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Mean Value Theorem for Functions Possessing First Order Convex '
Approximations. Applications in 0pt1m1zat-10n°'l‘heory

In dxeser Arbeit wird ein Mittelwertsatz fiir Funktionen abgeleitet, die konvexe Approxxma-
tionen erster Stufe im Sinne von IoFFE (6] besitzen. Er umfaBt zwei bekannte Ergebnisse fir
konvexe und lokal Lipschitzsche Funktionen als Spezialfille. Dieser Satz wird zur Ableitung
einer hinreichenden Bedingung dafiir verwendet, daB eine Funktion, die auf kartesischem Pro-
dukt zweier topologischer Vektorriume definjert ist, eine konvexe Approximation erster
Stufe besitzt. Emjge Anwendungen in der Optimierungstheorie werden auch dargcst,ellt

B paGoTe nokasaHa TeopeMa o cpefiHeM NuA GYHKIMHA, 061ANA0MNX BHIYKIKHMH AmIpOKCH-
MauUAMH IepBOro NopAxkKa B cMuicne HMoook [6]. Oua Bkiloyaer B ce6A [Ba M3BECTHRIX pe-

© BYJABTATA A BRUIYKIMX W JIOKAJbHO JUMUHLEBHX (YHRUMN KaK YACTHHE Ciydan. ITa

TEeOpeMa NPUMEHACTCA AJA BHBOAA AOCTATOYHOrO YCIOBUA AJA TOrO, 4TO6H GyHKIMA, onpe-
AeTeHHAA HA OPAMOM MPOMBBEACHUM ABYX TOMOJOTHYECKNX BEKTOPHHIX IpocTpancrs, 06-
J3fana BROYKIOA anmpokcumauued mepporo mopsnka. IlpepcraBienst Tosme HEKOTOpHie
NPUIOHEHUA BTUX PE3YILTATOB B TEOPUN ONTHMUBALMH.

A mean value theorem for functions possessing first order convex approximations in the sense
of IorFE [6)-is derived. It comprises two known results for convex and locally Lipschitzian
functions as particular cases. This theorem is used in order to obtain a sufficient condition for a-
function defined on the Cartesian product of two topological vector spaces to possess,a first
order convex approximation. Some applications in optimization theory are also given.

1. Introduction ‘ . ‘ ' i

In the last few years there appeared many publlcatlons in whlch mean value theo-
rems for various classes of nondifferentiable real- and vector-valued functions were
derlved (see [3, 4, 7, 9, 10, 12] for the most general results). These theorems were
stated by means of various generalizations of the notion of a gradient (or derivative)
in differential calculus and of a subdifferential in convex analysis. In this paper we
* present a mean value theorem for real-valued functions (on arbitrary real topological
vector spaces) possessing first order convex approx1matlons in the sense of IoFFE [6].
~This kind of approximation plays an Jmportant role in the theory of first order
" necessary optlma.ht,y conditions (it requires weaker assumptions than other approxi-
mations used in many earlier papers). A first order convex approximation of a func-
tion is not 'uniquely determined and, by taking its subdifferential, one can obtain
different generalizations of the derlvatlve of.the function being approx1ma.ted

As corollaries from our mean value theorem (Theorem 1), we obtain the results
of Hiriart-URRUTY [3] for convex lower semicontinuous and of LEBoURG [9] for
locally Lipschitzian functions. From Theorem 1 as well, we derive a sufficient con-
dition (Theorem 2) for the existence of a first order convex approximation for a
function defined on the Cartesian product of two topological vector spaces. Then we
apply Theorem 2 to‘obtain a variant of the extremum prlnmple of IoFFE and TixmoO-
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MIROV [8], and Theorem 1to generalue the sufflcmnt optimality condition of Dycr- '
HOFF [2].

