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Coefficient Control in a. Linear Second Order Ordinary Differential Equaﬁon

M. GoeBEL and NEGASH BEGASHAW

Wir betrachten ein Steuerproblem, bei dem der Zustand durch die Lésung einer linearen Rand-
wertaufgabe fiir eine gewohnliche Differentialgleichung zweiter Ordnung beschrieben wird. Der
Koeffizient der ersten Ableitung in der Zustandsgleichung ist dabei die Steuerfunktion. Es wird
die Existenz optimaler Steuerungen bewiesen und deren Eindeutigkeit diskutiert. Des weiteren
werden sowohl notwcndlge als auch hinreichende Optimalititsbedingungen formuliert.

PaccmaTpuBaerca 3amaya ONTUMANLHOTO YNPABJIEHHMA, NMPH KOTOpPOi coc'romme ‘ABJIAETCA
pewieneM JIMHEHHON FPAHMUYHON 3a7auuM RAA OOBIKHOBEHHOro IuddepeHnHaNbLHOrO ypas-
HeHHA BTOPOro MOPANKA. VYnpasaenne — Ko3@PUUUEHT MepBoif NPOU3BOXHOIT YpaBHEHUA,
HMokaasiBaeTcH CyULeCTBOBdHlle ONTHMANBLHOrO YIPABJIEHUA Il U3YUAETCH ero eiHCTBEHHOCTD.
. Kpose Toro GopMyIMPYIOTCA B HEOOXOMIMEE H JOCTATOUNbIE ycnomm ONTHMAIBHOCTH. .

In this ,p&per we deal with a control problem whose behaviour is descnbed by the solution of a
linear boundary value problem of a second order ordinary differential equation. The coefficient

of the first derivative in the state equation is assumed to be the control. We prove the existence
of optimal control and discuss its uniqueness.-Moreover, we formulate both necessary and suffi- *

- cient optimality conditions. : . . S
. . - N .

1. Introductlon , ’ . - _‘

The present paper is devoted to the study of an optlmal control problem for a second
" order ordinary differential equation. The characteristic feature of the problem is the
occurence of the control as the coefficient of the first derivative in the state equation.
Both existence of optimal controls is proved and a necessary optimality condition is
given without any additional rcqmrunents Uniqueness of optimal control is shown
and a sufficient optimality condition is formulated under assumption that the given
data arein a certain relation to each other. It is worthwhile to hint at the fact that
this assumption can be easily fulfilled by appropriate choice of the paraméters e and
4 in the cost functional (1). We remark that our problem is related to an inverse prob-
lem in Geophysms about which we shall report in a later paper. N

We start with the statement of the problem, and then we c¢onsider the questions
mentioned above in separate paragraphs. In each of them we begin with some rema.rks
concérning the method applied in it and relevant literature.

2. Problem Statement, Preliminaries

Throughout the whole paper we use the following notations. R is the set of all real
numbers, (a, b) is 2 bounded interval. -L%(a, b) with'the scalar product (-, -) and the
norm |||, and L*(a; b) with the norm || Hoo are the usual Lebesgue spaces of real-
‘valued functions defined on (a, b). H™(a, b) is the known Sobolev space of order m. Its
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2 M. GoEBEL and NEGASH BEGASHAW -

scalar product and norm will be denoted by (., ),,, and ||-|lm, respectively. Ilol(a b)
is the subspace of H'(a, b) whose elements vanish at the ends of the interval («, b).
H~Y(a,b) is the dual space of Hy'(a, b); (-, -) will be used for the generalized scalar
product between these both spaces. EE(X Y) stands for the Banach space of all linear

bounded mappings defmcd on’ the whole Banach space X with values in another
Banach space Y. .

