends neither on I nor on ysuch that 

11Y112	c JA tyjJ Vt € [0, 11, Vu € Uad, V y € I-i 0 (a, b). 

Proof: The proof consists of four steps. Let  € h' 0 (a, b) be arbitrary, but fixed. 

1. Using Cauchy-Schwarz inequality and integrating by parts we get 

IIA ty lI IIII	(Ay, y) '= IIy '11 2 + • .t 11 y 11 2 + I I u(x) y'(x) y(x) dx. 

To estimate below the last term we make use of (3, 4) and the elementary inequality 

2ab :I- -- (ea2 + -- b2) Va, b € R, Ve 0	 (17) V 

with e =11. We obtain	V 

- IlAtyll IIII	
(	

-	IIy '11 2 + -- IIy M 2	c(t) IIyM2v	 ('18) 

with c0(i) = ( i -
	

k +	where the constant k is taken out from Friedrichs 
2) 

inequality. Since 

c0 (t)	d' = min k2 , 	(k2 + 1)}Vt € [0,11	
V / 

we have

d2 IIA ty II 2	11 y 11 2 Vt € [0, 1].	 ,	 ( 19) 

2. Combining (18) and'(19) it follows	 ,	V 

IAt II 2 
	

II112 + -	ii	(i -
	

IIy'1I2 

i.e., 

 

2d IlAty11 2	II y '11 2 Vt € [0, 1].	-	 V	

- 	 ( 20) 

3. We have Il Azy II 2 = II y "11 2 + 12 fty' + y11 2 - 2t(y", uy' + y). Applying again


	

Cachy-Schwarz iequalit'y and (17) with = 1/2 we find IJ Agy II 2	(i -
	

IIy"112 

	

+ 1(1.— 2) my' + y 11 2 and, consequently, ' IIA,yII 2 + 2t Iuy' + y I1 2	(i -	IIy"11 2. V 
V	 1 

Keeping in mind I € [0, 1] we get JJAgy 2 + 2 uy' + y112 -- J y" I2. We apply 
(19, 20)to IIuy ' + yll and obtain	

V - 

IIuy' H- y 11 2	(II y 'lI -f- Iy II) 2	2(IIy '11 2 4- 11y 11 2 )	2d(2 -f- d) I IAl y11 2 ,	- 
i.e.;

 

2(1 + 4d(2 + d)) It A ty lI 2	II y "11 2 Vt € [0, 11.	'	 (21) 

/
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4. Finally, adding (19-21) and extracting the root on both sides we obtain the. 
desired inequality with the constant c 42 + 18d + 9d2 >' I I 

Lemma 4: 1/for a chosen parameter t 0 E O, 1) the operator evation 
Aty=f	 .	 .	.	( 22). 

is uniquely solvablè in iI 0 (a, b) for any / E L2(a,b), then it has the same property for 
any parameter t € [to, t 0 + .t i l n [0, 1], where t 1 = 1/2c(l ± y) with the constants y 
and c introduced in (15) and Lemma 2, respectively. 

Proof: We write A, in the form 'A, = A,, + (t - t0) ( A 1 - A0) so that (22) is equi-
valent to  

A,,y + (t— to) (A 1 — AO) y=/.	. .	. 

Since by assumption the inverse of A t for. t ='t0 exists and its range coincides with all 
of L2(a, b) the last equation in it•s'turn is equivalent to the fixed point equation• 

B,y=y 
with  

B,y =A/ - (t - t0)A'- 1 (A 1 - A0) y,	y €H 0 (a, b). 
B, is for any t E [10 , t0 + £fl n [0, 1] a contracting mapping in 11 0(a, b) because of 

jjBj y - B,z 2	(t - t0) II A 'I (Va.b.H,',(a.b)) (IIA 1(y - z)j -f- jA0(y - ;) II)


