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Embeddings of Soholev Spaces with Weights of Power Type

D.E. Epmuxps, A. KurNer and J. RAROSNIR-

- Die Arbeit befaBt sich mit einigen Eigenschaften gewichteter Sobolevscher Riume W&,
Wi*P und H*?, in denen als Gewichte Potenzen der Entfernung von einem Teil M des Ran-
des' des Definitionsgebictes auftreten. Es werden Bedingungen angegeben, unter denen diesec '
Riume gegenseitig eingebettet und gewisse Normen iiquivalent sind. Dabei werden einige
Ergebnisse aus [1] verallgemeinert und eine in [2] formulierte Vermutung wird bewiesen.

B pabore mcciie0BaHK HEKOTOPHE CBONCTBA BECOBHIX npocrpancts C. JI. CoGosiesa 1 yé-P,

Wak? u HkP Becosme yHKIun KOTOPHX FIBIAITCA CTENEHAMM PACCTOAHMA OT yacrit M

TpaHuIK 061acTH onpefesienna. YKas3aHbl yCIOBUSA, IPH KOTOPEIX 3TH [POCTPAHCTBA BRIAALHL-

BAOTCA APYT'B IpYra H MPH KOTOPHIX HEKOTOPLE HOPMEI dKBUBAIEHTHH. O606AIOTCA He-
KOTOpPHIE peéym.’ram u3 [1] n noka3aHa rumoresa, cd)op.\iymxponaugan B [2].

" The paper deals with some properties of the weighted Sobolev spaces Wk, W, kP and .

H¥*?, with weights which are powers of the distance from a part M of the boundary of the
* domain of definition. Conditions are given which guarantee the mutual embeddings of these

spaces and the equivalence of certain norms. The paper generalizes some results of [1] and vert-

fies a conjecture formulated in [2]. : P :

.

0. Introduction , o 5 '
Let'Q be a domain in the Euclidean space R¥ and let M be a non-emi)ty subset of
the boundary 92 of Q; given any x € R¥ write .

' dy(x) = dist (&, M). ‘ ‘ (0.1
Lete,p € R,withp = 1,k ¢ N, and let WEP(Q; dp, €) be the weighted Sobolev space

of (equivalence classes of) functions u: 2 — R such that for-all a’= («;) € No¥ with
Jo]:= oy + &g + -+ + ay < k, the distributional derivative D*u satisfies

[ [D*u(=)|? dpt(z) dz < 0.
a

The space"W“"’(Q;'JM,'s) is a Banach space when equipped with the norm defined
‘ el = ( Z [1Du(z)? du(2) dx)””- ‘ (0.2)

la|lSk Q .

We also introduce the spaces Wy ?(Q;dy, ¢) and Wok?(Q; dy, ), which are the
closures in the Banach space W*?(Q; dy, ¢) of the sets '

On®(2) := {w € C>(D): supp w n M = 9y . (0.3) -

-and Co°‘5(!2) respectively ; and the space H*?(Q2; dy, ¢), which is the set of all functions
“u: £ — R such that for all « € No¥ with |«| < k, N ‘

[ D) dy=k=tir(z) dz < 0oL ' |
2 : ‘ '
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Thls last space is also a Banach space when provided with the norm given by

e —( 2 lefu )P dM‘ (k=lebp(z) dx)"” (0.4)

lal<k 2

If'e = 0, Wke(Q;dy, e) and Wk2(Q; dy, €) are simply the classical unwcighted
Sobolev spaces W¥?(Q2) and W, 5?(Q) respectively; if & = 0, then Wk?(Q; dM, a) ls
nothing-more than the weighted Lebesgue space L?(£2; d,,, €). .