The optimal control problem in question is the following:

Cinfly,u), M) =elly — gl + 8 fu — I, )
subject to ‘ . . A
-y () ]-L_u(x) Y'(2) + yx) = f(z), =€ (a,bd) } @
o yla) = ?/(b) 0, R _ : .
and o
" u € Usg = {uw € L¥a, b) | &,(x) S u(x) < &(x)ae z € (a,, ', » (3’)

where the functions f, g, & € L¥(a, b) and the constants ¢ > 0,0 = 0 are given‘as well
as the functions &, ; € L*(a, b) which are supposed to fulfil the inequality

—1SH@) S&HE) <1 ae.zc(ab). @)

We start the consideration of the control problem (1—-3) w1th rewriting the bound-
ary value problem (2) in form of an operator equation. To this end we recall that for
any fixed u € Uyq an elemept y € Hyl(a, b) is said to be weak solution to (2) if

I(y,z) + 1y, 2) = (F,2) Vz € Ho'a,b), G
where . - i , ' '
A . . .
gy = [ 2() + i) w@2) dz = (y, 2,
b i N \ .
Ty, 2) = [ w@) y'(@) 2(=) dz, - e

a

* (F2) = f/(i) #(z) dz = (/. 2).

Both 71¢(-, )and II(-, ) are bilinear forms defined on Hg(a, b) X Hy(a, b) From the

generalized Lax- \'hlgram Theorem a,nd from )

0@y = e, 1Ty, 2) < vl Il Vo, 2 € H(a, b)
it follows that the linear 'opera‘torA: Hl(a, b) - H Y(a, b) induced by /1(-, -) via
(Ay, z) = I1(y, ‘2/) Yy, z € Hy'(a,b) ' (7)

is bopnded and inve‘rtv‘ible; we have . _
- NAllg(a @b a1 @ b) s 1A “2 Yo, Hiwm) = 1. ' (8 _

~ (In (8) we could write the equahty sign, because A is the duality operator of Hyl(a, b).)
But the bilinear form J7,(-, -) 1s only bounded because

My, 2) = IIuIIoo ly il = flyll Ilzlh Vue€ Usi, VY, 2 € Ho’(a b)

N
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and not coercive on -H!(a, b). The latter can be seen in case of constant control u(x):
= %, from the identity '

X o
- 2Ly, y) = 2uo f ¥ (@) y(@) de = ufy’(d) — y¥@) = 0

which is obvnousl) valid for any y € Hyl(a, b). This means concermng the linear
operator B(u): Hy(a, b) - H Ya, b) mduced by : ’

C(B)y,2) =My, 2) Yy 2 € Ho'(a; ) N ()
we ~may state only its boundedness and the estimate |
||B(u)[]2(ﬂ.'(a o.u-a) = 1. C . R (10)

Here u is an arbltrary element belonging to Uaq. Desplte the last fact the operator
T(u) =A + B(u) .

being an element of S(Hol(a,'b), H Ya, b)) with

”T(u)l|£(m‘(a.o).11-‘(a.b)) § 2 E . o ’ (11)

_is invertible and it yields

(T () Yle(a-1 @b Hi@, o)) <2

for any fixed u € Uyq. ThlS is & consequence of the estimate -

N . -

My, y) + M, y) = |lyl® + f u(z) y'(x) y(x) dx

’ ' 1 ! '\ ’
Z llylh? — 1yl iyl = llglh® — 5 (ly'I* + Nl®)
Vo P

= 3 Iyl Wu € Uss, Vy € Ho'(a, b) (12)
showing the coercmwty of the bllmca.r form I7(-, -) + I, ) for any fixed control
u € Uaq.

‘Finally, taking,into account that F defined in the last equation of (6) lies in H~(a, b)
we conclude the following: For fixed « € U,q an element y € Hy!(a, b) is a solution'to
the boundary problem (2) if and only if it so!ves the operator equation _

Twy=F, T =A+ B, o | um
where A, B'and F are defined by (7, 9) -and (6), respectlvely The above consndcratxons
lead to the known

Lemma 1: (i) For any admzsszble control u-€ Uyq there exists an umque weak solu-
tion y € Hgl(a, b) to (2) related to that control. )
(ii) 1t yrelds |ly|l, = 2 ||fll for any admissible control and uny weak solution to (2).

We have seen that our control problem (1—3) can be interpreted.as a control prob-
lem in Banach spaces with Hgl(«, b) as the state space and L%(a, b) or L®(«, b) as the
control space. The state equation is given in (13), the set of admissible controls in (3),
and the cost functional in (1). In the section on uniqueness of optimal control and
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on optimality conditions, respectively, we shall work within the framework just
described. However, dealing with existence of optimal control we have to consider the
boundary value problem (2) more intensively. This will be done in the next section.

