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Die Arhent,lst Approxnmatlonsclgenschaften fir. gewichtete ‘Sobolev- Slobodeckn] Riume ge-

widmet. .

Pabora nocsauwena cpoficrsam annpoxcu\iaumx B npoc'rpaucma'( tuna CoGonena-Cio6omen-
KOTO C BECaMu. .

The pa.per (‘iea-.ls with approximation properties.in weighted spaces of Sobolev-Slobodecki)
type. - - '

1. Definitions and Results

" Let M be a non-empty closed subset of the Euclidean-n-space R,. Let 2 be a domain
~in R, with Q = R, — M (we may assume, w1thout restriction of generallty, that M
is a subset of the boundary of Q,i.e: M — 02 = Q — Q; however this is not impor-
tant in the sequel). If = € R, then dist (z, M) = mf [z-— y| is the usual distance,
where the infimum is taken over al y € M. We mollify dist (z, M): There exists a
positive function dy(z) € C°(R, — M) and two positive numbers ¢, and ¢, with

 crdu(z) = dist (=, M) Scdu(x),  zeR, —M

“cf. the construction in [2: Remark 3.2.3/1], where dy(z) coincides essentially with

o7 (z) (in contrast to the construction given there we do not care about the behaviour
" of dpy(z) if |z| tends to mflmby, but this does not affect ourarguments) Letl < p< o0
and —oo < & < 0. If s is a non-negative integer then W48, ¢) is the collection of
" all complex_ dlstrlbutlons/ € D'(L2) such. that : Lo

AW 52, o)l =2(f I(D=) (x)l”dM‘ (o= leDp(z) dx)l/ﬂ<oo W

lalsSs\ o

hovlds If 0 < s = [s] 4 {s}, where [s] is an integer and .0 < {s} < 1'then Wi(Q, s)
‘is the collection of all complex distributions f € D’(£2) such that

Iif l Wi(£2, e)ll . . . . )
( f ldm"" (sl +lal(z) D= f(z). —dM‘“’ (#)+1al (47) D“f(?/)l i (‘iy),l_/'p'
|a|sm

|z — y|n+ilp

\ H

+ 1If Wp“'(-Q, e — {sf Pl < o0 » @
holds. These weighted Sobolev-Slobodeckij spaces are near to the spaces W82, 0%, 07)
in [2], where p~1(z) is essentmlly dy(x),u = —ecandv = u + sp: Eormu]a 3.2 ‘3/11)

1) The precedmg paper of this issue. T N . o : N
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(where the mlsprmt qu must be corrected by B3 ,), Theorems 1, 2, and 3 in 3.2.4.
The differences between the above spaces W, %2, ) and the spaces W, (%, o#, ¢")
are characterized by the different behaviour of g(z) and dy~(z) at infinity and that
~ we have 02 instead of M in[2]. However in what follows these differences are imma-
terial. We give a full proof of our main result and take over only some techmcalmes
- from [2: 3.2.3 and 3.2.4]. Obviously, W, #(£, ¢) is a Banach space. ’

Theorem: Let 1 < p < 00,8 > 0 and —oco < ¢ < oo. Then
(1] € W, ¢), supp f 0 M = 8) )
is dense in W (L2, ¢).

-

Remark 1: We recall thab we may assume that M is a subset of 0. Ifsisa natural
number then W, (£, ¢) coincides with the spaces H*?(Q2; dy, ¢) from [1]. ln [1]it has
been proved that

Cu(@) = w0 w € C(), suppwn M = 0} @

_is dense in H*?(£2, dy, ). Our thcorem (restrlcted to natural s) is not a new proof of
this assertion, however.it shows that the weighted case can be reduced to the un-
weighted case, and this simplifies the task considerably. On the other hand, in con-
trast to [1], we deal also with fractional spaces (and only for that purpose we mollified
dist (z, M)).

- Remark 2: Let 2 be a bounded domain and M = 9Q. Then we have

WP‘('Q: €) = Wpa('Q: =50 ter) N ’ : !

with ¢71(z) = dy(z) if z € 2, where 1 < p < 00, s =0 and —oo0 < &£ < o0, f. [2:
" Theorem 3.2. 4/3] and Remark 3 at the end of this paper. By [2: Theorem 3.2.4/1],
Coy®(£2) is densc in W ,2(£2, ¢). This extends Theorem 1.1 in [1] to the fractional spaces,
at least if .Q is bounded ) . - N

2. Proof of the Théorem ) - ‘ .

.