1 1c(1 + y) IIY - z112 Vy, z  H 0 (a, b), 
where we have used (15, 16), and the inequality for t = t0 proved in Lemma 3. By 
Banach Fixed Point Theorem the statement follow I 

We may give now the proof of Lemma 2: For .t = 0 the operator equation (22) 
reduces toA0y = f. As we have stated above this equation is uniquely solvable in 
I1 0 (a, b) for each / E L2(a, b). Hence, by Lemma 4 the operator equation (22) has 
the same property for any t € [0, t1 ]. Putting now t0 = 1 1 , we see this is also true for 
any t € .[t 1 , 2t 1 ]. Continueing this procedure we come aftr a finite number of steps to 
an interval which contains t 1. This means, the operator equation A 1y = / is uni-
quely solvable in B 0 (a, b) for arbitrary / € L2(a, b), and the first assertion (i) of 
Lemma 2 is proved. The second statement (ii) follows immediately from Lemma 3 for 
t=1• 

After this preparations we are ready to prove the wanted existence theorem for our 
control problem.	 -. 

Existence Theorem: For any parameters e > 0 and	Othere is at least one op. 4i-




mal pair {Yo, u0} E .H01 (a, b) x L2 (a, b)'to the control problem, (1-3). 

Proof We may follow the scheme given byWeierstrass Theoiem. Let {{y, i,,}} 
H0 1 (u, b) xL2 (a, b) be a minimizing sequence of J, i.e., 

lim J(y ) u) = inf J(y, U); . u € U 	'and y € H01 (u, b) 
S. 

with	 . 

J7(y 1 z) ±'Hu(yn, z) = (F,z) Vz € 1101(a,.b),, .n = 1, 2, ...	., •..	(23 
'We notice that Uad is bounded and, closed and convex in L2(a, b), that {y}' 
is a bounded sequence in 112 (a, b) by Lemma 2, and that, the imbedding of H2(a, b)
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into H'(a, b) is completely continuous. Thus, without loss of generality, we may 
assume 

-	 '110 weak* in L2 (a, b), yn - Yo strong in H0 1 (a, b). 

As n-* oo in (23) we see, Yo € H01 (a, b) is the weak solution of (2) corresponding to 
control u0. Since uo belongs to Uad the pair {Yo, u0 } is admissible. The simple structure 
of-cost functional J implies 

urn J(y, u,,).	i(y0,'u0) 

from which follows that the constructed pair {yo, u0 } solves the control problem 
(1-3) I	

0 

4. Uniqueness of Optimal Control 

In this section we are concerned with the problem of uniqueness of optimal control 
to (1-3). This important question has been tackled with success, e.g., in [1,4,5,7] 
for different types of operator equations as state equation. However, none of the 
results found in these papers are just applicable to our special control problem (1-3), 
or say (1, 13, 3). In particular, we cannot use the uniqueness theorem due to BRUCK-
NER [1] since the operator B defined in (9, 6) is not coercive. Nevertheless, as the 
following shows we may proceed along the lines of Bruckner's paper. We remark that 
on the basis of'[ 1, 4, 51 one can obtain an uniqueness.theorem if the control occurs in 
all coefficients of the differential operator, i.e., also in the top-order coefficient: This 
is very remarkable. 

First we prove the uniqueness of optimal control to (1-3) under the assumption 
that a certain relation between the given data is satisfied. Afterwards we give in the 
general case an upper bound for the diameter of' the set of optimal controls.  

Uniqueness Theorem: If the inequality 
•	

-> 16(b - a) (211/Il ± IgID H/Il e	 (24 

holds, then the control problem 1 —3) has not more than one solution. 

Proof: It suffices to show the strong convexity of the cost functional (1) if we 
regard it as a functional defined on Uad. (This makes sense since y depends on u.) For 
this we have to prove various auxiliary inequalities. 