3. Existence of Optlmal Controls

-

There are no dlfflcultlcs in proving the existence of at least one optimal control to
(1—3) if the given set of admissible controls is replaced, e.g., by a convex closed
boundéd subset of the Sobolev space H(a, b); cf. [2, 4, 5]. Under this assumption-
even the top-order coefficient in the differential equation may depend nonlinearly
on the control. However, if we take Uaq as given in (3) it is impossible to prove a
general existence theorem for such a coefficient control problem. We refer to paper
[8] where 'some. related counterexamples arc given. We mention also Theorem 1.17
in [2] by means of which the existence of optimal controls can be proved provided the
. function % occuring in the cost functional (1) belongs to a certain dense.subset of
L2(a, b). However, since this subset is not described explicitly it is nearly impossible
to decide in this way whether. an optimal control exists for a given & € L*(a, b). The
aim of this section is to prove the existence of at least one optimal control for our
model problem (1—3).

First we have to deal again with the boundary value problem (2) for fixed u € U,q.
The following lemma is essential for proving the existence of optimal controls.

Lem ma2: (i) For fixéd u € Uyqy the weak solution to (2) lies ©n H(a, b).
" (ii) There is a positive constant ¢ not depending on ¥y, u, and f such that “y]]2 = c|Ifl
for any admassible control and any weak solution to (2).

To prove this Jemma we study a.e.-solution of (2) whlch are defined as solutlons
"~y € Hiy(n, by, HEo(a, b) = Hy\(a, b) n 112(a b) of the opcmtor cquation

Ay=1f - (14)
where A, is the second order differential operator given by
D Ay = '@+ u@ @) Sy, v € Higlab).
We have A, € §(H}ola, b), 1 . 12(a, b)) and
Al S llyle with y = V3 Vy ¢ Higla, b). (15)

Obviously, if y is an'a.e.-solution to (2), then it is also a weak solution to (2). And vice
versa, if y € H%(a, b) is a weak solution to (2), then y solves (2) almost everywhere in
(a, b). Thus, because of Lemma 1 statement (i) is proved after showing that (14) is
" uniquely. solvable for arbitrary f € L¥a, b).

LetA, € S(H (a, b), L¥(a, b ) be anothcr second order dlfferentla.l operator defmed
. by ' AN :

AOy = _?/”(x) > Yy E.H(z).o(a': b)'.

We have '

Ayl = “?/”2 Vy € Hio(a, b) R ' (16)

. In v1rtue of [10 p- 305, Sa,tz 23.5] the opera,tor A, is Jnvertlble, and its range. is the
whole ‘L(a, b). In other words, A, has all the properties which we wounld like to have

- /
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Coefficient Control in Differential Equations 5

for A1 Now we. introduce the opera.tor faml]y A € E(Hoo(a b), L(a, b)) te [0 1] by
ctbmg :

=A, + A, — A, 56[0 1].
. The followmg two lemmas glve basic properties of A; needed to prove Lemma 2.

‘Lemma 3: There is a constant ¢ > 1 which depends neither on t norony. such t}mt .
l1ylle < ¢ Ayl Vie[0,1], Vu€Uw, Vy€Hiola, b

’ Proof: The proof consists of four steps. Let y € H3o(a, b) be arbltra.ry, but fixed.
1. Using Cauchy-Schwarz inequality and integrating by parts we get '

: L b : .
Al iyl = (Ag, y) =y + ¢yl +¢ [ u(r),y'(_x) y(z) de. o
To estimz'a,te below the last term we make use of (3, 4) and the c]e‘menta'r'); inequality
2ab = — (éaz + %b2) Va,b€R, Vo0 a an.
with ¢ =,1. We obtain . . | |
Al 2 (1= ) I+ 5 I 2 ) T 8)
with go(i) = (1 — é) k% + L, where the 'c‘zonstant k is taker} out from Ffiedricl}s
" inequality. Since . - : ‘ ‘

co(zj >d! = min{ 7 ® } Ve e [0, 1]

we have
@Al = iR Ve e [0, 1) - P (19)
2. Combining (18) and (19) it follows ‘
' t 1 - -
}HI"’«:?/II2 = (1 — —) Iy + & HyII2 = (1_ — 3) lly'fi* = 3 ly'lI%,
2d IlAzsz Z |y Ve e [0 1] o ’ -(20)

3. We have IAgIE = lly"II? + & lluy” + Yl — 2y, uy' + y) Applying again
Cauchy Schwarz mcquahty and (17) with ¢ = 1/2 we find [|Ag|2 = (1 — —) lly" |12

+ t(t — 2) lluy’ + yl*_and, consequently, llAsy112 + 2wy +ylIF = (1 — 5) lly”"I12. .

