Embeddings of Sobolev Spaces with Weights of Power Type

D. E. EDMUNDS, A. KUFNER and J. RAKOSNIK-

Die Arbeit befaßt sich mit einigen Eigenschaften gewichteter Sobolevscher Räume $W_0^{k,p}$ *,* $W_M^{k,p}$ *und* $H^{k,p}$ *, in denen als Gewichte Potenzen der Entfernung von einem Teil M des Ran*des des Definitionsgebietes auftreten. Es werden Bedingungen angegeben, unter denen diese Räume gegenseitig eingebettet und gewisse Normen äquivalent sind. Dabei werden einige Ergebuisse aus [1] verallgemeinert und eine in [2] formilierte Vermutung wird bewiesen.

В работе исследованы некоторые свойства весовых пространств С. Л. Соболева $W_0{}^{k,p},$ $W_M^{k,p}$ и $H^{k,p}$, весовые функции которых являются степенями расстояния от части М границы области определения. Указаны условия, при которых эти пространства вкладываются друг'в друга и при которых некоторые нормы эквивалентны. Обобщаются некоторые результаты из [1] и доказана гипотеза, сформулированная в [2].

The paper deals with some properties of the weighted Sobolev spaces $W_0^k P$, $W_M^k P$ and domain of definition. Conditions are given which guarantee the mutual embeddings of these $H^{k,p}$, with weights which are powers of the distance from a part \tilde{M} of the boundary of the spaces and the equivalence of certain norms. The paper generalizes some results of [1) and verifies a conjecture formulated in [2]. B работе исследованы некоторые свойства весовых пространств $W_M^{k,p}$ и $H^{k,p}$, весовые функции которых являются степенями границы области определения. Указаны условия, при которых этак важивали сопроше результаты из [1] pyr'n *n*pyra *u npu korophix* нек
pesyntraria *us* [1] *u n*o*kasaha* r*u*
r deals with some properties of
d weights which are powers of the
idefinition. Conditions are given
d the equivalence of certain norms.

0. Introduction

Let Ω be a domain in the Euclidean space \mathbb{R}^N and let M be a non-empty subset of the boundary $\partial\Omega$ of Ω ; given any $x \in \mathbb{R}^N$ write

$$
d_M(x) = \text{dist}(x, M).
$$

(0.1)

Let Ω be a domain in the Euclidean space \mathbb{R}^N and let M be a non-empty subset of
the boundary $\partial\Omega$ of Ω ; given any $x \in \mathbb{R}^N$ write
 $d_M(x) = \text{dist}(x, M)$. (0.1)
Let $\varepsilon, p \in \mathbb{R}$, with $p \ge 1$, $k \in \mathbb{N}$ of (equivalence classes of) functions $u: \Omega \to \mathbf{R}$ such that for all $\alpha = (\alpha_i) \in N_0^N$ with $|\alpha| := \alpha_1 + \alpha_2 + \cdots + \alpha_N \leq k$, the distributional derivative D^*u satisfies **the boundary** *ost* of *st*; given any $x \in \mathbb{R}^N$ write
 $d_M(x) = \text{dist}(x, M)$.

Let $\varepsilon, p \in \mathbb{R}$, with $p \ge 1$, $k \in \mathbb{N}$, and let $W^{k,p}(\Omega; d_M, \varepsilon)$ be the weighted Sot

of (equivalence classes of) functions $u: \Omega \to$ *f*^{*I*}. the equivalence of certain norms. The paper generalizes some results of [1] and veri-
 f^{*a*}*du(x)* do f*i*^{*D*}*n*^{*x*} (*R^{<i>N*}</sup> and let *M*^{*b*} de a non-empty subset of
 dary 20 of *Ω*; given any $x \in$ 0. Introductio

Let Ω be a do

the boundary
 $d_M(x)$

Let $\varepsilon, p \in \mathbb{R}$, v

of (equivalence
 $|\alpha| := \alpha_1 + \alpha_2$
 $\int_{\Omega} |D^{\alpha}|$

The space W^k

by
 $||u||_W$

We also intro a domain in the Euclidean space \mathbb{R}^N and let M be
 $d_M(x) = \text{dist}(x, M)$.
 R, with $p \ge 1$, $k \in \mathbb{N}$, and let $W^{k,p}(\Omega; d_M, \varepsilon)$ be the

elence classes of) functions $u: \Omega \to \mathbb{R}$ such that for
 $+\alpha_2 + \cdots + \alpha_N \le k$ Let $\varepsilon, p \in \mathbb{R}$, with $p \ge 1$, $k \in \mathbb{N}$, and let $W^{k,p}(\Omega; d_M, \varepsilon)$ be therefore classes of the interiors $u: \Omega \to \mathbb{R}$ such that for $|\alpha| := \alpha_1 + \alpha_2 + \cdots + \alpha_N \le k$, the distributional derivative $\int |D^s u(x)|^p d_M^s(x) dx < \$

$$
|D^{\alpha}u(x)|^p d_M^{\alpha}(x) dx < \infty.
$$

The space $W^{k,p}(\Omega; d_M, \varepsilon)$ is a Banach space when equipped with the norm defined

$$
\iota \|_{W} := \left(\sum_{|a| \leq k} \int_{Q} |D^a u(x)|^p \ d_M^c(x) \ dx \right)^{1/p} . \tag{0.2}
$$

We also introduce the spaces $W_M^{k,p}(\Omega; d_M, \varepsilon)$ and $W_0^{k,p}(\Omega; d_M, \varepsilon)$, which are the closures in the Banach space $W^{k,p}(\Omega; d_M, \varepsilon)$ of the sets
 $C_M^{\infty}(\Omega) := \{ w \in C^{\infty}(\overline{\Omega}) : \text{supp } w \cap \overline{M} = \emptyset \}$ (0.3) closures in the Banach space $W^{k,p}(Q; d_M, \varepsilon)$ of the sets

$$
C_M^{\infty}(\Omega) := \{ w \in C^{\infty}(\bar{\Omega}) : \text{supp } w \cap \overline{M} = \emptyset \}
$$
\n
$$
(0.3)
$$

and $C_0^{\infty}(\Omega)$ respectively; and the space $H^{k,p}(\Omega; d_M, \varepsilon)$, which is the set of all functions Coloures in the Banach space $W^{k,p}(\Omega; d_M, \varepsilon)$ of the $C_M^{\infty}(\Omega) := \{w \in C^{\infty}(\bar{\Omega}) : \text{supp } w \cap \overline{M} = \text{and } C_0^{\infty}(\Omega)$ respectively; and the space $H^{k,p}(\Omega; d_M, \varepsilon) \to \mathbf{R}$ such that for all $\alpha \in \mathbb{N}_0^N$ with $|\alpha| \leq k$ *ID" ID" ID"*

$$
\int_{2} |D_{\cdot}^{\alpha} u(x)|^{p} d_{M}^{\epsilon-(k-|\alpha|)p}(x) dx < \infty.
$$

Production of the U.S. of the

Ihis last space is also a Banach space when provided with the norm given by

D. E. EDMUNDS, A. KUFNER and J. Rárosník
\nspace is also a Banach space when provided with the norm given by
\n
$$
||u||_H := \left(\sum_{|a| \leq k} \int_{\Omega} |D^a u(x)|^p d_M^{e-(k-|a|)p}(x) dx\right)^{1/p}.
$$
\n
$$
||u||_H := \left(\sum_{|a| \leq k} \int_{\Omega} |D^a u(x)|^p d_M^{e-(k-|a|)p}(x) dx\right)^{1/p}.
$$
\n
$$
||u||_H := \left(\sum_{|a| \leq k} \int_{\Omega} |D^a u(x)|^p d_M^{e-(k-|a|)p}(x) dx\right)^{1/p}.
$$
\n
$$
||u||_H := \left(\sum_{|a| \leq k} \int_{\Omega} |D^a u(x)|^p d_M^{e-(k-|a|)p}(x) dx\right)^{1/p}.
$$
\n
$$
||u||_H := \left(\sum_{|a| \leq k} \int_{\Omega} |D^a u(x)|^p d_M^{e-(k-|a|)p}(x) dx\right)^{1/p}.
$$
\n
$$
||u||_H := \left(\sum_{|a| \leq k} \int_{\Omega} |D^a u(x)|^p d_M^{e-(k-|a|)p}(x) dx\right)^{1/p}.
$$
\n
$$
||u||_H := \left(\sum_{|a| \leq k} \int_{\Omega} |D^a u(x)|^p d_M^{e-(k-|a|)p}(x) dx\right)^{1/p}.
$$
\n
$$
||u||_H := \left(\sum_{|a| \leq k} \int_{\Omega} |D^a u(x)|^p d_M^{e-(k-|a|)p}(x) dx\right)^{1/p}.
$$
\n
$$
||u||_H := \left(\sum_{|a| \leq k} \int_{\Omega} |D^a u(x)|^p d_M^{e-(k-|a|)p}(x) dx\right)^{1/p}.
$$
\n
$$
||u||_H := \left(\sum_{|a| \leq k} \int_{\Omega} |D^a u(x)|^p d_M^{e-(k-|a|)p}(x) dx\right)^{1/p}.
$$

If $\varepsilon = 0$, $W^{k,p}(Q; d_M, \varepsilon)$ and $W_0^{k,p}(Q; d_M, \varepsilon)$ are simply the classical unweighted Sobolev spaces $W^{k,p}(\Omega)$ and $W_0^{k,p}(\Omega)$ respectively; if $k=0$, then $W^{k,p}(\Omega; d_M, \varepsilon)$ is nothing more than the weighted Lebesgue space $L^p(\Omega; d_M, \varepsilon)$. D. E. EDMUNDS, A. KUFNER and J. RÁKOSNÍK

space is also a Banach space when provide
 $||u||_H := \left(\sum_{|a| \leq k} \int_D |D^a u(x)|^p d_M^{e-(k-|a|)p}(x) dx\right)^1$
 $0, W^{k,p}(\Omega; d_M, \varepsilon)$ and $W_0^{k,p}(\Omega; d_M, \varepsilon)$ are spaces $W^{k,p}(\Omega)$ and $W_0^{k,p}(\$ $||u||_H := \left(\sum_{|a| \leq k} \int_{Q} |D^s u(x)|^p d_M^{e-(k-|a|)p}(x) dx\right)^{1/2}$
 $0, W^{k,p}(\Omega; d_M, \varepsilon)$ and $W_0^{k,p}(\Omega; d_M, \varepsilon)$ are singness $W^{k,p}(\Omega)$ and $W_0^{k,p}(\Omega)$ respectively; if

nore than the weighted Lebesgue space $L^p(\cdot)$

the cas

In [1] the case $M = \partial \Omega$ was considered, and it was shown that if for $i = 1, 2, ..., k$ the inequality $\varepsilon \neq ip-1$ holds, then

$$
W_0^{k,p}(\Omega; d_M, \varepsilon) \hookrightarrow H^{k,p}(\Omega; d_M, \varepsilon).
$$
\n
$$
(0.5)
$$

the symbol \hookrightarrow denoting continuous embedding; it was also shown that for all $\varepsilon \in \mathbb{R}$,

$$
H^{k,p}(\Omega; d_M, \varepsilon) \hookrightarrow W_0^{k,p}(\Omega; d_M, \varepsilon). \tag{0.6}
$$

In particular, if $\varepsilon = 0$, then for any $u \in W^{k,p}(\Omega)$ such that $D^{\alpha}u \in L^p(\Omega; d_M, (k - |\alpha|) p)$ for all $\alpha \in N_0^N$ with $|\alpha| \leq k - 1$, we have $u \in W_0^{k,p}(\Omega)$. The assumption that Ω had a Lipschitz boundary was important in [1], although insofar as the embedding (0.6) is concerned this condition can be weakened.