In[1] the case M = R was considered, and it was shown that if for 7 = 1, 2 Lk
the mequallty e 1p — 1 holds, then

Wob2(Q; dy, &) < HOP(Q; dog, 6). - ©(0.5)
the symbol & denoting continuous embedding; it was also shown that for all ¢ € R,
HEP(Q, dyy, ) & WbP(Q: dy, ). . . (0.6)

In particular, if £ = 0, then for any w € W¥?(Q) such that D=u € L”(Q; dyr, (K — |&]) 7))

for all & € Ng¥ with |a| £ & — 1, we have u € W *?P(Q). The assumption that  had -

a Lipschitz boundary was important in [1], although msofar as the embedding (0.6) is
concerned this condition can be weakened.

When ¢ = 0 it.is possible, by following unpublished suggestions of D. J. HARRIs,
to establish (0.6) under the sole assumption on £ that it should be bounded (see
Theorem 1.1). The method used relies on the properties of ‘the maximal function,
and can be extended to the case of an arbitrary set M — 92 and an arbitrary ¢ € R:
in Theorem 1.2 it is shown that

HAP(Q; dyg, ) > Wab(Q; du, ).

The embeddmg (0.5) follows from embeddlng theorems in welghted spaces ;. in
the case M = 8.Q such theorems hold if 82 is Lipschitzian. It was conjectured in [2]
that

. 4 kp('Q'dM’ )%H""’(Q'dM,e) .
for certam special sets M, prov1ded that fori=1,2,. L the mequa,llty e F1p — 1
"holds. This conjécture is verified in Corollary 3.1, (11) the main tool is due to the
third author (J. R.) and is a fuller version of the short communication [4].

1. The embedding H <> W ' : L
First, we shall prove a theorem, which impliés (0.6.) for the case ¢ = 0 and M = 802.
This result is contained in [1], but here, the condition on {2 i3 weakened and the
method is completely new. , -

Theorem 1.1: Let 2 be a non—empty open subset of R¥, 2 = R¥, and for each ‘
z € Q put d(z) = dist (z, 0Q); cet p € (1, 00) and k € N. Suppose that uw € Wk 7’(.Q) s
such that ud=* € LP(Q). Then u € Wok?(Q).

Proof: First suppose 2 is bounded. Let 0 < h'< §; define u® by u)(z) = u(x)
if d(x) > and z € 2, u¥(z) = 0 otherwise; let ¢ € Cy*(R¥) be such that ¢(z) = 0
if |z =1, ¢(z) >0 if 2| <1, qu(x) dxr = 1; and put 4>,.(x) = h~¥¢(z/h). Let us

agree that any function g defmed on 2 'will be supposed extended to the whole RN if:
necessary, by setting g(z) = 0 for all z € R¥\ Q. Note that ¢, * u® € C;>(Q).
! .
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First suppose that d(z) > 6+ h, 2 € 2 and & € N;*, |a] < k. Then since B(z, k)
={yeRY: |z —y| <h) = B(z,6 + h) = 2, and d(y) > 6 if'y € B(a, k), :

~ Dy u) (2) = D* [ dple — ) udy) dy - ‘

- B -
= D= [ ¢n(z — y) u(y) dy = [ dulz — y) Dou(y) dy;
. that is, RN * .
i D (¢ 5 u®) (z) = (¢ + D*u) (x) if d(z) >+ h, x€N, (1.1)
It follows that, with A(g) as the maximal function defined by '
(g) () = sup | BO, )1 [ |g(y)| dy

r>0 B(z,r)

(|B(O. 7)| = wyr" being the volume of the ball B(0, 7)), we have
1D*(én % u) (2)] < (D) (@) - wy sup (x—‘—)
- ' Y€ B(z.h) b

=~‘.r/ll(D“u) (%) - wy sup ¢(z) = AM(Du) (z) b(¢), say.