Keeping in mind t€ [0, 1] we get'||Ayl? +2 luy’ + yl2 = = ! ||y”||2 We apply

(19, 20) to {luy’ + il and obtain ) :
» luy’, + 92 < (Y1l + Ty)? < 2(y'l12 + 1917 < 242 + @) IAgl?,

el : . : ‘ ; :

21 4 442 + D) IAYIE = lly"II2 V¢ € [0, 1]. o (21)

LN
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6 M. GoeBEL and NEGASH BEGASHAW -

4. Finally, adding (19— 21) and extracting the root on both sides we obtam the.
desired inequality with the constanb c = V2 18 4+ 942 > 11 '

Lemma 4: If for a chosen parameter Ly € [0, 1) the operator equation -
. . ‘ ) I
Ay =/

, 18 uniquely solvable in H(a, b) for am/ / € L*a,'d), then 1t has the sume property for _
"any parameter tc [to, Lo + L0 [0, 1], where t, = 1/2¢(1 + y) with the constants y
and ¢ introduced i (15) and Lemma 2, respectively.

(22) .-

Proof We write A in the form A, = A,a 4 (¢ — ty) (A, — Ay) so t-hat'(22) is equi-r
. v .

valent to o v
Aloy + (t — 1) (A — Ao) y=7/.

Smce by assumptlon the inverse of A, for.t = ¢, exists and its range coincides with all
of L¥a, b) the last equatlon in 1ts turn is equlvalent to the fixed point equatlon

By = =Y
with ’ R

o Bt?/ =AY — (t — AN A — Ay y, y € Hiola, b).
‘ B, is for any t € [to, L + .tl] n [0, 1] a contracting mapping in HZ(a, b) because of
%w—BMLdeoMTWmmmWMW&@¥MHWNW—@M
= he(l +-p) ly — Il V% z€ Hiola,b),

whexe we have used (15, 16), and the mequallty for ¢t = ¢, proved in Lemma 3. By
Banach Fixed Pomb Theorem the sta.tement follows 1

We may glve now the proof of Lémma 2: For.f = 0 the operator equatlon (22)
reduces to Agy = f. As we have stated above this equation is uniquely solvable in
H3(a, b) for each f € L*a, b). Hence, by Lemma 4 the operator equatlon (22) has
the same property for any ¢ ¢ [0, ¢,]. Puttmg now ¢, = ¢;, we see this is also true for
any ¢ € [{,, 2,]. Continueing this procedure we come after a finite number of steps to
an interval which contains ¢ = 1. This means, the operator equation Ay = f is-uni-
quely solvable in H}q(a, b) for atbitrary f € L%(a, b), and the first assertion (i) of
Lemma 2 is proved. The second sta,tcment (u) follows immediately from Lemma, 3 for
t=10

After this preparations we are ready to prove the wanted existence theorem for our

control problem.

Existence Theorem: For any pammctcrs e>0and 6= 0 there s ut leasl one optz-
" mal pazr {Jo, uoj € Hola, b) X L¥a, b)-to the control problem (1—=3). i

Proof: We' may follow the scheme glven by Welerstrass Theorem. Let {Yns w1}

< I]0 (u b) X L*a, b) be a mlmmmng sequence of J, ie.,

‘lim J(y,, u,,) mf J(y, u), | uy € Uy ‘and y,, € Ho (a b ,
n—>oo . v ( E o K
with : ' ; ' /

m%a+nu%.—wavwﬂww)n—12 @y

‘We notlce that U,q is bounded and closed and convex ln Lz(u b), that {y,}
i8, & bounded sequencc in H*a, b) by Lemma 2, and that the unbeddmg of H*a, b)

\
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into H'(a,b) is complete]y continuous. Thus, without loss of generallty, we may
‘assume

Uy = U weak* in L%*a, b), y, = y, strong in Hoi(fe, b).