When $\varepsilon = 0$ it is possible, by following unpublished suggestions of D. J. HARRIS, to establish (0.6) under the sole assumption on Ω that it should be bounded (see Theorem 1.1). The method used relies on the properties of the maximal function and can be extended to the case of an arbitrary set $M\subset \partial\Omega$ and an arbitrary $\epsilon\in{\bf R}$: in Theorem *1.2* it is shown that ish (0.6) under the sole assumption
1.1). The method used relies on the
be extended to the case of an arbitrary
 $H^{k,p}(\Omega; d_M, \varepsilon) \hookrightarrow W_M^{k,p}(\Omega; d_M, \varepsilon)$.

$$
H^{k,p}(\Omega; d_M, \varepsilon) \hookrightarrow W_M^{k,p}(\Omega; d_M, \varepsilon).
$$

The embedding (0.5) follows from embedding theorems in weighted spaces;. in the case $M = \partial \Omega$, such theorems hold if $\partial \Omega$ is Lipschitzian. It was conjectured in [2] that

$$
W_M{}^{k,p}(\Omega; d_M, \varepsilon) \hookrightarrow H^{k,p}(\Omega; d_M, \varepsilon)
$$

for certain special sets M, provided that for $i=1, 2, ..., k$ the inequality $\varepsilon \neq ip-1$ holds. This conjecture is verified in Corollary 3.1, (ii); the main tool is due to the third author (J. R.) and is a fuller version of the short communication [4].

1. The embedding $H \hookrightarrow W$

First, we shall prove a theorem, which implies (0.6) for the case $\varepsilon = 0$ and $M = \partial \Omega$. This result is contained in [1], but here, the condition on *Q is* weakened and the method is completely new.

Theorem 1.1: Let Ω be a non-empty open subset of \mathbb{R}^N , Ω \neq \mathbb{R}^N , and for each $x \in \Omega$ put $d(x) = \text{dist}(x, \partial \Omega)$; iet $p \in (1, \infty)$ and $k \in \mathbb{N}$. Suppose that $u \in W^{k,p}(\Omega)$ is *such that* $ud^{-k} \in L^p(\Omega)$ *. Then* $u \in W_0^{k,p}(\Omega)$.

Proof: First suppose *Q* is bounded. Let $0 < h' < \delta$; define $u^{(\delta)}$ by $u^{(\delta)}(x) = u(x)$ if $d(x) \geq \delta$ and $x \in \Omega$, $u^{(\delta)}(x) = 0$ otherwise; let $\phi \in C_0^{\infty}(\mathbb{R}^N)$ be such that $\phi(x) = 0$ if $|x| \ge 1$, $\phi(x) > 0$ if $|x| < 1$, $\int \phi(x) dx = 1$; and put $\phi_h(x) = h^{-N} \phi(x/h)$. Let us

agree that any function g defined on Ω will be supposed extended to the whole \mathbb{R}^N , if necessary, by setting $g(x) = 0$ for all $x \in \mathbb{R}^N \setminus \Omega$. Note that $\phi_h * u^{(\delta)} \in C_0^{\infty}(\Omega)$.

Embeddings of Sobolev Spaces

First suppose that $d(x) > \delta + h$, $x \in \Omega$ and $\alpha \in N_0^N$, $|\alpha| \leq k$. Then since $B(x, h)$
 $\Rightarrow {y \in R^N : |x - y| < h} \subset B(x, \delta + h) \subset \Omega$, and $d(y) > \delta$ if $y \in B(x, h)$, uppose that $d(x) > \delta +$
 $R^N : |x - y| < h$ $\subset B(x,$
 $D^{\alpha}(\phi_h * u^{(\delta)}) (x) = D^{\alpha} \int_{B(x, h)}$
 $= D^{\alpha} \int_{R^N} \phi_h(x - y) u(y) dy$ Embeddings of Sobolev
 $> \delta + h$, $x \in \Omega$ and $\alpha \in \mathbb{N}_0^N$, $|\alpha| \leq k$. Then
 $\subset B(x, \delta + h) \subset \Omega$, and $d(y) > \delta$ if $y \in B$
 $\subset D^{\alpha} \int \phi_h(x - y) u^{(\delta)}(y) dy$
 $\sim u(y) dy = \int \phi_h(x - y) D^{\alpha}u(y) dy$; **Embeddings of Sobolev Spaces**
 D(c) $\delta + h, x \in \Omega$ and $\alpha \in \mathbb{N}_0^N$, $|\alpha| \leq k$. Then since $B(x, h)$
 $\mathbb{R}^N : |x - y| < h$, $\mathbb{D}(x, \delta + h) \subset \Omega$, and $d(y) > \delta$ if $y \in B(x, h)$,
 $D^3(\phi_h * u^{(\delta)}) (x) = D^2 \int \phi_h(x - y) u^{(\delta)}(y) dy$
 $= D^2 \$

$$
D^{x}(\phi_h * u^{(\delta)}) (x) = D^{a} \int_{B(x,h)} \phi_h(x-y) u^{(\delta)}(y) dy
$$

$$
= D^a \int_{\mathbf{R}^N} \phi_h(x - y) u(y) dy = \int_{\mathbf{R}^N} \phi_h(x - y) D^2 u(y) dy;
$$

that is,

$$
D^a(\phi_h * u^{(\delta)}) (x) = (\phi_h * D^2 u) (x) \text{ if } d(x) > \delta + h, x
$$

It follows that, with $\mathcal{M}(g)$ as the maximal function defined by
 $\mathcal{M}(g) (x) = \sup_{r>0} |B(0, r)|^{-1} \int_{B(x, r)} |g(y)| dy$
 $(|B(0, r)| = \omega_N r^N \text{ being the volume of the ball } B(0, r)), \text{ we have}$

that is,

$$
D^{\circ}(\phi_h * u^{(\delta)}) (x) = (\phi_h * D^{\circ} u) (x) \quad \text{if} \quad d(x) > \delta + h, \quad x \in \Omega.
$$

It follows that, with $\mathcal{M}(g)$ as the maximal function defined by

$$
\mathcal{M}(g) (x) = \sup_{r>0} |B(0, r)|^{-1} \int_{B(x,r)} |g(y)| dy
$$

$$
\mathcal{M}(g) (x) = \sup_{r>0} |B(0, r)|^{-1} \int_{B(x,r)} |g(y)| dy
$$

\n
$$
|B(0, r)| = \omega_N r^N \text{ being the volume of the ball } B(0, r)), \text{ we have}
$$

\n
$$
|D^{\alpha}(\phi_h * u^{(\delta)}) (x)| \leq \mathcal{M}(D^{\alpha}u) (x) \cdot \omega_N \sup_{y \in B(x,h)} \phi \left(\frac{x-y}{h}\right)
$$

\n
$$
= \mathcal{M}(D^{\alpha}u) (x) \cdot \omega_N \sup_{z \in B(0, 1)} \phi(z) = \mathcal{M}(D^{\alpha}u) (x) b(\phi), \text{ say.}
$$

\nNext, suppose that $d(x) \leq lh$ for some $l \in \mathbb{N}$, and let $\alpha \in \mathbb{N}_0^N$, $|\alpha| \leq k$. Then

$$
= \mathcal{M}(D^{\alpha}u) (x) \cdot \omega_{N} \sup_{z \in B(0,1)} \phi(z) = \mathcal{M}(D^{\alpha}u) (x) b(\phi), \text{ say.}
$$

\n
$$
\text{suppose that } d(x) \leq lh \text{ for some } l \in \mathbb{N}, \text{ and let } \alpha \in \mathbb{N}_{0}^{N}, |\alpha| \leq k. \text{ Then}
$$

\n
$$
|D^{\alpha}(\phi_{h} * u^{(\delta)}) (x)| = \left| \int_{\mathbb{R}^{N}} h^{-N-|\alpha|} (D^{\alpha} \phi) \left(\frac{x-y}{h} \right) u^{(\delta)} (y) dy \right|
$$

\n
$$
\leq h^{-N-|\alpha|} \int_{\mathbb{R}^{N}} \left| (D^{\alpha} \phi) \left(\frac{x-y}{h} \right) u^{(\delta)} (y) d^{-k} (y) \right| h^{k} (l+1)^{k} dy
$$

\n
$$
\leq \omega_{N} h^{k-|\alpha|} (l+1)^{k} \mathcal{M}(ud^{-k}) (x) \sup_{z \in B(0,1)} | (D^{\alpha} \phi) (z)|.
$$

\nwe take $\delta = 2h = 2/j \ (j \in \mathbb{N})$ and $l = 3$, we see that for all $x \in \Omega$, for all
\nwith $|\alpha| \leq k$, and for all $j \in \mathbb{N}$,
\n
$$
|D^{\alpha}(\phi_{1/j} * u^{(2/j)} (x))|
$$