\ . 2€ B(O.1) ) \
- Next, suppose that d(z) < Ik for some I € N, and let « € No¥, x| £ k. Then

fh—lv-m(D,(’,) (“ ; Y

RY

‘ ' » gh-N—lalf

RN

< wph*Il 4+ 1) i(ud—) (z) sup |(D*D) (2)].
. z€ B(0,1)

J

1

Do % u) (a)] — )u@ () dy

T —Yy

(D) (52 wor) a1 0 + 1)y

Thus if we take 6 = 2h = 2/ (j € N) and I = 3, we see that for all z ¢ Q, for all
« € No¥ with [o] < k, and for all j € N, ) '

1 D>(yy5 % u (2))]

’

< max {b(¢) (D) (z), 4hc(x, §) UM(ud*) (2)) = G, o(x), (1.2)
where c(a, ¢) = wy sup |(D*¢) (z)]. Since, by [5: Chap. I, Th. 1], «# is a bounded
z€BO.)

mapping from LP(R¥) into LP(R¥), it follows that G, , € LP(R¥). Moreover, for each
« € No¥ with |x| < k, ¢,); * D*u — Deu in L?P(Q) as j = o0, and hence there is a
subsequence (j(l)) of the sequence of.positive integers such that for all & € No¥ with
la] = &, ($1/50) * D°u) (x) = D*u(z) almost everywhere in Q. Thus by (1.1),

© DAy * i) (z) - Deux) : (1.3)

a.e. in 2. Together with Lebesgue’s dominated convergence theorem, (1.2) and (1.3)
show that (¢, * uli0)) > in WEP(Q); that is, u € Wek?(Q). ,
. If Qis unbounded we simply apply the arguments above to UYPy 1= Up,, Where
wm € Co™(RY), yn(z) = 1(|2| <m), pnu(z)’ =0 (jz] > 2m), and note that u,d=t

€ L7(2) and u,, > uin WeP(Q)asm - oo B° - : o

Note that if £ is bounded, the vé,lidit,y of (0.6), when ¢ = 0 and M = 80, follows
immediately from Theorem 1.1. We now set about the proof of (0.6) for general &
and M: . , . . N

\ . . \
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Theorem 1.2: Let Q be « bounded domam wm R¥, let M — 00, M == QI and let
p €(1,00), k € Nand ¢ € R. Then ) . .

H}?(Q; dy, €) < WMk P(L2; dM: E)

" Proof: Let u € H*?P(2; dy, ¢€), and. for any § > 0 write u®(z) = u(x) if dpy(z) > o
and 2°¢ R, u¥(x) = 0 otherwise. Let ¢ be as in the proof of Theorem 1.1 and write
. ¢,,(x) ="h"¥¢(z[h) (h > 0,2 € R”) Let 2 > 0 and set v, = ¢, *x u®?, We distinguish

various cases. .
(i) Letx € !_) be such that ’ .
dy(x) = 2h. T o : S (1.4Y

(3

’ . . ) . s . .
’ Then v(x) = h¥ fd) (x_h_y) uBMy) dy = O since by (1.4) if y € B(z, k) then

B(z.h) . -
(y) < 3k and consequently u(‘"‘)(y) =0.It follows that,

. ww%cm_mu2@m>h ' )

. Note that 2, n ¥ = 0.
(ii) Suppose that z € Q is such that

| % < dylz) = 4h. ) | )
"Then if y € B(z, k) we see that '_ . | . \
h < dyly) < 5h; C o uﬂ
and (1.6) and (1.7) imply the equivalencc of k, dy(x) and(dM(y): - )
| du@) ~h, ey b | <1.S) "

w1t,h the obv1ous meanmg of the symbol For all x € No?, || < k&, we have

f Da¢( 2 ) wony) dy

JLat f ol — u)u""’(y) dy

h N— ]alf‘(Dad,)( )

B(z,h)
= (sup |'D°¢>(z‘>|) [B(O, DI (B, A~ ] futa) dy

2€R¥ B(z.h)

= h-N

lu(y)] dy

<coh ! |Blz, ] [ lu(y)] duiP—H(y) dy - =0
B(z.h)

= clh""“' |B(z, B [ |u(y)| du'P'~*(y) dy - [du(2)]~*/7,
Blz,h)

the last two mequahtles fo]lowmg from the equlvalence of dy(y) and h and that of
“dy(z) and k. Thus we have