As n,— oo in (23) we see, \yo € Hy\(a, b) is the weal\‘solution of (2) corresponding to
control %,. Since u, belongs to U,q the pair {y,, 1y} is adlmssnble The simple structure
of-cost functlonal J implies . )

hmJ(yn,u,.>>J<Jo,uo>- o

from which follows. that the constructed pair {y,, 'uo} solves the control problem
(1—‘3) 1 )

4, Uniquencss‘ of Optimal Control

In this section we are concerned with the problem of uniqueness of op’olmal control

o (1—3). This important question has been tackled with success, e.g., in (1,4, 5, 7]
for different types of operator equations as state equation. However, none of the
" results found in these papers are just applicable to our special control problem (1—3),
or say (1, 13, 3). In particular, we cdnnot use the umqueness theorem due ‘to' BRUCK-
NER [1] since the operator B defined in (9, 6) is not coercive. ‘'Nevertheless, as the
following shows we may proceed along the lines of Bruckner’s paper. We remark that -
" on the basis of [1, 4, 5] one can obtain an umqueness theorem if the control occurs in.
all coefficients of the dlfferentlal operator, i.e., also in the top-order coefficient: This -
is very remarkable.

First we prove the uniqueness of optnnal control to (1—3) under the assumptlon
that a certain relation between the given data is satisfied. Afterwards we give in the -
genera.l case an upper bound for the diameter of the set of optimal controls.

Umqueness Theorem: I/ the mequalzty i
0> 16(b —a) 2 IAl + lgl) Il e P C(2h)

holds, then lke control problem (1—3) has not more than one soiutzon '

Proof: Tt suffices to show the strong convexity of the cost functional (1) if we
regard it as a functional defined on U,q4. (This makes sense since y depends on .) For
this we have to prove various auxiliary mequahtles

‘1. Because of
’ |

Z(z)dz| Vb — a2l < Vb — allasll VW € [a,0], Vz € Hol(a, b)

|z(z)| =
and, hence,

b -
\T,(y, 2l Vb — a el [ @) @) dz < Vb — a [l il ll

. a

we get ' o : ’
(B(w) y,2) = Vb — a|lull Iyl llzll, Vu € L¥a, b), Vy,z € Hol(a, b). (25)

2. Let yo; y1 € Hol(a, b) be the unique weak solutions to (2) correspondmg to %o, u,
€ Uag, respectively. In virtue of (12) we have CL ,

o — %illi® = 2(T(%o) (o — ¥1)s Yo — Y1) -
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- Using T(uo) yo = T(w,) y2(= F), (13), and (25) one obtains

llyo — 9lh® < XBws — u0) 41, %o — 91) < 2 Vb — a g — sl 4l llgo — vl

Together with the inequality from Lemma 1-we get

o~ valls < 4 Vb — a1 llug — all Vg € U S (26)

3.Lety, € Hy'(a,b) be the unique weak solution of (2) corresponding tou, = (1 — 2) uo'
+ Juy € Uag, V2 € [0, 1]. (y; does not equal (1 — 7) Yo + Ay,!) Taking into account
T(u) y, = T(ue) yo = T(ul), ¥y (13), and %y — u; = Mug — wy), uy — uy = —(1—2)
X (up — u;) we find the identity ‘

T (53— (1= 2 g0 — Aga) = A1 — 2) Blo — 1) (yo — ).

In virtue of (12, 25) and (26) it follows from this _ .
v — (= 2)yo — 2gall® . ' .
< 24(1 — 3) (Blatg — 1) (Yo — y2)s ys — (1 — 2) yo — A1)
< 221 = A V5= a o = wll o — vl I — (1 — ) go — gl

< 81— 2) (b — @) Il lhto — w2 iy — (1 — 2) 5o — Al
or ! ’ ! o : {

lya — (1 = 2) yo — Ayall < 841 — 2) (b — a) [Ifl] lluo — u1||2‘ Vo1 € U,
V2 ¢€|[0,1], : , A (27)
- beeause [lyll < [l Vy € Hol(a, b). | |
4. We consider now the cost functional. Obviously, it holds

(1 — &) |y — RIZ + 2 floey — B — g — BfE = AL — 2) flug — w22 0

Vs, b€ L2(a,b), Vi€ [0,1]. . (28)
So we have ‘ : /
(=2 llgo = gIi* + 2 llys — gIF — llya — giF= (1 — A) yo + 4yy — g]?