1. Because of	
0 

	

x	 0	 I 

Iz(x)I = 
f z+(x) dx	31b - a j' 	jib - a lIzill Vx € (a, b], Vz € IIo'(a, b)


and, hence, 

l(y, z) I ^ 3/b - a lIzIi) 11	 lu(x) i/'(x) I dx	j/b - a IIuII IIII i IIi 

we get  
KB(u) ij, z)	3/b - a 1jull Ilylli lIzIli Vu € L2(a, b), V y, z E 1101 (a, b).	(25) 

2. Let y0 yj E H01 (a, b) be the uniqie seak solutions to (2) corresponding to po, a1 
€ Uo, respectively. In virtue of (12) we have	- 

	

- 'lIyo — ,yiIli2	2(1(uo) (Yo - Yi), Yo	yj).
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Using 1(u 0) Yo =,T(u 1 ) y(= F), (13), and (25) one obtains 

lYo - Y11 2	2(B(uj - u0) Yi Yo - Yi)	2 3/b -, a Iluo, - ujil 11y,111 il yo - Yii• 
Together with the inequality from Lemma iwe get 

IIYO - yjjjj	4 3/b - a JjfjJ lu - u lI Vu0 , 1 E Uad .	 (26) 
3. Let y1 E 1101 (a, b) be the unique Weak solution of (2) corresponding to u1 = (1 - 2) u0 

+ Au 1 E Uad, VA E [0, 1]. (YA does not equal (1 - A) Yo + ).y!) Taking into account 
I(u) y = T(u0) Yo = T(u 1 ) y, (13), and u0 - u4 = 2(u0 - u1 ), u1 -. = —(1 - 2) 
X (u - u) we find the identity  

1(u4 ) (V), - (1 - 1.) Yo - Ay) = 2(1 - A) B(u0 - u 1 ) (Yo - Yi). 
In virtue of (12, 25) and (M) It follows from this 

fr/a - (1' - A) Yo - AYilii2 

^5 22(1 - A) (B(u0 - u 1 ) (Yo - Y1), Y2	(1 - 2) Yo - AYI 

< 22(1 - A) 3/b - a Jju0	u111 liYo - yiili llya - (1 - A) Yo - Ayilli 
82(1 - A) (b - a) li/Il iiuo - u112 ll ya - (1 - ) Yo - 2y1jj1 

or

lya - (1 - 2) Yo - ).y1	8A(1 - 2) (b - ) Il/il ll Uo - U1 11 2 V.,u0 , 1 E Uad, 
•	VA E [0, 1],	 S	 (27) 

- because Ily ll	11Y11 1 Vy E H'(a, b). 

4. We consider now the cost functional. Obviously, it holds 
(1— A) iin - hj + ). liu —h11 2 - ilua - h11 2 = 2(1 - 2) iu - U1 11 2 > ) 

•	Vu0, 1 , h € L2(a, b), VAE [0, 1].	 (28)

So we have 

(1 - 2)11yo- g 11 2 + A j yj - g 11 2 - llYA - g 11 2	11( 1 - A) Yo + AYi - 
•	 .	 - llya - g112. 

The right-hand side may be written as ((1 - 2) Yo + 2Yi + YA	2q, (.1	A) Yo + A - ya) and by Cauch y-Schwarz inequality, triangel inequality, and (27) the 
inequality becomes 

(1 —2) ilyo —g11 2 + Aly1 - g 11 2 - 1 y1 - gil2 

•	 ,	 (0—A)y0+).y1 + ya —2g,(i —A)yo+s).yi_y4) 

—2(y - g, (1 - A) Yo + 41 - ya)	 (29), 

- 162(1 - A) (b ' a) (2 lI/li + illI) il/Il IIuo - U111 2'	 (30) 

Vu0,1 € Uad, VA ,E [0, 1].	
5 

Considering (28, 30) we see that	 S 

(1— A) J(y0, u0 ) + AJ(y1 , u1) - J(ya, u4) 
• -	 ^ 2(1 —2) (a - 16(b - a) (211/li + lgll) il/ll e) lluo - 11.1!12.	 (31)

/
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In other words, J regarded as a functional on UOd L2 (a, b) is strongly convex- pro-
vided (24) is fulfilled. Thus, th6 theorem is proved U 

Theoreni: The inequality	 .€

IPuo - u ^ 16ô's 1/b - a (2 IIf + Ig ID Il/Il 
holds for any two optimal controls u01 E Uad to (1-3). 