\n
$$
\leq \max \{b(\phi) \mathcal{M}(D^{\alpha}u) (x), \quad 4^{k}c(\alpha, \phi) \mathcal{M}(ud^{-k}) (x) \} := G_{\alpha, \varphi}(x), \qquad (1.2)
$$

\n
$$
x, \phi) = \omega_{N} \sup_{z \in B(0,1)} | (D^{\alpha} \phi) (z)|. \text{ Since, by } [5: \text{Chap. I, Th. 1}], \mathcal{M} \text{ is a bounded}
$$

Thus if we take $\delta = 2h = 2/j$ $(j \in \mathbb{N})$ and $l = 3$, we see that for all $x \in \Omega$, for all therefore the *s* of the take *δ* = K_0^N with $|α|$ ≤ $|D^2/d|$ + \ge $|D^2/d|$ $\alpha \in N_0^N$ with $|\alpha| \leq k$, and for all $j \in N$,

$$
|D^{2}(\phi_{1/j} * u^{(2/j)}(x))|
$$

\n
$$
\leq \max \{b(\phi) \mathcal{M}(D^{2}u)(x), \quad 4^{k}c(\alpha, \phi) \mathcal{M}(ud^{-k})(x)\} := G_{\alpha,\alpha}(x).
$$
 (1.2)

where $c(\alpha, \phi) = \omega_N$ sup $|(D^3\phi)(z)|$. Since, by [5: Chap. I, Th. 1], *M* is a bounded mapping from $L^p(\mathbf{R}^N)$ into $L^p(\mathbf{R}^N)$, it follows that $G_{a,p} \in L^p(\mathbf{R}^N)$. Moreover, for each $\alpha \in N_0^N$ with $|\alpha| \leq k$, $\phi_{1/j} * D^2 u \to D^2 u$ in $L^p(\Omega)$ as $j \to \infty$, and hence there is a subsequence $(j(l))$ of the sequence of positive integers such that for all $\alpha \in N_0$ ^{*N*} with $|\alpha| \leq k$, $(\phi_{1/i(1)} * D^{\alpha}u)(x) \rightarrow D^{\alpha}u(x)$ almost everywhere in Ω . Thus by (1.1), $\delta = 2h = 2/j \ (j \in \mathbb{N})$ and $l = 3$,
 $\leq k$, and for all $j \in \mathbb{N}$,
 $\langle u^{(2j)}(x) \rangle$
 $b(\phi) \mathcal{M}(D^a u)(x)$, $4^k c(\alpha, \phi) \mathcal{M}(u, \theta)$
 $\mathcal{M} \leq \mathcal{M}(D^a u)(x)$, $4^k c(\alpha, \phi) \mathcal{M}(u, \theta)$
 $\mathcal{M} \leq \mathcal{M}(D^a u)(x)$, $4^k c(\alpha, \phi$ *(0,1)*

hat for all $x \in \Omega$, for all
 $= G_{\alpha,\varphi}(x)$, (1.2)

Th. 1], *M* is a bounded
 (\mathbb{R}^N) . Moreover, for each
 ∞ , and hence there is a

that for all $\alpha \in \mathbb{N}_0^N$ with

Thus by (1.1), (1.3)
 \mapsto theorem, Example $\alpha \in N_0^N$ with $|\alpha| \leq k$, $\phi_{1/j} * D^3 u \to D^3 u$ in $L^p(\Omega)$ as subsequence $(j(l))$ of the sequence of positive integer $|\alpha| \leq k$, $(\phi_{1/j(l)} * D^3 u)(x) \to D^3 u(x)$ almost everywhere $D^3(\phi_{1/j(l)} * u^{(2/j(l))})(x) \to D^3 u(x)$
a.e. in

$$
D^{2}(\phi_{1/j(t)} * u^{(2/j(t))})(x) \to D^{2}u(x)
$$
\n(1.3)

a.e. in Ω . Together with Lebesgue's dominated convergence theorem, (1.2) and (1.3) show that $(\phi_{1/2}(t) * u^{(2/2)})) \rightarrow u$ in $W^{k,p}(\Omega)$; that is, $u \in W_0^{k,p}(\Omega)$.

If Ω is unbounded we simply apply the arguments above to $u\psi_m := u_m$, where **a.e. in** Ω **. Together with Lebesgue's dominated convergence theorem, (1.2) and (1.3)**
show that $(\phi_{1/j(t)} * u^{(2/j(t))}) \rightarrow u$ in $W^{k,p}(\Omega)$; that is, $u \in W_0^{k,p}(\Omega)$.
If Ω is unbounded we simply apply the arguments above to

Note that if Ω is bounded, the validity of (0.6), when $\varepsilon = 0$ and $M = \partial \Omega$, follows immediately from Theorem 1.1. We now set about the proof of (0.6) for general ε and M.

D. E. EDMUNDS, A. KUFNER and J. RAKOSNIK
Theorem 1.2: Let Ω be a bounded domain in \mathbb{R}^N , let $M \subset \partial \Omega$, $M + \emptyset$, and let $\in (1, \infty)$, $k \in \mathbb{N}$ and $\varepsilon \in \mathbb{R}$. Then **28 p. E.** EDMUNDS, A. KUFNER and J. RAKOSNIK
 PE(1, ∞ **),** $k \in \mathbb{N}$ and $\varepsilon \in \mathbb{R}$. Then
 $H^{k,p}(\Omega; d_M, \varepsilon) \hookrightarrow W_M^{k,p}(\Omega; d_M, \varepsilon)$.

Proof: Let $u \in H^{k,p}(\Omega; d_M, \varepsilon)$, and for any $\delta > 0$ write $u^{(\delta)}(x) = v$ *H*_e Ω *Let* Ω *be a bounded dom*
 H^k, $P(\Omega; d_M, \varepsilon) \hookrightarrow W_M^{k,p}(\Omega; d_M, \varepsilon)$.

$$
H^{k,p}(\Omega; d_M, \varepsilon) \hookrightarrow W_M^{k,p}(\Omega; d_M, \varepsilon).
$$

Proof: Let $u \in H^{k,p}(\Omega; d_M, \varepsilon)$, and for any $\delta > 0$ write $u^{(\delta)}(x) = u(x)$ if $d_M(x) > \delta$ and $x \in \Omega$, $u^{(\delta)}(x) = 0$ otherwise. Let ϕ be as in the proof of Theorem 1.1 and write $H^{k,p}(\Omega; d_M, \varepsilon) \hookrightarrow W_M^{k,p}(\Omega; d_M, \varepsilon).$

Proof: Let $u \in H^{k,p}(\Omega; d_M, \varepsilon)$, and for any $\delta > 0$ write $u^{(\delta)}$

and $x \in \Omega$, $u^{(\delta)}(x) = 0$ otherwise. Let ϕ be as in the proof of Ω
 $\phi_h(x) = h^{-N}\phi(x/h)$ $(h > 0, x \in \mathbb{R}^N)$. ***** u(3h). We distinguish various cases. $\epsilon \cdot (1, \infty)$, $k \in \mathbb{N}$ and $\varepsilon \in \mathbb{R}$. Then
 $H^{k,p}(\Omega; d_M, \varepsilon) \hookrightarrow W_M^{k,p}(\Omega)$

Proof: Let $u \in H^{k,p}(\Omega; d_M, \varepsilon)$, ε

d $x \in \Omega$, $u^{(\delta)}(x) = 0$ otherwise. I
 $(x) = h^{-N}\phi(x/h)$ ($h > 0, x \in \mathbb{R}^N$)

rious cases.

(i) Le **28 D. E. ÉDMUNDS, A.** *KOFNER* and **J. RAKOSNIK**
 Theorem 1.2: Let Ω be a bounded domain in \mathbb{R}^N , let $M \subset \partial \Omega$, $M \neq \emptyset$, and let
 $p \in (1, \infty)$, $k \in \mathbb{N}$ and $\varepsilon \in \mathbb{R}$. Then
 $H^{k,p}(\Omega; d_M, \vare$ $H^{k,p}(\Omega; d_M, \varepsilon) \hookrightarrow W_M^{k,p}(\Omega; d_M, \varepsilon).$
 $H^{k,p}(\Omega; d_M, \varepsilon) \hookrightarrow W_M^{k,p}(\Omega; d_M, \varepsilon).$
 $H^{k,p}(\Omega; d_M, \varepsilon)$, and for any $\delta > 0$ write $u^{(\delta)}(x) = u(x)$ if $d_M(x) > \delta$,
 $v^{(\delta)}(x) = 0$ otherwise. Let ϕ be as in the proof of Theorem 1

$$
d_M(x) \geq 2h. \tag{1.4}
$$

 $d_M(x) \geq 2h$.
 $d_M(x) \leq 4h$.
 $d_M(x) \geq 4h$. Then $v_A(x) = h^{-N} \int \phi \left(\frac{x-y}{h} \right) u^{(3h)}(y) dy = 0$ since by (1.4) if $y \in B(x, h)$ then
 $d_M(y) < 3h$ and consequently $u^{(3h)}(y) = 0$. It follows that
 \therefore supp $v_h \subset \Omega_h := \{x \in \Omega : d_M(x) > h\}$.

Note that $\Omega_h \cap \overline{M} = \emptyset$.

(ii) Sup $\begin{align*} \mathcal{L}_\mathcal{D}(x) &= h^{-N} \int \phi \left(\frac{dy}{dx} \right) u^{(3h)}(y) \, dy = 0, \ \mathcal{L}_\mathcal{B}(x, h) \ \mathcal{L}_\mathcal{B}(x, h) &= \mathcal{L}_\mathcal{B}(x) u^{(3h)}(y) = 0. \ \mathcal{L}_\mathcal{B}(x, h) &= \mathcal{L}_\mathcal{B}(x, h) \mathcal{L}_\mathcal{B}(x) &= \mathcal{L}_\mathcal{B}(x, h) \mathcal{L}_\mathcal{B}(x, h) &= \mathcal$

 $d_M(y) < 3h$ and consequently $u^{(3h)}(y) = 0$. It follows that

$$
\operatorname{supp} v_h \subset \Omega_h := \{x \in \Omega : d_M(x) > h\} \,. \tag{1.5}
$$

Note that $\Omega_h \cap \overline{M} = \emptyset$.