Throughout the paper, the lettets X, ¥ will denote (unless otherwise stated) real
topologlcal vector spaces. Let f: X — R u {00} be convex and proper (i.e.”dom f
={reX I/(x) < oo} # 0). We shall denote by 8f(z) the subdifferential of f at the
point z, that is,

‘af(x)= {x*EX*f,VuGX,/(u)g/(x)—}-(x*,u—x)} (1)

where.X* is the topological dual space of X. It can be shown (cf. [8 § 4.2, Prop. 1])
that, for each x € dom f,

of(x) = =% € X* | Vh € X, f'(w; B) = (%, ) ()
where . - h

[l ) = lim i3 + 28) — f(a)). (3)

> For two different points « and b in X, we shall denote, respectively, by [a, b] and
]a, b[ the subsets

e+ tb—a)|0=t<1} and {a+ib—a)|0<t<1}.

2. First order convex approximations and Dini derivatives

, . . \

Let f: U — R be a real-valued function defined on an open subset U of X, and let
z € U. We denote, forany » € X, ,

£ (3 B) = lim sup 2-3(/(z + 4h) — f()).
Alo .

A function ¢: X — R is called a first order convex a.pprokimation for fat 2 if ¢ is
sublinear (i.e. convexiand.@(2h) = 2¢(h) for all 1 = 0, k € X), continuous and satis-
fies the condition

fo'(@; k) < p(h) forall he X, o (4)

Remarks: 1. The original definition of IoFFE [6] contains instead of (4) the equi-
valent condition

lim sup 7Y f(z + 2h) — f(x) — ip(h)) <0

The convex1ty and continuity assumptions are not included in thls definition, but
used in all subsequent theorems.

2: Instead of the continuity of g, it suffices to assume that ¢ is bounded above on
some open subset of X (then ¢ is continuous by [8: § 3.2, Theorem 1]). Since ¢ is
convex and continuous, the subdifferential dp(0) is non-empty (the proof of this fact
without the a,ssumpmon of the local convexity of X is given in [5: § 14B]). By (1) we
have - .

0p(0) = {a* € X* | Vh € X, p(h) = (2%, b)). (5)
Moreover, by [6: Prop. 1, ‘

\

'L// has a local minimum at z, then 0 € op(0). (6)
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Examples: 1. Let U be convex and f — convex and continuous. Then, for each
x € U and b € X, the directional derivative (3) exists and is finite, and the function
f'(z; -): X - R'is sublinear and continuous (cf. {8: § 4.1, Prop. 4]). Therefore f'(z; -)

~ is a first.order convex approximation for f at . :
2. Let f be locally Lipschitzian in the sense of [9], that is, the generalized directional

derivative .
(23 k) = lim sup A1(f(w + 2h) — f(u)
ua)z ‘ C

satisfies the following condition: for each a € U, there exist a neighbourhood 4 of «
in U and a circled neighbourhood W of 0 in X, such that the set folz;h) |z € A4,
h € W} is bounded in R. It follows from [9: Lemma (1.1) and Prop. (1.2)] that f°(z;)
is a first order convex approximation for f at z..If f is as described in Example 1, then
it is locally Lipschitzian and f° = f' by [9: Prop. (1.10)]. T

-

Let us now consider a function f: ¥ —> R where V is an open subset of R. We define
‘the following Dinj derivatives of f at z ¢ V »

D+/(x)=uu§£up I fx + %) — f(x), | :
D.f(@) = lim inf A f@ + 1) — /(=)

and, analogously, D-f(z) and D_/(x) by taking the liinits as 11 0.

Proposition 1: 4 function ¢: R > R is a first order convex approximation jor /
_ at 2 of and only if g is sublinear and —D_f(z) < p(—1), Dtf(z) = ¢(1).

Proof: It suffices to observe that — _f(2) = fi'(z; —1), D*f(x) = 1,'(x; Hne .

Proposition 2: Let f: [a, b] — R (where a < b) be continuous and satvsfy the con-
ditions: o . ' -
a) for each x € la, b, there exists.a first order convex approximation ¢, for f at x;
b) the functions x > @,(—1) and z > @,( 1) are upper semicontinuous on la, b[.
_ I} f attains a local maximum at ¢ € Ja,b[, then O € op,(0). '

Proof: Suppose that f has a local maximum at ¢, and 0 ¢ 0p.(0). Hence (by (5))
either ¢.(1) << 0 or g,(—1) < 0. In the first case it follows from assumption b) and
Proposition 1 that there exists ¢ > 0 such that : : .