‘ ~ gz — gl

The right-hand side may be written as ((1 — 1)' Yo + 2y +yi — 2g, (1 — 2 ¥

+ Ay1 — ¥) and by Cauchy-Schwarz inequality, triangel inequality, and (27) the
inequality becomes
(=2 llyo —glI* + A llys — gl* — ily2 — gIi? .
2 (=2 y0 + 241 + 2 — 20, (1 = 1) o+ — 1)
Z =2y~ g, (1= Do+ s — ) , (29) .
Z —162(1 — 4) (b — @) I/l + lgh) A1 TTtg — 2aff® ‘ (30)
© Vugy € Uy, V26 [0,1]. ' I
Considering (28, 30)' we sce that .
= ) w) + A, ) — Mg )

Z 21— ) (6 — 16(5 — a) (2 I/l + llgh Al €) g — 2. ' 31}

\
\
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In other words, J regarded as a functional on U,y L¥(a, ') is strongly convex pro-
vided (24) is fulfilled. Thus, the theorem is proved 8 - ‘ :

Theorem: T'he inequality
eto, < il < 16671 Vo — a (2 I/l + lgll) 1)
holds for any two optimal controls ito_l €U ad to (1—3).

Proof: Let uy, u, € U,q be two distinet optimal controls to (1—38); and let Uy, Yos Y1,
1 have the same meaning as in the proof of the previous theorem. Then from (26) it
follows ’ ‘

A

. . - (32)
lys = il < 4 Vo = a Il o — wall = 4(1 — 2) V5 — @ Il o — aul

and, hence, via |ly|| < [iyl, valid for every y € Hy(«, b) and via triangel inequality
lys = (1 — 2 yo = 253l < (1 = 2) llya — wolly + 21ly — vl
N S 8A1 ~ D Vb — allfl lluo — w,l..

-Applying this inequality, (29), and\ Iy, o) = Jyy, uy) = inf J(y, u) we get

s

o wo) — Ny, w) Z 21 — 2) d fJug — wyf| VA€ [0, 1]

withd = 6 |luy — wl| — 162 Vb —a (2 Il + gl ]l. Suppose.d to be strictly greater
- than zero one gets O ' ) . ‘

o wo) > Iy, w) VW2 E(O, 1) ) - -
which contradicts the optimality of u, and thusd <018

5. Optimality Conditions

In the last section we want to formulate optimality conditions for our control prob-
lem. We work within in the framework given by its reformulation (1, 13, 3). There

is a lot of papers dealing with optimality conditions for such control problems in

Banach spaces. Here we rely on paper [9] which is an offspring of the work done by
'v. WOLFERSDORF and GOEBEL [2, 3]; we refer to [11] where in the introductory sec-
tion one may find a short summary of the basic results. After considerable adequate
simplifications the needed result can be described as follows. A

.Let Y, Z, U be real Banach spaces, Uyqg < U be a non-emty subset, T be an opera:
tor acting on the whole space ¥ X U with values in Z, and J be a real-valued functio-
nal which is also defined on the whole ¥ x U. Consider the control problem

inf J(y, u) subject to wue€ Uy, T(y,u) =0. - (33)
Let {y,, 1} be optimal for (33). We assume: » ‘ '
H1: U,, is convex.
H2: T 7s of the form .
T(y, u) =Ay + B(u)y — F,

where A€ (7, Z), B(u’) €EUY, Z)VueU and B(-) y€ U, 2) \7/2/ €Y, and
Fe€ Zis fixed. A + B(u) € &Y, 2)is invertible for any u € Uaa. : :
H3: ) is Fréchet-differentiable at {y,, u,} . o
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The latter méans the existence of elements J,9 ¢ Y* and J,° € U*, called partial
derivatives of J with respect to y and u, respectively, at {y,, uo}, such that

J('z/O -+ Y, Uy + QL) - J(Z/o: 2;0 = <Ju0: Z/> + <J 6» u) + R(% u) ’ ’ (34)

with R(y, u) = o(|lyll + llll) as [yl 4 ||u|| — 0. Here ( -y denotes the palrmg be-
tween the corresponding spaces.
We quote the necessary optimality condition for problem (33) a