(ii) Suppose that $x \in \Omega$ is such that

$$
2h < d_M(x) \leq 4h.
$$

Then if $y \in B(x, h)$ we see that

$$
h < d_M(y) < 5h \tag{1.7}
$$

$$
d_M(x) \approx h, \qquad d_M(y) \approx h,\tag{1.8}
$$

with the obvious meaning of the symbol ∞ . For all $\alpha \in N_0^N$, $|\alpha| \leq k$, we have

ote that
$$
\Omega_h \cap \overline{M} = \emptyset
$$
.
\n(ii) Suppose that $x \in \Omega$ is such that
\n $2h < d_M(x) \le 4h$.
\nthen if $y \in B(x, h)$ we see that
\n $h < d_M(y) < 5h$;
\nand (1.6) and (1.7) imply the equivalence of h, $d_M(x)$ and $d_M(y)$:
\n $d_M(x) \approx h$, $d_M(y) \approx h$,
\n(iii) the obvious meaning of the symbol \approx . For all $\alpha \in N_0^N$, $|\alpha| \le k$, we have
\n $|D^*v_h(x)| = |D^* \int_{\mathbb{R}^N} \phi_h(x - y)u^{(3h)}(y) dy| = h^{-N} \left| \int_{\mathbb{R}^N} D^* \phi \left(\frac{x - y}{h} \right) u^{(3h)}(y) dy \right|$
\n $\le h^{\alpha, N-|\alpha|} \int_{\mathbb{R}^N} |D^* \phi(x)| |D^* \phi(x)| |D^* \phi(x)| |D^* \phi(x)| dy$
\n $\le \int_{\mathbb{R}^N} |D^* \phi(x)| |D^* \phi(x)| |D(x, h)|^{-1} |D^* \phi(x)| dy$
\n $\le c_0 h^{-|\alpha|} |B(x, h)|^{-1} \int_{B(x, h)} |u(y)| dy^{(t/p)-k}(y) dy \cdot h^{k-(t/p)}$
\n $\le c_1 h^{k-|\alpha|} |B(x, h)|^{-1} \int_{B(x, h)} |u(y)| dy^{(t/p)-k}(y) dy \cdot [d_M(x)]^{-t/p}$,
\nthe last two inequalities following from the equivalence of $d_M(y)$ and h, and that of
\n $u(x)$ and h. Thus we have
\n $|D^* v_h(x)| d_M^{t/p}(x) \le c_1 h^{k-|\alpha|} M (u d_M^{t(p)-k}) (x)$,
\nthere, as before, At stands for the maximal function and any function on Ω is extended
\ny zero in $\mathbb{R}^N \setminus \Omega$.
\n(iii) Let $x \in \Omega$ be such that for some $l \ge 4$,
\n $lh < \frac{d_M(x)}{d$

the last two inequalities following from the equivalence of $d_M(y)$ and h , and that of $d_M(x)$ and *h*. Thus we have *Bia*

wo inequalities following from
 lh. Thus we have
 $|D^{\alpha}v_h(x)| d_M^{s/p}(x) \leq c_1 h^{k-|\alpha|} M(u)$

before, *M* stands for the maxim

n $\mathbb{R}^N \setminus \Omega$.
 $t x \in \Omega$ be such that for some *l*
 $lh < d_M(x) < (l + 1) h$.

$$
|D^{\alpha}v_n(x)| d_M^{t/p}(x) \leq c_1 h^{k-|\alpha|} \mathcal{M}(ud_M^{(t/p)-k})(x), \qquad (1.9)
$$

(1.10)

where, as before, ${\mathscr M}$ stands for the maximal function and any function on Ω is extended by zero in $\mathbb{R}^N\setminus\Omega$. $\frac{1}{2}$ on Ω is external to $\frac{1}{2}$

(iii) Let $x \in \Omega$ be such that for some $l \geq 4$,

$$
lh < d_M(x) < (l+1) \, h \, .
$$

Embeddings of Sobolev Spaces 29

Let $y \in B(x, h)$. Then

Embeddings of Sobolev Spaces	29	
$B(x, h)$. Then	(l - 1) $h < d_M(y) < (l + 2) h$,	(1.11)
10) together with (1.11) imply	$d_M(x) < l h$	(1.12)

$$
d_M(x) \approx lh, \qquad d_M(y) \approx lh. \tag{1.12}
$$

Embed

Let $y \in B(x, h)$. Then
 $(l-1) h < d_M(y) < (l+2) h$,

and (1.10) together with (1.11) imply
 $d_M(x) \approx lh$, $d_M(y) \approx lh$.

From (1.11) it follows that $u^{(3h)}(y) = u(y)$, since $d_M(y) >$ Embeddings of Sobolev Spaces
 d(x, h). Then

(*l* - 1) $h < d_M(y) < (l + 2) h$,

(1.11) imply

(*d_M(x)* $\approx lh$, $d_M(y) \approx lh$.

(1.12)

(1.12)

(1) it follows that $u^{(3h)}(y) = u(y)$, since $d_M(y) > (l - 1) h \ge 3h$. For $\alpha \in N_0^N$,

we and (1.10) together with (1.11) imply
 $d_M(x) \approx lh$, $d_M(y) \approx lh$. (1.12)

From (1.11) it follows that $u^{(3h)}(y) = u(y)$, since $d_M(y) > (l - 1)$ $h \ge 3h$. For $\alpha \in N_0^N$,
 $|\alpha| \le k$, we find, as in (ii), that

Let
$$
y \in B(x, h)
$$
. Then
\n
$$
(l-1) h < d_M(y) < (l+2) h,
$$
\n
$$
(l-1) h < d_M(y) \approx lh.
$$
\n(1.12)
\nFrom (1.11): it follows that $u^{(3h)}(y) = u(y)$, since $d_M(y) > (l-1) h \ge 3h$. For $\alpha \in N_0^N$,
\n $|\alpha| \le k$, we find, as in (ii), that
\n
$$
|D^{\alpha}v_h(x)| = |D^{\alpha} \int \phi_h(x-y) u^{(3h)}(y) dy| = |D^{\alpha} \int \phi_h(x-y) u(y) dy|
$$
\n
$$
= \left| \int_{R^N} \phi_h(x-y) D^{\alpha}u(y) dy \right| = |D^{\alpha} \int \phi_h(x-y) u(y) dy|
$$
\n
$$
= \left| \int_{R^N} \phi_h(x-y) D^{\alpha}u(y) dy \right| = h^{-N} \left| \int_{B(x,h)} \phi \left(\frac{x-y}{h} \right) D^{\alpha}u(y) dy \right|
$$
\n
$$
\le c_2 \left(\sup_{z \in R^N} \phi(z) \right) |B(0, 1)| |B(x,h)|^{-1}
$$
\n
$$
\times \int |D^{\alpha}u(y)| d_M^{(\alpha/p) - (k-|\alpha|)}(y) dy \cdot (lh)^{-(\alpha/p) + k - |\alpha|}
$$
\nHence
\n
$$
|D^{\alpha}v_h(x)| d_M^{(\alpha/p)}(x) \le c_3 M(D^{\alpha}u \cdot d_M^{(\alpha/p) - (k-|\alpha|)})(x) \cdot (d_M(x))^{-(\alpha/p) + k - |\alpha|}
$$
\nHence
\n
$$
|D^{\alpha}v_h(x)| d_M^{(\alpha/p)}(x) \le c_3 M(D^{\alpha}u \cdot d_M^{(\alpha/p) - (k-|\alpha|)})(x) \cdot d_M^{k-|\alpha|}(x).
$$
\n(1.13)
\nHowever, since Q is bounded and $|\alpha| \le k$, $d_M^{k-|\alpha|}(x)$ is bounded. Thus there is a constant c_4 such that
\n
$$
|D^{\alpha}v_h(x)| d_M^{(\alpha/p)}(x) \le c_4 M(D^{\alpha}u \cdot d_M^{(\alpha/p)
$$

• '• .

$$
D^{\alpha}v_h(x)| d_M^{(\epsilon/p)}(x) \leq c_3 \mathcal{M}(D^{\alpha}u \cdot d_M^{(\epsilon/p) - (\kappa - |\alpha|)}) (x) \cdot d_M^{k - |\alpha|}(x). \tag{1.13}
$$

 $|D^s v_h(x)| d_M^{(t/p)}(x) \leq c_3 \mathcal{M}(D^s u \cdot d_M^{(t/p)-(k-|\alpha|)}) (x) \cdot d_M^{k-|\alpha|}(x)$. (1.13)

However, since Ω is bounded and $|\alpha| \leq k$, $d_M^{k-|\alpha|}(x)$ is bounded. Thus there is a constant c_4 such that
 $|D^s v_h(x)| d_M^{(t/p)}(x) \leq c_4 \mathcal{M$ stant c_4 such that

$$
|D^{\mathfrak{s}} v_h(x)| d_M^{(\epsilon/p)}(x) \leq c_4 \mathcal{M}(D^{\mathfrak{s}} u \cdot d_M^{(\epsilon/p)-(\kappa-|\mathfrak{a}|)}) (x).
$$

It follows from (i), (ii) and (iii) that if $0 < h \le 1$, there is a constant c_5 , independent of *h*, such that for all $x \in \Omega$ and all $\alpha \in N_0^N$ with $|\alpha| \leq k$,

$$
|D^{\circ}v_{h}^{'}(x)| d_{M}^{\epsilon/p}(x) \leq c_{5}G(x), \qquad (1.14)
$$

where $G(x) := \max \{ \mathcal{M}(ud_M^{(\epsilon/p)-k}) (x), \mathcal{M}(D^{\alpha}u \cdot d^{(\epsilon/p)-k+|\alpha|}) (x) \}$. Since $u \in H^{k,p}(\Omega; d_M, \varepsilon)$, $D^{\alpha}u \cdot d_M^{(i/p)-k+|\alpha|} \in L^p(\Omega)$ and hence $D^{\alpha}u \cdot d_M^{(i/p)-k+|\alpha|} \in L^p(\mathbb{R}^N)$; in particular, $ud_M^{(t/p)-k} \in L^p(\mathbf{R}^N)$. The properties of the maximal function now imply that $|D^{\alpha}v_h(x)| d_M^{(\epsilon/p)}(x) \leq c_3$,
 since Ω is bounded and
 gelical i i i y n(*x*) *d_M*^{(*tp*})(*x*) $\leq c_4$,
 ws from (i), (ii) and (iii)
 s (*x*), $d_M^{(\epsilon/p)}(x) \leq c_5$
 gelical i gelical i geli It is from (i), (ii) and (iii) that if $0 < h \leq 1$, there is a constant c_5 , indepen-
 $|D^*v_h(x)| d_M^{t/p}(x) \leq c_5 G(x)$, (1.14)
 $|D^*v_h(x)| d_M^{t/p}(x) \leq c_5 G(x)$, (1.14)
 $|D^*v_h(x)| d_M^{t/p}(x) \leq c_5 G(x)$, (1.16)
 $|D^*v_h(x)| \leq c_5 G(x)$, at if $0 < h \leq 1$, there is a constant c_5 , independenting $\alpha \in N_0^N$ with $|\alpha| \leq k$,