Proof: Let u0, u 1 € Uad be two distinct optimal controls to (1-3); and let u, yo;yi, 
Y1 have the same meaning as in the proof of the previous theorem. Then from (26) it 
follows	-	 - 

— yoII -L 4 1/b - a 11fli IIu2 - uoII = 42 1/b - a /fJ JIu - uIJ, 

-	4 JIb - a JJfJJ IIua -	= 4(1 - 2)1/b - a 11fli IIuo - 
and, hence, via Ilyll	Ilyll, valid for every y E H0 1 (a, b) and via tiangei inequality 

IIy - (1 - 2) Yo' - )y 11	(1 - A) IIya - YoMi + A II	Ylh 
< 82(1 - A) 1/b - a JJ/	-	 . 

Applying this inequality, (29), and J(g 0, u0) = J(y1 , u 1 ) = inf J(y, u) we get 
J(y0, u0) - i(y1 , u1 )	2(1 —2) d jJu0 - ui ll VA .€ [0, 1] 

with d = ô Iluo - u111 - 16e Jib —,q .(2 ItII + u gh) 11fil. Supposed to be strictly greater 
- than zero one gets,  

J(y0 , u0) > J(y1 , Ui) V2 € (0, 1)	 - 
which contradicts the optimality of u0 and thus d 01	. 

5. Optimality Conditions 

In the last section we want to formulate optimality conditions for our control prob- 
lem. We work within in the framework given by its reformulation (1, 13, 3). There 
is a lot of papers dealing with optimality conditions for such control problems in -' 
Banach spaces. Here we rely on paper [9] which is an offspring of the work done by 
V. WOLFERSDORF and GOEBEL [2, 31; we refer to [11] where in the introductory sec-
tion one may find a short summary of the' basic results. After considerable adequate 
simplifications the needed result can be described as follows. 

Let Y, Z, U be real Banach spaces, Uad CZ U be a non-emty subset, I bean opera-
tor acting on the whole space Y x U with values in Z, and J be a real-valued functio-
nal which is also defined on the whole Y x U. Consider the control problem 

infJ(y, u) subject to u € Uad,	T(y, u) = 0.	 (33) 
Let (Yo, uol be optimal for (33). We assume: 

Hi: Uad is convex. 
112: T is of the form  

T(g,u)=Ay---B(u)y_F, 

where A € 2(Y, Z), B(i) E 3(Y, Z) Vu E U and B( .)y E (U, Z) Vy € Y, and 
F € Z is fixed. A + B(u) € 2(Y, Z)- is invertible for any u €\Uad.  

113: J is Fréchet-differentiable at { y , U0 .	 -
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The latter -iiiéans the existence of elements J,° € * and J,° € U', called partial 
derivatives of J with respect to y and u, respectively, at {yo, u0 , such that 

J(y0 ± y, vo ± u) - J(y0, u0) = (Jo, y) + Ki °, u) + R(y, u)	 (34) 

with R(y, u) = o (Iy lI + h uh) as Ily ll ± huh --* 0. Here (., • denotes the pairing be-
tween the corresponding spaces. 