We brove the above theorem in two steps:

Stey; 1: Let s be a natural number. Let
M9 ="z|z€ Ry dylr) >27 i j=12.. - (3)
and K | |

M = M<3> = MG&+ _ PED i k=23, ... : (6)
We assume MW.nQ + 0 (w1t,hout, restriction- of generahty) Let y = w,(x) 21
a system of mfmltelv dlfferentlable functions on R, with the followmg propertles

0 S_Wi(x) <1, suppy; < My, Z'Pi(x) =1 if ze€R, =~ M; (7)
j=1,

or any multi-index y there exists a positive number ¢, with

Dryp(z)] £¢,2i” forallj=1,2,3,...and all z € R,. . (8)
Vi
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Systems of this type exist, we refer to [2¢ 3.2.3]. We claim that-

- 00 1/ . Lo
'(,§ lhpsf | W2, ::)nﬂ)-" S WA e 9)

is an equivalent norm in W2, ¢). Tt is easy to see that ||f | W,5(Q, ¢)|| can be esti-
mated from above by ¢ ||f | W »%(£2, )|l*. In order to prove the reverse assertion we
remark that .

i | W52, )P < ¢ X 277t iplemlah f ID“(%/) (t)l" dx

lal <38
< Z2—1‘+1p(a~lal)f |D*f(2)|? dx o /
lalss onM,,
| <" 3 [ dye- |anp(x) DY) dz. ‘ (10)
. _ lxl <8 2nM, :

Summation yields the desired result. Now it follows easily that

(Zw,)/—d N o0 (fe WHQ,¢). | o | .(11)

i=1
This proves the theorem if s is a non-negative imeger

Step 2: Let 0 < s = [s] + {s}, where [s] is an integer and 0 < {s} < 1. Again we
claim that ||f | W 2 (82, &)l from (9) is an equivalent norm in- W *(£, ¢). It is  easy to.
see that fIf | W, (.Q g)|| can be estimated from above by ¢ ||/| W8, e)lie, cf. (2).
In order to prove the reverse assertion we use (2) with y;f 1nstead of /. The terms
llwif | W), e — {s} p)li can be treated in the same way as in (10) In other words, -
the problem is reduced to an esblmate of \ .

(e/p)—(s)+lal o — dtelp—18)+lal
f ldu (z) D(yif) () — d W D) WF 4, 4, 12)
e o — g
2x 2
with |o<| = [s]. Without restriction of generality we may assume ‘t,ha,t -
S dist(uppy Ry — M) Ze2d, - (13)

where c is an appropriate positive number which is independent of j. Let, .Q, = Q nM;
Then the sum in (12) can be estimated from above by

pad Idu“”” el +lel(z) De(y;f) (x) — dm“"” tal+lel(y) D‘(w f) (y)l -
D,xof :
. . ay: : /
W f dm‘"”“"“'“"fx)ID“(w;l/) @17 | Ix_—-ygl/m] . (14).
. : -0, : \ N

Under t-he hypothesis (13) the second tefms.in (14) can be estimated from above by

c \" f Q—je+jpla) +jpils)—lal) ID“(w/) (z)|? dz
i= 19;

Sclf | W2, e — (s} p)lI? < ¢’ |If | W,}’(Q; e, ' ' (15)
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where we used mequalltles of type (10). The first' terms in (14) can be estimated from

above by a sum of terms of the form’ ’

(s/p)—(8)+[a| (x _ (¢/p)—[8)+a} o

H

1
i

N f dy-ma=10(y) Dry e SO @ — DD @) dy]‘ | 4, '|(16)

| — y|otislp

2% 9 y ,
with 18] + |y| = |<x| The mtegral over M; in (16) can be estimated from above by
c2-ie+ilslp+ipts1=18D " This follows from '[2: Lemma 3.2. 4/2] (here we need that
du(x) is a mollified distance). Consequently, the first terms in (16) can be estimated

from above by-.c |If | W,(2, ¢ — {s} p)||P. The second terms in (16) can be estimated"
from’above by, _ .

\ E 2- i=+im~.«n—‘wn f (D?f) (x) — (Dff) (y)|P

- dx dy”
. Q,% 9, lx - ?/I Fhel
[dpgteiPr=1el 1812y DAS( x) — dptein - [sl+lﬂ|(y) D”/(y)l”
Scf o — gpi dde
Rx 2 Vi .
Sclfl W ele.. - o B¢ )

This completes the proof that (9) is an equiva]ent norni in W, %2, £). Then we have
again (11), and this proves the theorem if s is a fractional number 1

!

- Rémark 3: At the first glance we would try to replace J) in (2) by J. This scems
lalZ sl fal=(s]
to be the better definition of the fractional spaces W,*((2, ¢) and it agrees also com-

plet,ely with -our theory in‘[2: 3.2.3 and 3.24]. If M = 80 (this is the case treated
in [2]) then such a repla,cement is possible. However in the general case M =+ 5Q this
is not clear: The dlfflcultles come from the estlma.te (17) of the terms with [f] <'[s].

~
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