(1.14)
 (1.14)
), (A(D²u $d^{(e/p)-k+|z|}(x)$). Since $u \in H^{k,p}(\Omega; d_M, \varepsilon)$,

mee $D^2u \cdot d_M^{(e/p)-k+|z|} \in L^p(\mathbb{R}^N)$; in parti

 (1.15)

By the Lebesgue dominated convergence theorem, the assumption that as $h \rightarrow 0$,

$$
|D^{\mathbf{a}}v_h(x)| d_M^{e/p}(x) \to |D^{\mathbf{a}}u(x)| d_M^{e/p}(x) \tag{1.16}
$$

 $G \in L^p(\mathbf{R}^N)$. (1.15)
By the Lebesgue dominated convergence theorem, the assumption that as $h \to 0$,
 $|D^{\alpha}v_h(x)| d_M^{\epsilon/p}(x) \to |D^{\alpha}u(x)| d_M^{\epsilon/p}(x)$ (1.16)
for almost all $x \in \Omega$, implies (in view of (1.14) and (1.15)) that d_M ^{*i*} PD^u in L^p ; that is,

$$
v_h \to u \quad \text{in} \quad W^{k,p}(\Omega; d_M, \varepsilon), \tag{1.17}
$$

 $|D^{\circ}v_h(x)| d_M^{l/p}(x) \leq c_5G(x),$

where $G(x) := \max {\mathcal{M}(ud_M^{(t/p)-k})}(x), c$
 $D^{\circ}u \cdot d_M^{(t/p)-k+|\alpha|} \in L^p(\Omega)$ and hence
 $ud_M^{(t/p)-k} \in L^p(\mathbf{R}^N)$. The properties of
 $G \in L^p(\mathbf{R}^N)$.

By the Lebesgue dominated converges
 $|D^{\circ}v_h$ All that remains to complete the proof of the Theorem is to establish (1.16). To do this, let $\delta > 0$, $\Omega_{\delta} = \{x \in \Omega : d_M(x) > \delta\}$, and note that since $u \in H^{k,p}(\Omega; d_M, \varepsilon)$, which is what we need.

All that remains to complete the proof of the Theorem is to establish (1.16). The this, let $\delta > 0$, $\Omega_{\delta} = \{x \in \Omega : d_M(x) > \delta\}$, and note that since $u \in H^{k,p}(\Omega; d_M, \varepsilon)$
 $u \in W^{k,p}(\Omega_{\delta})$. For $h \$ *k,* and $\int_0^{\infty} u d_M^{(x/p)-k} \in L^p(\mathbb{R}^N)$. The properties of the maximal function now imp
 $G \in L^p(\mathbb{R}^N)$.

By the Lebesgue dominated convergence theorem, the assumption the
 $|D^*v_h(x)| d_M^{(x/p)}(x) \rightarrow |D^*u(x)| d_M^{r/p}(x)$

for al

$$
D^{\alpha}v_{h}(x) = D^{\alpha}(\phi_{h} * u^{(3h)}) (x) = D^{\alpha}(\phi_{h} * u) (x) = (\phi_{h} * D^{\alpha}u) (x),
$$

and as $h\to 0$,

$$
\rightarrow 0,
$$

$$
D^*v_h \rightarrow D^*u \text{ in } L^p(\Omega_\delta).
$$

30 D. E. EDMUNDS, A. KUFNER and J. RAKOSNIK

since $\phi_h * D^{\alpha}u \to D^{\alpha}u$ in $L^p(\Omega_\delta)$. From (1.18) it follows that there is a sequence (h_n) of positive real numbers, converging to 0, such that $D^*v_{h} \to D^*u$ almost everywhere in Ω_{δ} . Now take $\delta = 1/k_0$, $k_0 \in \mathbb{N}$, and let $(v_n^{(1)})$ be the sequence (v_{h_n}) for this particular δ . Let $(v_n^{(2)})$ be a subsequence of $(v_n^{(1)})$ such that *D. E. EDMUNDS, A. KUFNER and J. RAKOSNIK*
 D'w. $\rightarrow D^*u$ in $L^p(\Omega_\delta)$. From (1.18) it follows that there is a sequence (h_n)
 e real numbers, converging to 0, such that $D^*v_{h_n} \rightarrow D^*u$ almost everywhere
 w take of positive real numbers, converging to 0, such in Ω_{δ} . Now take $\delta = 1/k_0$, $k_0 \in \mathbb{N}$, and let $(v_n$

cular δ . Let $(v_n^{(2)})$ be a subsequence of $(v_n^{(1)})$
 $D^a v_n^{(2)} \rightarrow D^a u$ a.e. in $\Omega_{1/(k_0+1)}$;

more generall

$$
D^{\alpha}v_n^{(2)} \to D^{\alpha}u \quad \text{a.e. in} \quad \Omega_{1/(k_0+1)};
$$

more generally let $(v_n^{(l)})$ be a subsequence of $(v_n^{(l-1)})$ such that

$$
D^{\alpha}v_n^{(l)} \to D^{\alpha}u \quad \text{a.e. in} \quad \Omega_{1/(k_0+l)}.
$$

It follows that the diagonal sequence (w_n) , $w_n = v_n^{(n)}$, has the property that

$$
D^*w_n \to D^*u \quad \text{a.e. in } \Omega. \tag{1.19}
$$

Of course; $\{w_n : n \in \mathbb{N}\} \subset \{v_n : h > 0\}$. Moreover, while the multi-index α was fixed, it is easy to see that matters can be arranged so that (1.19) holds for *every* $\alpha \in N_0$ ^N with

$$
d_M{}^{t/p}D^{\alpha}w_n \to d_M{}^{t/p}D^{\alpha}u \quad \text{a.e. in } \Omega,
$$

and the arguments used to pass from (1.16) to (1.17) show that $w_n \to u$ in $W^{k,p}(Q)$; d_M , ε). Our discussion in (i) shows that supp $w_n \circ \overline{M} = \emptyset$ (see (1.5)); moreover, $w_n \in C^\infty(\mathbb{R}^N)$. Hence $u \in W_M^{k,p}(\Omega; d_M, \varepsilon)$, and the proof is complete, since the continuity of the embedding of *H* in *W* is clear \blacksquare is easy to see that matters can be arranged so that (1.19) no
 $|\alpha| \leq k$. Thus
 $d_M^{t/p}D^s w_n \to d_M^{t/p}D^s u$ a.e. in Ω ,

and the arguments used to pass from (1.16) to (1.17) show
 d_M , ε). Our discussion in (i) shows

2. The embedding $W \hookrightarrow H$

Now we shall deal with embeddings inverse to those of \S 1. For this case, we need more special domains.

Definition 2.1: Put $Q=(0,1)^N$ and $Q(m)=\{x\in\overline{Q}:x_{m+1}=\cdots=x_N=0\},$ $m = 0, 1, ..., N - 1$. A closed subset *M* of $\partial\Omega$ is said to be a *manifold of dimension m* on. $\partial\Omega$ if there is an open covering ${U_i}_{i=0}^{\omega}$ (w finite or $\omega = \infty$) of Ω with the following d_M , ε). Our discussion in (i) shows that sue $w_n \in C^{\infty}(\mathbb{R}^N)$. Hence $u \in W_M^{k,p}(\Omega; d_M, \varepsilon)$, a
continuity of the embedding of H in W is clear
2. The embedding $W \hookrightarrow H$
Now we shall deal with embeddings inver 2. The embedding W

Now we shall deal w

more special domain

Definition 2.1:
 $m = 0, 1, ..., N - 1$

on 0.22 if there is an 0

properties:

(i) $M \subset \bigcup_{i=1}^{w} U_i$, an

is disjoint;

(ii) there exists δ :
 $d_M(x) \geq \delta$, *dm(x) 2^* 6, for all x E *U0 ;*

properties:

(i) $M \subset \bigcup_{i=1}^{\omega} U_i$, and there exists $s \in \mathbb{N}$ such that every system of $(s + 1)$ sets U_i

is disjoint; **i=I**

(ii) there exists $\delta > 0$ such that

$$
d_M(x) \geq \delta
$$
, for all $x \in U_0$;

(iii) there are numbers c_1 , c_2 , with $c_2 \geq c_1 > 0$, and a system of one-to-one mappings $T_i:\bar{Q}\to\overline{Q\cap U_i}$ $(i=1,2,..., \omega)$ such that $T_i(Q(m))=M\cap\overline{U}_i$ and $\begin{aligned} &\text{c}, \ &\text{c}} \text{c} \text{ exists } \delta > 0, \ &d_M(x) \geqq \delta, \ \text{for} \ &\text{c} \text{ are number} \ &\text{c} \text{ } \overline{\Omega \cap U}_i \ (i=1,2) \leqq 1, \ &\text{c} \text{ } \overline{\Omega} \text{ and } \overline{\Omega} \text{ and } \overline{\Omega} \text{.} \end{aligned}$ *T* all $x \in U_0$;
 $x c_1, c_2$, with $c_2 \ge c_1 > 0$, and a sys
 $x, 2, ..., \omega$ such that $T_i(Q(m)) = M$
 $T_i(x) - T_i(y)| \leq c_2 |x - y|$
 $T_i(0, ..., \omega)$.