Lemma 5 (cf. [9, 2] or [11]): Let {yo, uo} be optimal to (33) and let H1—H3 be ful:
filled. Then ‘ ' ' '
(1) uo € Uag, Ayo + B(u) yo = F; ’ : 5
(1) (4% u — u) + (20, B(w'— %g) yo) Z 0 Vu € Ugq,. (35)
where z, € Z*, called adjoint state, is the unigue solution of

A*z + B(uo)*z = _jyo. . o ' _ (36’)

" On the basis of this lemma we show the followihg ]

Necessary Optimality Condition: Let’ {yo, %o} E.HO‘(((., b) x L¥(a,b) be an
optimal pazr lo (1—3). Then <t yields: g
(i) g € Uqa and y, €. H\(a, b) is the weak solutwn of (2) with w = u,.

(i) [y6'(%) 20(2) + 28(uol®) — A@))) (v — ugl@) Z0 - LT
~ for all real numbers v with v € [£)(2), &()] ’ 37)
and almost all x € (a, b),

where zo\é Ho\(«, b) is the unigue weak solution of the boundary value problem
\ .

(38)

—(d]d) (2 (@) + uol®) 2(z)) + 2(x) = —2(yo(2) — g(2)), = € a, b,
2(a) = 2(b) = 0. | -
Proof We put Y = H! (a b), Z = H Ya,b), U = L2(a b) and let Uy, J, A, B,
"and F.be defined as in (3, 1, 7, 9) and (6), respectively. It is easily checked that the -
problem (1, 13, 3) fulfils hypothcses.Hl —H3. In particular, we have

(% y) = 2¢e(yo — 9, 9) Vy € H'(a, b),
(u,u)——26u0—hu)\/uEL(a,b) ’ .

~and (35) reads as
. f Hz) (u(z) — ug(@)) dz = 0 Vu € U . (39)

with the function H%(z) = y,'(z) zo(x) —{— 26(u0( z) — k(x)) € (a, b), and z, € Hyl(a, b)
is the unique solution of (38) (cf. (36 9)) (37) follows from (39) via a lemma due
to K_RAS\OSELSKI [6: p. 34311

) 'l‘he next theorem shows that under certain circumstances condition (37) .is not
_only necessary but also sufficient for an admissible pair to be optimal for (1—3).

.
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Sufficient O,p'tima,lity Condition: Let the /ollowingj both assumptions be.
satisfred : : ) '
(i) 6= 16(b — a) (2 /Il + llgll) 171 , '
(1) {yo, uo} € Hyl(a, b) X L¥a, b) ¥s an admissible pair to (1—3) for which (37)
holds. ' ‘

. Tken_{;yo, uo} 25 optimal to the control problem (1—3)..

Proof: Let {y,, u,} € Hol(a, b) X L3(a, b) be an arHitrary admissible pair tb (1—3).
We take the notations used in the proof of the Uniqueness Theorem. Assumption (i),
(31), and (34).assure '

Wy ) — Iyo, wo) = 4~ I(a, wa) — J(o, uo))- ‘
= 27 (Myo + (31 — o), o + 2wy — u0)) + J(yo; uo))

= U0 g — o) F 0% — o) + R (A) V2 € [0, 1]
with R(2) = l“lR(yg — Yo, Ay — uo)). Using (36) one obtains

ds ?/); —Yo) = —<Zo, (A + B(uo)) (yz — ?/o)> ' N I

: = —(zq, ‘B(uo — w) y1) = Xzp, Blu, — “p)@/l)
and, hence,. - :

J(yl) ul) - '!(y0> uO) g <‘|u0’ Uy — 'LL0> + <20: B(ul - uo) 3/1>
v +RA) Vie[o,1).
If we let 2 — 4-0-it follows

' J(3/1»/'“1) — H(yo, uo) = (J.0, u, ~ ug) .+ (20, B(, —"Ug) Yo

~ for (32). The right-hand side of this inequality is greater than or equal to zero since
. (37) with v = u,(z) implies (39), i.c. (35), with u, instead of %. This proves the

theorem B . . . .

v
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