. D*/(x) S A1) <0 forall z€[c—e, c] C la, b[. -~ : (7)

For such z, we have D*(—f) (z) = —D,f(z) = —D*f(x) > 0. Hence and from [1:
Cor. X1.4.2] we obtain that —f is non-decreasing on [¢ — ¢, c], thus f(z) = f(c) for
all z € [c — &, c]. Since f has a local maximum at ¢, there exists 6 € ]0, ¢[ such that
f(z) < f(c) for all z € [c — 6, c]. Therefore f is constant on [c — 9, c] and D*f(c — &)
= 0, which contradicts (7). The case of @.(—1) < 0 can be considered analogously
(instead of —f one should take into account the ful}ction g(x) = —f(—=x)and observe )
that D¥g(—z) = D,g(—=z) = D_f(x) > Ofor all zin'some interval [c,c+¢€),e >0

- Remark: Proposition 2 is not true without assump.tior{ b). As a counterexample it
suffices to take f(z) = —|z|, p(u) = uforz < 0,9 (u)= —uforx=0,¢c = 0.
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3. The mean value theorem
/

. o LN N
Let 4 be a subset of X with nonempty interior, and let [a, b] = 4. We shall say that -
a function f: 4 — R is hemi-continuous on [a, b] (cf. [4]) if the function ¢ > /(a,
+ ¢b — a)) is continuous on [0, 1]. )

Theorem 1: Let f: A — R satisfy the conditions: = ' -
a) f s hemi-continuous on [a, b]; _ ‘
b) la, b < int 4 and, for eack x € Ja,b[, ¢, s a first order convex approximation,
forfatxz;. B . ) o B
¢) the functions x > @,(a — b) and x > (b — a), defined on ]a, b[, are upper semi-
continuous. -
Then

there ‘exist ¢ € Ja, b[ and z* E.atpc(O) sych that )
fb) —fl@) = @b —a). -~ . ®)

Proof: Let us first consider the case when X = R (and a < b). If f(a) = f(b), then
there exists ¢ € Ja, b which is a local minimum or maximum point for f. Hence
0 € 3¢,(0) by (6) or Proposition 2, and (8) holds for z* = 0. If f(a) = f(b), then instead
of f one should consider the funtion f(z) = f(x) — f(a) — &z — a) (x € A) where «
= I(f(b) — /(a))](b — a). Tt is easy to verify that §:(k) = @.(h) — ok (h € R)is a first
order convex approximation for f at z € Ja, b[, and that 95,(0) = 0¢.(0) — «; hence
(8) holds for z* = . ' o »

In the general case we put g(¢) = /(a + b — a)), t € [0, 1], and observe that, for

. each ¢ € 10, 1[, the function y,(3) = tp,,f,(,,_‘a)(s(b — a,)) (s € R) is a first order convex

. that there exist 7 €.]0, 1[ and B € dy,(0) such that

approximation for g at ¢, and that the functions ¢ > y,(—1) and ¢ > (1) are upper ’
semicontinuous on ]0, 1[. Applying the result just proved to the function g, we obtain

“B.=g(1) — g(0) = fb) — f@). . C)

Let ¢ = a + 7(b — a). Since 8 € dy,(0), we have s < q;,(s(b —_ a.)) foralls € R. We"
‘define a continuous linear functional I on the subspace {z € X |z = s(b — a), s € R}
by setting I(s(b — a)) = ps. It follows from the Hahn-Banach theorem [5: § 11G]
that I has.an extension z* € X* satisfying (z*, k) < @.(k) for all & € X. Since (z*,’
b — a) = (b — a) = B, we obtain (8) by (5) and (9) 1

Corollary 1 [3: Theorem 7]: Let f: X — R u {400} be convex and lower semi-
continuous. Suppose that [a, b) = dom f, and that f ¥s continuous at some point of [a, b]. -