(2.1)

$$
c_1 |x - y| \leq |T_i(x) - T_i(y)| \leq c_2 |x - y|
$$

For all $x, y \in \overline{Q}$ and $i = 1$, ..., α is set M or α *i* α *i* Remark 2.2: In what follows we shall see that this notion of an m -dimensional manifold on $\partial\Omega$ is suitable for dealing with embeddings of Sobolev spaces with weights which are powers of d_M . We use simple idea to avoid technical complications, but theorems of the type of the following Theorem 2.3 hold for more general sets *M.* and

P
/ Embeddings of Sobolev Spaces 31

 ϵ and ϵ in particular for the set

$$
M^* := \bigcup_{i=1}^n \{x \in \bar{Q} : x_i = 0 \text{ for } j \neq i\} \subset \partial \Omega,
$$

which is not a one-dimensional manifold on $\partial\Omega$ in the sense of Definition 2.1.

Theorem 2.3: Let $\Omega \subset \mathbb{R}^N$ *be a domain, let* $M \in \partial \Omega$ *be an m-dimensional manifold on* $\partial\Omega$ *, let m* \in {0, 1, ..., *N* - 1} *and suppose that* $p \in (1, \infty)$ *. Then:*

$$
V \hookrightarrow L^p(\Omega; d_M, \varepsilon - p) \tag{2.3}
$$

where

Finded ings of Sobolev Spaces

11

and for the set
 $M^* := \bigcup_{i=1}^N \{x \in \overline{Q} : x_i = 0 \text{ for } j \neq i\} \subset \partial\Omega$,

and a one-dimensional manifold on $\partial\Omega$ in the sense of Definition 2.1.

em 2.3: Let $\Omega \subset \mathbb{R}^N$ be a domain, l (i) $V = W^{1,p}(Q; d_M, \varepsilon)$ *if s s* **i** $M^* := \bigcup_{i=1}^N \{x \in \overline{Q} : x_i = 0 \text{ for } j \neq i\} \subset \partial\Omega,$

is not a one-dimensional manifold on $\partial\Omega$ in the sense of Definition 2.1.

sorem 2.3: Let $\Omega \subset \mathbb{R}^N$ be a domain, let $M \in \partial\Omega$ be an m-dimensional m $M^* := \bigcup_{i=1}^{N} \{x \in \bar{Q} : x_j = 0 \text{ for } j \neq i\} \subset \partial\Omega,$

which is not a one-dimensional manifold on $\partial\Omega$ in the sense of Definition 2.1.

Theorem 2.3: Let $\Omega \subset \mathbb{R}^N$ be a domain, let $M \in \partial\Omega$ be an m-dimensional manif *i* is not a on-dimensional manifold on $\partial\Omega$ in the sense of Definition 2.1.

eorem 2.3: Let $\Omega \subset \mathbb{R}^N$ be a domain, let $M \in \partial\Omega$ be an m-dimensional manifold, let $m \in \{0, 1, ..., N-1\}$ and suppose that $p \in (1, \infty)$. l *number*.
 \geq covering {{ ϕ_i , $i = 0, 1, ...$ }
 l u , such the

(ii)
$$
\sqrt{V} = W_M^{1,p}(\Omega; d_M, \varepsilon) \, \text{if}
$$

 $\varepsilon + p + m - N;$ (2.6)

(iii)
$$
V = W_0^{1,p}(\Omega; d_M, \varepsilon)
$$
 if $m < N - 1$ and ε is an arbitrary real number.

Proof: Let $(\phi_i)_{i=0}^{\infty}$ be a partition of unity subordinate to the covering ${U_i}_{i=0}^{\infty}$ mentioned in Definition 2.1. Let $u \in W^{1,p}(\Omega; d_M, \varepsilon)$ and put $u_i = u\phi_i$, $i = 0, 1, ..., \omega$. It is enough to prove that there is a constant c , independent of u , such that for *•* $f(x) = W_0^{1,p}(\Omega; d_M, \varepsilon)$ *if* $m < N - 1$ *and* ε *is an arbitrary real number.*
 (2.6)
 (2.7)
 (2.7)
 $\varepsilon \geq m - N$;
 $= W_M^{1,p}(\Omega; d_M, \varepsilon)$ if
 $\varepsilon + p + m - N$;
 $= W_0^{1,p}(\Omega; d_M, \varepsilon)$ if $m <$
 \therefore Let $(\phi_i)_{i=0}^{\infty}$ be a partit

of in Definition 2.1. Let us ugh to prove that there
 \ldots, ω ,
 $\int |u_i(x)|^p d_M^{t-p}(x) dx \leq$
 $u_i \wedge \$ **•** ed in Definition 2.1. Let $u \in W^{1,p}(\Omega; d_M, d_M)$

wugh to prove that there is a constant \cdots , ω ,
 $\int_{U_1 \cap \Omega} |u_i(x)|^p d_M^{e-p}(x) dx \leq c ||u_i||_W$.
 $0, (2.7)$ holds trivially in view of (2.1). N

implicity omit the subscript

$$
i = 0, 1, ..., \omega,
$$

$$
\int_{U_i \cap \Omega} |u_i(x)|^p d_M^{s-p}(x) dx \le c ||u_i||_W.
$$

For $i = 0$, (2.7) holds trivially in view of (2.1). Now suppose that $i > 0$, and for the

$$
c_1 d_{Q(m)}(y) \leq d_M(T(y)) \leq c_2 d_{Q(m)}(y) \tag{2.8}
$$

For $i = 0$, (2.1) holds trivially in view of (2.1) . Now suppose the sake of simplicity omit the subscript *i* on u_i and U_i . By (2.2)
 $c_1 d_{Q(m)}(y) \le d_M(T(y)) \le c_2 d_{Q(m)}(y)$

for all $y \in \overline{Q}$; and from [3: Chap. 2, for all $y \in \overline{Q}$; and from [3: Chap. 2, Lemma 3.1] it follows that there are positive constants c_3 , c_4 , depending only on c_1 , c_2 , p and N , such that

$$
\begin{aligned}\n\cdots, \omega, \\
\int |u_i(x)|^p d_M^{t-p}(x) dx &\leq c \|u_i\|_{\mathcal{W}}.\n\end{aligned}
$$
\n(2.7)
\n
$$
0, (2.7) \text{ holds trivially in view of (2.1). Now suppose that } i > 0, \text{ and for the\nimplicitly omit the subscript } i \text{ on } u_i \text{ and } U_i. \text{ By (2.2)}\n\end{aligned}
$$
\n
$$
c_1 d_{Q(m)}(y) \leq d_M(T(y)) \leq c_2 d_{Q(m)}(y) \tag{2.8}
$$
\n
$$
\in \overline{Q}; \text{ and from [3: Chap. 2, Lemma 3.1] it follows that there are positive\nso c_3 , c_4 , depending only on c_1 , c_2 , p and N , such that\n
$$
\begin{aligned}\nc_3 \int |w(x)|^p dx &\leq \int |w(T(y))|^p dy \leq c_4 \int |w(x)|^p dx \\
&\leq L^p(\Omega \cap U).\n\end{aligned}
$$
\n
$$
\in L^p(\Omega \cap U).
$$
\n
$$
\begin{aligned}\n\text{and } v(y) &= u(T(y)), \text{ and introduce the "cylindrical" coordinates}\n\end{aligned}
$$
$$

It is enough to prove that there is a constant c, independent of u, such that for $i = 0, 1, ..., \omega$,
 $\int |u_i(x)|^p d_{M}^{t-p}(x) dx \le c ||u_i||_W$. (2.7)

For $i = 0, (2.7)$ holds trivially in view of (2.1). Now suppose that $i > 0$, and for For all $y \in Q$ put $v(y) = u(T(y))$, and introduce the "cylindrical" coordinates or all $w \in L^p(\Omega \cap U)$.

For all $y \in Q$ put $v(y) = u(T(y))$, and introduce the "cylindrical" coordinates
 $y = (y', y'') \mapsto (y', \theta, r), \quad y' = (y_1, ..., y_m), \quad \theta \in \Xi := \left(0, \frac{\pi}{2}\right)^{N-m-1}, \quad r \in (0, R(\theta)),$ $=(y', y'') \mapsto (y', 0)$
= $d_{Q(m)}(y) = \left(\sum_{i=m}^{N} \frac{dy}{dx}\right)$ t $v(y) = u(T(y))$, and introduce the "cyline".

, r), $y' = (y_1, ..., y_m)$, $\theta \in \Xi := \left(0, \frac{\pi}{2}\right)^{N-k}$
 $\left(y_i^2\right)^{1/2}$. The corresponding Jacobian is $\left(\frac{\pi}{D}\right)^{1/2}$. $\text{drical'' } \text{ co} \ \begin{aligned} &\text{m--1} \quad \quad \cdot \quad \quad r \in \ \frac{D(y)}{(y',\,\theta,\,r)} \end{aligned}$ exponding Jacobian is $\left| \frac{D(y)}{D(y', \theta, r)} \right| = r^{N-m-1}$ $\mathbf{B}(y) \leq d_M(T(y)) \leq c_2 d_{Q(m)}(y)$

and from [3: Chap. 2, Lemma 3.1] it follows that the

depending only on c_1 , c_2 , p and N , such that
 $\mathbf{B}(x)|^p dx \leq \int_{Q} |w(T(y))|^p dy \leq c_4 \int_{\Omega_1} |w(x)|^p dx$
 $\qquad \qquad$
 $\qquad \qquad$ $\qquad \qquad$ sake of simplicity omit the
 $c_1d_{Q(m)}(y) \leq d_M(T$

for all $y \in \overline{Q}$; and from [3]

constants c_3 , c_4 , depending
 $c_3 \int |w(x)|^p dx \leq$
 $c_3 \int |w(x)|^p dx$

or all $w \in L^p(\Omega \cap U)$.