We quote the necessary optimality condition for problem (33) as 

Lenima 5 (cf. [9, 2] or [111): Let {yo, u0j be optimal to (33) and let 111 —113 be ful-
filled. Then 

(i) Uo € Uad,AY0 + B(n 0 ) Yo = F; 

(ii) (J°, 'u - u0) + (z0, B(u!__ u0) Yo	0 Vu € Uad,	 (35) 

where zo € Z* ,called ad joint state, is the unique solution of 

A*z + B(uo)*z =J,O.	 (36) 

On the basis of this lemma we show the following 

Necessary Optiniality Condition: Let {yo, u0) E. H0 1 (a, b) x L2 (a, b) be an 
optimal pair to (1-3). Then it yields:	 - 

• (i) 11 0 € Uad and Yo EH01 (a, b) is the weak solution of (2) with it = U0. 

(ii) [yo'x zo(x)+ 26(uo(x) - h(x))] (v - 'u;(x))	o 
for all real numbers v with v € [(x), 2 (x)]	 (37) 
and almost all x€(a,b), 

where z0 € 11 01 (a, b) is the unique weak solution of the boundary value problem 

—(dldx) (z'(x) + u0(x) z(x)) + z(x) = _2,-(yo(x) - g(x)), x € a, b, 
z(a) = z(b) = 0.	 J - 

Proof: We put Y 1101 (a, b), Z = H 1(a, b), U = L2 (a, b) and let Ugd, J, A, B, 
and F be defined as in (3, 1, 7, 9) and (6), respectively. Tt is easily checked that the 
problem (1, 13, 3) fulfils hypotheses. III —113. In particular, we have 

(J00, y) = 2-(yo - g, y) V y € .F1 01 (a, b), 

KJ °, u) = 26(u0 - h, u) Vu E'L2(a, b) 

and (35) reads as 

-. / H °(x) (u(x)	U(X)) dx ^ 0 Vu € Uad	 (39) 

with the function H O (x) = y0'(x) z0(x) + 26(uo(x) - h(x)), x € (a, b), and z0 € H0 1 (a, h) 
is the unique solution of (38) (cf. (36, 7, 9)). (37) follows from (39) via a lemma due 
to KRASNOSELSKI [6: p. 343] I 

The next theorem shows that under certain circumstances condition (37) is not 
only necessary but also sufficient for an admissible pair to be optimal for (1-3).
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Sufficient Optimality Condition: Let the following both assumptions be. 
sails/led: 

(i) 6 ^-_ 16(b - a) (2 P/Il ± u gh) IF/Il e, 
(ii) {Yo, uo) E H0 (a, b) x L 2(a, b) is an admissible pair to (1-3) for ühich (37) 

holds. 
Then{ yo, u 0} is optimal to the control pràblem (1-3). 
Proof: Let {y, uj E Ho'(a, b) >< L(a, b) be an arthtrary admissible pair to (1-3). 

We take the notations used in the proof of the Uniqueness Theorem. Assumption (i), 
(31), and (34)assure 

J(y 11 u 1 ) - J(y0) u0)	2" 1 0(yi , u1 ) - J(y0 , u0 ))	 . 

= 2 1 0(y0 + (y - Yo), u0 + 2(u 1 - u0 ))	J( 0 u0)) 
2l(40, Ya - Yo) ± (J 0,U i - u0) + R (2) V2 E 10, 11 

with 11(2)= 21R(yj -	)(u j - u0)). Using (36) one obtains 

(J 00 , Y).	Yo) =	(z0 , (A ± B(uo)) (yi - Yo))	 :. 
= —(z0, B(u0 - u1) ) = 2(zo, B(u 1 - u0)y1) 

and, hence,. 

J(y 1 , u 1 ) - J( 0 , u0 )	(J 0, Ui — u0) + (z0, B(4 1 - u0) 

' + R(2)v2€ [0, 1]. 
If we let 2 - +0 it follows 

J(y1 , u 1 ) - J(y0, u0)	KJ °, u i - u0) + z0 , B(u 1 — u0 ) y) 

for (32). The right -hand side of this inequality is greater than or equsI to zero since 
(37) with v = u 1 (x) implies (39), i.e. (35), with u1 instead of u This proves the 
theorem I	 - 
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