ID“vn(x)l duP(z) < ok 1ol (1P~ ) (x) . "(1-9)

where, as before A stands for the ma.x1mal function and any functlon onQis extended
by zero in RY \Q - .
(iii) Let « € 2 be such that for some I = 4, ! - ; (

Ih < dy(z) < (4 1) h. : , . (1.10)
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" Let y € B(x, k). Then ~ ;

=1k <duly) <+ 2k, - . (1.11)
and (1.10) togebher with-(1.11) imply ‘ ' ’ . ,
dy(x) ~ du(y) ~ : o S ¢ S

" From (1.11)1t follows that w®M(y) = u(y), since da(y) > (I — 1) h = ‘3h Fora € 1\0*‘,

la} =k, we fmd as in (ii), that

|Dvy(z)] = D+ f $alz — y) wM(y) dy\ De f éalx — ) u(y) dyl
y) D*uly dy‘ = ¥ f é (x ; -”) Du(y) dy

" . B(Z.h) U
< cz( sup 9(2)) 1B0, 1) 1B, N

L X f | Deu(y)| dM(e/p) k=lal(y) dy - (Lh)~te/Pr+k=lal
B(z.h)
< cyM(Dru - dpyteiP—ti=ley () . [dM(x)]—(tlp)+k—lal .
"Hence - S .
\D04(@)| dayIP(2) S cqMUDu - dygIP=k=1oD) (2) - dpk=lol(@). . (1.13)
However, since 2 is bounded and |«| < k, day*—1*(z) is bounded. Thus there is a con-
stant ¢, such that .

. | Drvg(x)]| dpgtelPV(z) < cwli(D’u dM(E/ﬁ)—(kl—lal))( x). ‘
It follows from (i), (11) and (iii) that if 0 < & < 1, there is a constant cs, mdepen- ,
. dent of h such that for all 2 € Q.and all « € 1\0 w1th o] = k,
|D°v,,(:z:)l dytlP(z) < c,G(x), (1.14)

where G(z): = max {#(udy /P —¥) (z), M(Dou - dCIP~k+1sl) (z)}. SmceueH“"’(.Q dy, ),
Deu - dyteiP—k+lsl ¢ LP(2) and hence D2u.- dy'/P=k+l2l ¢ LP(R¥); .in particular,
udy“/P—* ¢ L?(R¥). The properties of the maximal function now imply that

" G € LP(R¥). ' : (1.15)
By the Lebesgde dpmin‘ated convergence theorem, the assumption. that as & — 0,
 |Drvn(z)] dpgIP(x) — | D*u(@)] dar'P(2) " (1.16)

-for almost all z € 2, implies (in view of (1.14) and (1.15)) that as & — 0, dy*PDv,
> dy*PD*u in L?; that is, . ' _ ‘ ' .

v —>u in WRP(Q;dy, ), o (1.17)
which is what we need. )

All that remains to complete the proof of the Theorem is to establish (1.16). To
do this, let 6 > 0, 2, = {xr € Q : dy(z) > 6}, and note that since.w € H*P(Q; dy, ¢),

Cu € Whp(Q,). For k€ (0, 6/4) a.nd z € £, we have u3h(x) = u(x) and, for |0‘| <k,

« fnxed
Y Deop(r) = Doy x u) (z) = D’(¢h * u) (z) = (¢4 * D*u) (2),
and as h -0, - . \

Doy, — D*u in LP(Q,). . . ) (1.18)
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N
~

since ¢, * D*u — D*u in LP(£,;). From (1.18) it follows that there is a sequence (%)
of positive real numbers, converging to 0, such that D*v,_ > D°u almost everywhere
in £2,. Now take 6 = 1/k,, k, € N, and let (v,(V) be the sequence (v, ) for this parti-
cular 6. Let (v,%®) be a subsequence of (v,) such that : :

D“v,,(z) — Day a.é. n Ql/(k.—*—l);
" more generally let (v,) be a subsequence of (v,~") such that "
D‘.‘T)n“) —D*u a.e.in Qu(k..*_[) . ‘