For all $y \in Q$ put $v(y)$
 $y = (y', y'') \mapsto (y',$ for all $y \in \overline{Q}$; and from [3: Chap. 2, Lemma 3.1] it follows that there are

constants c_3 , c_4 , depending only on c_1 , c_2 , p and N , such that
 $c_3 \int |w(x)|^p dx \leq \int |w(T(y))|^p dy \leq c_4 \int |w(x)|^p dx$

or all $w \in L^p(\Omega$ (y', y'')
 $d_{Q(m)}(y)$
 (y', θ) , e
 \int
 $\frac{1}{Q}$
 $=$
 $\frac{1}{Q}$ ϵ_3 , ϵ_4 , depending only on ϵ_1 , ϵ_2 , p and N , such that
 ϵ_3 $\int_{\partial_1 U} |w(x)|^p dx \leq \int_{\partial_1 U} |w(x)|^p dx$ (2.9)
 $\epsilon_1 F(Q \cap U)$.
 $\int_{\partial_1 U} f(Q \cap U)$.
 $\int_{\partial_2 U} f(Q \cap U)$.
 $\int_{\partial_1 U} f(Q \cap U)$.
 $\int_{\partial_2 U} f(Q \cap U)$.

$$
\int\limits_{Q} |v(y)|^p \ d_{Q(m)}^{t-p}(y) \ dy
$$
\n
$$
R(0)
$$

$$
\times \Phi(y', \theta), \text{ and}
$$
\n
$$
\int_{Q} |v(y)|^p d\xi_{(m)}^{-p}(y) dy
$$
\n
$$
= \int_{Q(m)} \int_{\mathcal{E}} \Phi(y', \theta) \int_{Q(m)} |v(y', \theta, r)|^p r^{e-p+N-m-1} dr d\theta dy'. \qquad (2.10)
$$
\n
$$
\text{Since } v(y', \theta, r) = 0 \text{ for almost all } y' \in Q(m), \theta \in \mathcal{E} \text{ and for all } r \text{ in a neighbourhood}
$$

of $R(\theta)$, we can extend the function *v* by zero for $r \geq R(\theta)$ with preservation of all

32 D. E. **EDMUNDS,** A. **KUFNER** and J. **RAKOSNIK**

differentiability properties. Application of the Hardy inequality (see; for example, [2: Chap. 5]) to the inner integral on the right-hand side of (2.10) now shows that for almost all $y' \in Q(m)$, $\theta \in \mathcal{Z}$,

D. E. EDMGNDS, A. KUFNER and J. RÁKOSNÍK
\nentiability properties. Application of the Hardy inequality (see, for example,
\nmap. 5]) to the inner integral on the right-hand side of (2.10) now shows that for
\nst all
$$
y' \in Q(m)
$$
, $\theta \in \Xi$,
\n
$$
\int_{0}^{\infty} [v(y', \theta, r)]^p r^{\epsilon-p+N-m-1} dr \leq c_H \int_{0}^{\infty} \left| \frac{\partial y}{\partial r} (y', \theta, r) \right|^p r^{\epsilon+N-m-1} dr
$$
\n
$$
\epsilon + N - m - 1 > p - 1
$$
\n
$$
\lim_{\to \infty} v(y', \theta, r) = 0 \text{ (this condition is satisfied trivially), or if}
$$
\n
$$
\epsilon + N - m - 1 < p - 1
$$
\n
$$
\lim_{r \to 0+} v(y', \theta, r) := v_0(y', \theta) = 0.
$$
\n(2.13)
\n
$$
\lim_{r \to 0+} v(y', \theta, r) := v_0(y', \theta) = 0.
$$
\n(2.14)
\nconstant c_H in (2.11) is given by $c_H = p/|\epsilon - p + N - m|$. Integrating the in-
\nity (2.11) over $Q(m) \times \Xi$ and passing back to Cartesian coordinates we obtain

if

$$
\varepsilon + N - m - 1 > p - 1 \tag{2.12}
$$

and $\lim v(y', \theta, r) = 0$ (this condition is satisfied trivially), or if

$$
+ N - m - 1 < p - 1 \tag{2.13}
$$

and

$$
\lim_{t \to \infty} v(y', \theta, r) := v_0(y', \theta) = 0. \tag{2.14}
$$

and
 $\lim_{r \to 0+} v(y', \theta, r) := v_0(y', \theta) = 0.$ (2.13)

The constant c_H in (2.11) is given by $c_H = p/|\varepsilon - p + N - m|$. Integrating the in-

equality (2.11) over $Q(m) \times \overline{\mathcal{Z}}$ and passing back to Cartesian coordinates we obtain equality (2.11) over $Q(m) \times \mathcal{Z}$ and passing back to Cartesian coordinates we obtain

$$
\varepsilon + N - m - 1 < p - 1
$$
\n(2.13)
\n
$$
\lim_{r \to 0+} v(y', \theta, r) := v_0(y', \theta) = 0.
$$
\n(2.14)
\nThe constant c_H in (2.11) is given by $c_H = p/|\varepsilon - p + N - m|$. Integrating the inequality (2.11) over $Q(m) \times \mathbb{Z}$ and passing back to Cartesian coordinates we obtain
\n
$$
\int_{0}^{\infty} |v(y)|^p d_{Q(m)}^p(y) dy \leq c_H \int \left| \frac{\partial v}{\partial r}(y) \right|^p d_{Q(m)}^p(y) dy
$$
\n
$$
\leq c_5 \sum_{j=m+1}^N \int \left| \frac{\partial v}{\partial y}(y) \right|^p d_{Q(m)}^p(y) dy.
$$
\nUse of (2.9) with $w = u d_M^{(i/p)-1}$ and with $w = \frac{\partial u}{\partial x_j} d_M^{i/p}$, the estimates (2.8) and the inequality
\n
$$
\left| \frac{\partial v}{\partial y}(y) \right| \leq c_2 \sum_{i=1}^N \left| \frac{\partial u}{\partial y_i}(T(y)) \right|
$$
 which follows from (2.2) now gives (2.7) with
\na constant c which depends only on p, ε , N, c_1 and c_2 .
\nAll that remains is to discuss the validity of the assumptions (2.12)–(2.14). The
\ninequalities (2.4) and (2.12) are equivalent. If (2.5) holds, then (2.13) is satisfied.

inequality $\left|\frac{\partial v}{\partial u_i}(y)\right|\leq c_2 \sum_{i=1}^N \left|\frac{\partial u}{\partial u_i}\left(T(y)\right)\right|$ which follows from (2.2) now gives (2.7) with **a** constant *c* which depends only on p, ε , N, c_1 and c_2 . $\int_{Q} |v(y)|^p d\xi_{(m)}^{-p} (y) dy \leq c_H \int_{Q} \left| \frac{\partial v}{\partial r} (y) \right|^p d\xi_{(m)}(y) dy$
 $\leq c_5 \sum_{j=m+1}^{N} \int_{Q} \left| \frac{\partial v}{\partial y_j} (y) \right|^p d\xi_{(m)}(y) dy.$

Use of (2.9) with $w = ud_M^{(i/p)-1}$ and with $w = \frac{\partial u}{\partial x_j} d_M^{i/p}$, the estimates (2.8) and the

 $\begin{vmatrix} \frac{\partial y_i}{\partial y_i} & x_i(y_j) \end{vmatrix}$, which follows from (2.2) if

only on p, ε , N, c_1 and c_2 .

cuss the validity of the assumptions

are equivalent. If (2.5) holds, then
 $Q(m)$, $\theta \in \mathcal{F}$ and for $r, h > 0$ we hav All that remains is to discuss the validity of the assumptions $(2.12) - (2.14)$. The inequalities (2.4) and (2.12) are equivalent. If (2.5) holds, then (2.13) is satisfied.

a constant c which depends only on p, e, N, c₁ and c₂.
\nAll that remains is to discuss the validity of the assumptions (2.12)–(2.14). The inequalities (2.4) and (2.12) are equivalent. If (2.5) holds, then (2.13) is satisfied.
\nFurther, for almost all
$$
y' \in Q(m)
$$
, $\theta \in \mathcal{Z}$ and for $r, h > 0$ we have, by Hölder's inequality,
\n
$$
|v(y', 0, r + h) - v(y', \theta, r)| = \begin{vmatrix} r + h & v \\ \frac{\partial v}{\partial r} & v' & \theta \\ r & \frac{\partial v}{\partial r} \end{vmatrix} \begin{vmatrix} r + h & v \\ \frac{\partial v}{\partial r} & v' & \theta \\ r & \frac{\partial v}{\partial r} \end{vmatrix} e^{t + N - m - 1} d\rho
$$
\n
$$
\leq \left(\int_{r}^{r + h} \left| \frac{\partial v}{\partial r} & (y', \theta, \varrho) \right|^{p} e^{t + N - m - 1} d\rho \right)^{(p-1)/p} = o(1)
$$
\nas $h \to 0$, since the former of the last two integrals is finite and the exponent in the latter one is positive. Hence the function $v(y', 0, \cdot)$ is uniformly continuous in a neighborhood of the origin and the limit $v_0(y', \theta)$ in (2.14) exists. Since $h(v)$
\n
$$
\int_{0}^{h(v)} |v(y', 0, r)| r^{t + N - m - 1} dr < \infty,
$$
\nthe assumption (2.5) yields (2.14). Thus assertion (i) holds.

-

as $h \to 0$, since the former of the last two integrals is finite and the exponent in the latter one is positive. Hence the function $v(y', \theta, \cdot)$ is uniformly continuous in a neighbourhood of the origin and the limit $v_0(y', \theta)$ in (2.14) exists. Since

$$
\int\limits_{0}^{R(\theta)}|v(y',\theta,r)|\,r^{\epsilon+N-m-1}\,dr<\infty\,,
$$

If $V = W_{M}^{1,p}(\Omega; d_M, \varepsilon)$, it is enough to deal with functions *u* in $C_M^{\infty}(\Omega)$, so that supp $v \subset Q$; and condition (2.14) is then trivially satisfied. The condition (2.6) means that (2.12) or (2.13) holds. Embeddings of Sobolev Spaces 33

If $V = W_M^{1,p}(\Omega; d_M, \varepsilon)$, it is enough to deal with functions u in $C_M^{\infty}(\Omega)$, so that

supp $v \subset Q$; and condition (2.14) is then trivially satisfied. The condition (2.6)

means that (2. *W*_M^{1,p}(2; d_M, ε), it is enough to deal with Q ; and condition (2.14) is then trivially
at (2.12) or (2.13) holds.
I, suppose that $m < N - 1$. If $\varepsilon \neq p + m - e$ $W_0^{1,p}(\Omega; d_M, \varepsilon) \subset W_M^{1,p}(\Omega; d_M, \varepsilon)$. Thus $e \$

(ii), since $\overline{W_0}^{1,p}(\Omega; d_M, \varepsilon) \subset W_M^{1,p}(\Omega; d_M, \varepsilon)$. Thus suppose that $\varepsilon = p + m - N$, and let $u \in C_0^{\infty}(\Omega)$. Since $m < N - 1$, we can write *2* Q ; and condition (2.14) is then trivially satisfied
at (2.12) or (2.13) holds.
*2 W*₀^{1,*p*}(Q ; d_M , ε) $\subset W_M^{1,p}(\Omega; d_M, \varepsilon)$. Thus suppose
 $\in C_0^{\infty}(\Omega)$. Since $m < N - 1$, we can write
 $2^{-1/2}(y_l + \varrho_l) \leq$

$$
2^{-1/2}(y_l + \varrho_l) \leq d_{Q(m)}(y) \leq y_l + \varrho_l, \quad \varrho_l^2 = \sum_{j=m+1,j+l}^{N} y_j^2
$$

(*l* = *m* + 1, ..., *N*; *y* \in *Q*)

and

$$
\int_{Q} |v(y)|^{p} d\xi_{(m)}^{-p} (y) dy \leq c_{6} \int_{(0,1)^{N-1}} \int_{0}^{1} |v(y)|^{p} (y_{1} + \varrho_{l})^{\epsilon-p} dy_{l} dy^{(l)},
$$

(*l* = *m* + 1, ..., *N*; *y* $\in Q$)

and
 $\int_{Q} |v(y)|^p d\xi_{(m)}^{-p}(y) dy \leqq c_6 \int_{(0,1)^{N-1}0}^{1} |v(y)|^p (y_1 + \rho_1)^{s-p} dy_1 dy_1^{(l)}$,

where $y^{(l)} = (y_1, ..., y_{l-1}, y_{l+1}, ..., y_N)$. Taking into account the fact that supp $v \subset Q$

and $\varepsilon = p$ Lemma 5.3]) to the inner integral on the right-hand side and obtain

$$
(l = m + 1, ..., N; y \in Q)
$$
\n
$$
\int_{Q} |v(y)|^p d\xi_{(m)}^{-p} (y) dy \leq c_6 \int_{(0,1)^{N-1}} \int_{0}^{1} |v(y)|^p (y_l + \varrho_l)^{\epsilon - p} d\varrho
$$
\n
$$
v = (y_1, ..., y_{l-1}, y_{l+1}, ..., y_N).
$$
\nTaking into account to $p + m - N < p - 1$, we apply the generalized H. 5.3]) to the inner integral on the right-hand side and
$$
\int_{Q} |v(y)|^p d\overline{\xi_{(m)}} (y) dy \leq c_7 \int_{Q} \left| \frac{\partial v}{\partial y_l} (y) \right|^p d\xi_{(m)} (y) dy.
$$

It is now sufficient to use (2.9) with $w = u d_M^{(e/p)-1}$ and with $w = \frac{\partial u}{\partial x} d_M^{e/p}$; the assertion (iii) and consequently Theorem 2.3 are proved \blacksquare *where* $\int_{0}^{10(9)} \frac{\log_{10}(9)}{\log_{10}(9)} dy = c_7 \int_{0}^{10(9)} \frac{dy}{dy}$ *with* $w = u d_M^{(t/p)-1}$ and with $w = \frac{\partial u}{\partial x_i} d_M^{t/p}$; the assertion (iii) and consequently Theorem 2.3 are proved **1**
3. Concluding remarks
3. Concluding rema

3. Concluding remarks

We present two natural consequences of the work in $\S 1$ and $\S 2$.

Corollary 3.1: Let Ω be a bounded domain in \mathbb{R}^N , let M be an m-dimensional *manifold on* $\partial\Omega$ *where* $m \in \{0, 1, ..., N-1\}$ *, and let* $p \in (1, \infty)$ *,* $k \in \mathbb{N}$ *. Then*

$$
V\hookrightarrow H^{k,p}(\Omega;d_M,\varepsilon),
$$

(i) $V = W^{k,p}(Q; d_M, \varepsilon)$ *if*

or

assertion (iii) and consequently Theorem 2.3 are proved **I**

\n3. Concluding remarks

\nWe present two natural consequences of the work in § 1 and § 2.

\nCorollary 3.1: Let Ω be a bounded domain in **R**^N, let M be an m-dimensional manifold on
$$
\partial\Omega
$$
 where $\hat{m} \in \{0, 1, ..., N - 1\}$, and let $p \in (1, \infty)$, $k \in \mathbb{N}$. Then

\n $V \hookrightarrow H^{k,p}(\Omega; d_M, \varepsilon),$

\nwhere

\n(i) $V = W^{k,p}(\Omega; d_M, \varepsilon)$ if

\n $\varepsilon > kp + m - N$

\n(3.1)

\n(ii) $V = W_M^{k,p}(\Omega; d_M, \varepsilon)$ if

\n $\varepsilon \neq ip + m - N, \quad j = 1, 2, ..., k;$

\n(iii) $V = W_M^{k,p}(\Omega; d_M, \varepsilon)$ if

\n $m < N - 1$ and $\varepsilon \in \mathbb{R}.$

\nProof: Use Theorem 2.3 successively for $D^{\beta}u$ with $|\beta| = k$, $|\beta| = k - 1, ...$

\nCorollary 3.2: Let the assumptions of Corollary 3.1 be satisfied. If ε satisfies (3.1) or (3.2), then

\n $W_M^{k,p}(\Omega; d_M, \varepsilon) = H^{k,p}(\Omega; d_M, \varepsilon) = W^{k,p}(\Omega; d_M, \varepsilon).$

$$
\varepsilon + jp + m - N, \qquad j = 1, 2, ..., k;
$$
 (3.3)

(iii)
$$
V = W_0{}^{k,p}(\Omega; d_M, \varepsilon)
$$
 if

 $m < N - 1$ and $\varepsilon \in \mathbb{R}$. (3.4)
Proof: Use Theorem 2.3 successively for $D^{\beta}u$ with $|\beta| = k$, $|\beta| = k - 1$, ... **I**

 Corollary 3.2: *Let the assumptions of Corollary* **3.1** *be satisfied. If* ε *satisfies* (3.1) *We Theorem 2.3 successively for* $D^p u$ *with* $|\beta| = \arg 3.2$ *: Let the assumptions of Corollary 3.1 be sation.*
 $W_M^{k,p}(\Omega; d_M, \varepsilon) = H^{k,p}(\Omega; d_M, \varepsilon) = W^{k,p}(\Omega; d_M, \varepsilon).$

$$
W_M{}^{k,p}(\Omega; d_M, \varepsilon) = H^{k,p}(\Omega; d_M, \varepsilon) = W^{k,p}(\Omega; d_M, \varepsilon).
$$

³Analysis Bd. 4, Heft 1 (19&>) • *•*

If ε *satisfies* (3.3), then

$$
W_M^{k,p}(\Omega; d_M, \varepsilon) = H^{k,p}(\Omega; d_M, \varepsilon).
$$
\n(3.5)

*w*_{*M*}*kp*(2; *d_M, e)* = *H*^{*k*}*p*(2; *d_M, e)*. (3.5) *(3.6) (3.6) (3.6) holds for all* $\epsilon \in \mathbb{R}$ *with* W_0 ^{*k*}*p*(*Q*; *d_M*, *ε*) *instead of* W_M ^{*k*}*p*(*Q*; *d*_{*M*} *c*) *(3.5) (3.6) (3. If* $m < N - 1$, then (3.5) holds for all $\epsilon \in \mathbb{R}$ with $W_0^{k,p}(\Omega; d_M, \epsilon)$ instead of $W_M^{k,p}(\Omega; d_M, \epsilon)$ d_M , ε). 34 D. E. EDMUNDS, A. KUFNER and J. RA
 $If \varepsilon$ satisfies (3.3), then
 $W_M^{k,p}(\Omega; d_M, \varepsilon) = H^{k,p}(\Omega; d_M, \varepsilon)$.
 $If \, m < N - 1$, then (3.5) holds for all $\varepsilon \in \mathbb{R}$
 d_M, ε .

Proof: The assertions follow immediately

REF $N M$ N (se, am, e) $=$ Δ (se, am, e).
 $n < N - 1$, then (3.5) holds for all $\varepsilon \in \mathbb{R}$ with $W_0 k.p(\Omega; d_M, \varepsilon)$
 ε).

Proof: The assertions follow immediately from Corollary 3.1 ε

FERENCES

KADLEC, J., and A

Proof: The assertions follow immediately from Corollary 3.1 and Theorem 1.2

- [1] KADLEC, J., and A.KUFNER: Characterization of functions with zero traces by integrals with weight functions. Casopis Pest. Mat. 91 (1966), $463-471$. FERENCES

KADLEC, J., and A. KUFNER: Characterization

with weight functions. Casopis Pest. Mat. 91 (19

KUFNER, A.: Weighted Sobolev, spaces. Leipzig

1980.

NECAS, J.: Les méthodes directes en théorie des

1967.

RÁKOSNÍ EXECTS:

Sec, J., and A. KUFNER: Characterization of functions with zero traces

reight functions. Casopis Pest. Mat. 91 (1966), 463-471.

F.R. A.: Weighted Sobolev, spaces. Leipzig: BSB B. G. Teubner Verlag,

J.: Les méth
- [2] KUFNER, A.: Weighted Sobolev, spaces. Leipzig: BSB B. G. Teubner Verlagsgesellschaft
- [3] NECAS, J.: Les méthodes directes en théorie des équations elliptiques. Prague: Academia 1967.
- 4] RAKOSNIK, J.: On embeddings of Sobolev spaces with power-type weights. Proc. Conference Approx. Theory, Kiev 1983 (to appear).
- [5] STEIN, E. M.: Singular integrals and differentiability properties of functions. Princeton: Princeton University Press 1970.

Manuskripteingang: 16. 01. 1984

Prof. Dr. DAVID EDMUNDS

School of Mathematical and Physical Sciences. University of Sussex . Falmer, Brighton BN1 9QH Great Britain

Prof. Dr. ALOIS KUFNER and Dr. JIKI RAKOSNIK
Matematický Ústav ČSAV Manuskripteingang: 16. 01. 1984

VERFASSER:

Prof. Dr. David Edmunds

School of Mathematical and Physical Sciences

University of Sussex,

Falmer, Brighton BN1 9QH

Great Britain

Prof. Dr. ALOIS KUFNER and Dr. JIŘÍ RÁKOSN 11567 Praha 1, Žitná 25 Czechoslovakia •

)•