It follows that the diagonal sequence (w,), w, = v,,"": has the property that

Dw, - D*u a.e.in Q. ' - (1.19)
Of course; {w, : n € N} C {vp:h > 0}, Moreovér while the multi-index « was fixed, it
ig easy to see that matters can be a,rranged so that ( 1.19) holds for every « € No* with
Jx|- =< k. Thus

0

dyt?PDow, — dy’?D*u a.e. in 2,

and the arguments used to pass from (1.16) to (1.17) show that w, — « in W+?(2;
" dy, €). Our discussion in (i) shows that supp w, n M = 0 (see (1.5)); moreover,
w, € C*(R¥). Hence u € Wy* 1’(!? du, s), and the proof is eomplete, since the
continuity of the embedding of H in W is clear 8

2, Thé embedding W - H -

" Now we shall deal with embeddings mverse to those of § 1 For this case, we need
more special domains. ’ .

' Definition 2.1: Put Q= (0,1)" and Q(m) = {2 € Q : ¥pyy = -+ = a5y = O},
m=0,1,..., N — 1.’A closed subset M of 20 is said to be a manifold o/ dwnenszon m
on 29 if there is an open covering {U;}%, (o finite or v = oo) of £ with the following
properties:

v

(i) M < U U;, and there exists s 6 N such that every system of (s + 1) sets U
is disjoint; ' '
“(ii) there ex1sts 6 > 0 such that

“dy(x) = 6, forall z€ UO; . (2.1)

(iii) there are numbers-c,, ¢,, withc, = ¢, > 0,and a systeni of one-to-one mappings
T, Q QU =12,..., w) such that T{Q(m)) = M n U, and

¢z —yl = |Tilz) — T(y)|$c2|x—y|
for all z, yéQandz:l : , e (2:2)

Remark 2.2: In what foll_ows we shall see that this notion of an m-dimensional
manifold on 2 is suitable for dealing with embeddings of Sobolev spaces with weights
which are powers of dy. We use simple idea to avoid technical complications, but
‘theorems of the type of the following Theorem 2.3 hold for more general sets M, and
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in particular for the set

{x € Q:z; = 0forj+1) = o,
1

M* .=

C=

I

which is not a one-dimensional manifold on 242 in the sense of Definition 2.1.

Theorem 2.3: Let @ — R¥ be a domain, let M € 22 be an m-dimensional manifold
on 02,letm € {0, 1, ..., N — 1} and suppose that p € (1, o). Then:

Vo Lo(Q;dy,e —p) : . (2.3)
where A . S
(i) V = W2(2; dy, ¢) if ‘ |
- e>p+m—N o L (24)
or i . -
e=m—N; o (2.5)
(i)Y = Wy'?(2; dy, ) if . »

ep+m—N,; (2.6)
(i) V = W?(2;dy, &) tf m < N — 1 and ¢ is an arbitra}y real number. V

Proof: Let (¢;)%, be a partition of unity subordinate to the covering (U},
mentioned in Definition 2.1. Let u € W1-?(2; dy,, e)and put u; = u¢;, 1= 0,1, ..., w.
It is enough to prove that there is a constant ¢, independent of u, such that for
i=0,1,..., 0, . ’

J w(@)[P dyt=P(z) dz < e [luillw ' . (2.7)
Uing . N . \ .

For 7 = 0, (2.7) holds trivially in view of (2.1). Now suppose that ¢ > 0, and for.the
sake of simplicity omit the subscript 7 on u; and U;. By (2.2)

- cdam(¥) < du(T(y)) < codgim(¥) o (2.8)

for all y € Q, and from [3: Chap. 2, Lemma 3.1} it follows that there are positive
constants cg, ¢,, depending only on ¢,, ¢,, p and N, such that-

of w@Pde < [ [WT@)Pdy <o [ lo(@)Pde . (2.9)
U Q , onu .
orallwe LA(Q n U). ’ -
For all y € @ put v(y) =*u(’l‘(y)), and introduce the “cylindrical” coordinates
, ‘ , ! - 7 N—m-fl .o
Y= (?/’, y”) =y, 0, 7), Yy = (yl: v Ym)y 0 € Fi= (0, E) » TE€ (O: R(o))’
T =dom(y) = ( 2_:' y-z)m The corresponding Jacobian is ﬂ/)— = yN-m-1
om immet /. ; Dy, 6,n),|
X D(y'; 6), and ’ :
J o@)I? digh(y) dy
¢ E R(O) ) : _
= [ [, 0) [ 1oy, 0, )P re=p+N-n=tdr g dy'. - (2.10)
Qmy = : 0 '

Since v(y’, 8, 7) = 0 for almost all ¥’ € Q(m), 6 € = and for all 7 in a neighbourhood
of R(0), we can extend the function v by zero for » = R(0) with preservation of all

Y
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’

differexit,ia,bi]ity propcrties ‘Application of the Hardy ineqﬁality (see, for example,
- [2: Chap. 5]) to the inner 1ntegral on the right-hand side of (2.10) now shows that for
almost all y € Q(m) 0¢Z, -

~

P
f lv(y’, 9, 7')_[” reepEN-m=ldy < ¢ [l%/ (y', 6, 7)| ret¥—m=1y (2.11)
0 ' o ’ '

Cf

s+ N—-m—1>p—1" - O (212)
and lim v(y'; 6, r) =.0 (this condition is satisfied trivially), or if
e+ N-m—1<p—1 E S (2.13)
and i : )
“limv(y’, 0, 7) := vy(y’, 6) = 0. . 0 (2.19)
r—>0+ :

The constant cy in (2.11) is given by ¢y = pfle — p' + N — m|. Integrating the in-
. ‘equality (2.11) over @(m) X Z and passing back to Cartesian coordinates we obtain

. 61) Ap
f w(y)IP dgch (v) dy < ¢y f ‘5; (y)l Doy (y) dy
0 .

sCs 2 fl_ (y)‘ Q(m)(y)
j=m+1

o \
Use of (2. 9) with w = udM"/”’ L and with w.= B (\%M‘/P the estimates (2.8) and the

mequallt,y I— = 02 -— (T y))‘ .which follows from (2.2) now gives (2. 7) with

. a constant ¢ which depends only onp, ¢ N,c and c,. :

All that remains is to discuss the validity of the assumptions (2 12)—(2 14) The
_ inequalities (2.4) and (2. 12) are equlvalenb If (2. 5) holds, then (2.13) is satisfied.
Further, for almost all ' € Q(m), 6 € = and for 7, » > 0 we have, by Hélder’s in-
equality,

_ r4h .
’ ' av ’ ’
' lv(y_', 0,7+ h) - U(yl’ 6,7) = fﬁ (¥, 6)’9) dQ "

T

.

/. r4h 1/p

g(f )—(y 0@} e+ x-ni do |.
. ' r+h (p—1)p -
" X ( f0(¢+N—m—l)/(l—p) d()) — 0(1)
: T

ash -0, since the former of the last two integrals is finite and the exponent in the
" latter one is positive. Hence the function »(y’, 0, ) is uniformly continuous in a
" neighbourhood of the orlgm andthe lnmb vo(y’, 6) in (2.14) exists. Since

RO

flv(y 0,7)] r+N=m=1dr < oo,

the assumptlon (2 5). ylelds (2 14) Thus assertion: (i) holds.
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IV = Wptr(Q2;dy, ¢), it is enough to deal Wit:h" functions « in Cy>(Q), sd.that

" suppv < @; and condition (2.14) is then trivially satisfied. The condition (2.6)
means that(2.12) or (2.13) holds.
Fma.lly, suppose that m < N — 1. If e = p +m — N, assertion (iii) follows from:

> (i), since Wol-r(Q; dag, £) = WatP(Q; dpy, €). Thus suppose that e =p 4+ m — N .

and let u € Cy™ (.Q) Smce m < N — 1, we can write

A ‘ _ N
212y, 4 o) < do(,,.)(y) Syito, ef= Y ?l/i2
) j=m+Llj%
_ l=m4+1,..,N;yeQ) '
and - o -

. 1 ! - .
Jlv@Pdgh @ dy < [ [10@)P (4 + 0P dyidy®,
a -

0.1~ 0

where ¥ = (yy, ..., Y1—1> Y141 - --» Yx)- Taking.into account the fact that suppv < Q
,ande=p+m —N<p— 1 we apply the generalized Hardy inequality (see, [5:
" Lemma 5. 3]) to the inner integral on the right-hand side and obtain

‘ﬁWW%%M@Smfl @) doem () dy .-

It is now sufflclent to use (2.9) wnth w = udy/P-1 and with w = :— dM‘/P the »

assertlon (iti) and consequently Theorem 2.3 are proved 1 T

.

. 3. Concluding rcmarks

We present two natural consequences of t,he work in§1 a,nd § 2.

Corollary 3.1: Let 2 be a bounded domam wn R¥, let M be an m- dzmensw'nal

mam/old on 092 where m € {0, 1, ..., N — 1}, and let p € (1, 00), k € N. Then-

VL.,H/(P(_Q dM’E)) . ) ’ ~
where ‘ , ‘ . _
(V= WkP(Q2;dy, e) tf - - ,
' e>kp+m—N ' : (3.1
or ,; . . . . v' ) .
e<m—N,; , - (3.2y
(i) V = Wp?(2; duy, ) if |
ekjp+m—N, j=12..k; o , . (33)
(m) V = W*pP(Q2; dM, €) if . A _
m<N—1 ‘and c€ R. : L (3.4)

Proof: Use Theorem 2.3 successively for Dfu with |f| =k, |f| =k — 1,... 1

Corollary 3.2: Let the assumptions of Corollary 3 1 be satisfied. If ¢ satisfies (3.1) .

~or (3. 2), then
Wik P(2; dy, &) = H:P(Q; dM, €) = Wkr(Q; dy, €).
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If ¢ satisfies (3.3), then . . _ ‘ .
N WoP(Q2; dyg, 6) = He?(Q3dy, ). (3.5)

Ifm < N — 1, then (3.5) holds for all e € R wuh Wk "(-- s Ay €) instead of WM" P(82;
’ dM) 5) :

Proof: The assertions follow immediately from ‘Corollary 3.1 and Theorem 1.2 '

"REFEREN CES

[1] KADLEC, J., and A-KuFNER: Characterization of functnons with zero traces by integrals
with weight functions. Casopls Pést. Mat. 91 (1966), 463 —471.
_[2] KUFNER, A.: Welghtcd -Sobolev, spaces’ Lenpzxg BSB B. G. Teubner Verlagsgesellschaft
1980. ’
[3] NecCas, J.: Les méthodes directes en théoric des équations elhptxques Prague: Academia
1967,
[4] RAikosxik, J.: On cmbeddmgs of Sobolev spaces w1th power- t,y'pe weights. Proc. Conference
Approx. Theory, Kiev 1983 (to appear). .
 [5) StEIN, E. M.: Singular integrals and dlffcrentlablhty properues of functlons Printeton : .
. Princeton University Press 1970. ‘

Manuskripte’ingang: 16. 01. 1984 A .
' . VERFASSER;: _ o :

Prof. Dr. Davip Epaoxps

School of Mathematical and Physncal Scxcnccs
University of Sussex -, . o
_Falmer, Brighton BN1 ‘)QH o ' B
*Great Brltam ’

. Prof. Dr. Arois KtFNER and Dr. Jlf{f Rl’tKObl\fK

’ Matematlcky Ustav CSAV. ’
11567 Praha 1, Zitng 25 - . N
Czechoslovakia :

' « - '