"Then . ) : :
" there exist ¢ € la, b[ and z* € 9f(c) such that

“

f(b) — fla) = (=*,b — a). : S N ¢ 1)

Proof: Since f is continuous at ‘a point of [a, b], we have ]a, b[ — int (dom f),
and f is continuous on int (dom /)by [8: §3.2, Theorem 1]. It is easy to show (by mak-
ing use of Example 1) that f restricted to 4 = dom f satisfies the assumptions of
Theorem 1 (the upper semicontinuity of f(-; k) on int 4 can be deduced from the
continuity of f and the equality f'(z; k) = inf {271(f(x ++ 2k) — f(x)) | 2 > 0},~simi-

:. larly as in the proof of Corollary 3 below). Thus (10) follows from (8) #

The following result is a direct consequence of Theorem 1, Example 2 and the uppér
semicontinuity of f°(:; ). ’ : : : . :

f
v
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Corollary 2 [9: Theorem (1.7)]): If A #s open and f: A—>Ris locally Lipschitzian,

then (10) is true, where 9f(c) denotes the generalized gradient of f at c (i.e. the subdiffe-
rential o// (c -) at 0).

4. Apphcatxons ' ' . -

Let us con51der the following problem: given a function f/: X X ¥ — R such that the
’functlons f(z, ) and f(., y) possess first order convex appr0x1ma.tlons, we want to
“formulate sufficient conditions (stated by means of these “partial’’ approximations)

for the existence of an approximation for f at (z, ) in X X Y.

Theorem 2: Let U and V be open subsets of X and Y, respectively, and let (z, y)
€ UX V. Suppose that f: U X V — R satisfies the conditions:

a) for any u € U, the function f(u,-): V — R is hemi-continuous on each segment’
[, ¥'1=V and has at each point v € V a first order convex approximation y, ,: ¥ — R;
b) the function f(-, y): U — R has a first order convezx approximation p: X — R.at
- the point x; ¢
" .c) foreach k € Y, the function (u, v) — Yu, oK) vs upper semzcontmuous omUXV.

Then the _/unctzon w: X X Y — R defined by
ok, k) = @(h) + po,(k) (e X, ke )
18 @ first order convex approximation for f at'(z, y).

. Proof: The only difficulty is to check condition (4) of the definition, which is
equxvalent to the following one:

/or each ¢ > 0 and (h, k) e XX Y, there exists up > 0 such that :
W@+ by + 2E)) — [z, y) < wlh, )+ for all 2 € 10, 4. (11)

Take any ¢ >0, he X, ke Y. By c), there exist neighbourhoods U’'— U and’
V' V of z and y, respectively, such that .

VolB) S prslk) + /2 forall ue U, ve V. . (12)
By b), there exists u > 0 such that '
z+ 2he U, y + 2k €V V' and .
* i f(z + AR, ) — flzy : )) < (k) €/2,.  for all €0, ,u[ T (13)

It follows from a) and c) that, for ea,ch A €10, u[, the function flx + /lh -) satisfies_
the assumptions of Theorem 1 on-the segment [y, y + 2k]. Consequently, there exist -

¢ €y, y + Ak[ and 2;* € Opryin(0), such that f(x 4 Ak, y + 2k) — f(x + 4k, y)
= (¥, Hc} Hence and from (12), (18) and (5) we obtain

ANf(x + 2h, y + k) — fz, Y)
= 1“(/(9: F ik, y A M) — f( + b y)+ 4 (/(x + 24, y) - f(=, y))
= (@ ky + @(h) + /2 < 9(h) + pzainealk) + €/2 S @(R) + pay(k) + 2
which concludes the proof of (11) ~

Corollary 3: Let f: UX V.—>Rbea continuous function, where U and V are open
subsets of X and Y, respectively, and V is convex. Let (z,y) € U X V\ If, for each

Ay

* 9 Analysis Bd. 4, Heft 2 (1985)
\
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¢

u€ U, flu,-): V= R ¥s convex and assumption b) of Theorem -2 is fulfilled, then
(h, k) > @(R) + 1,/ (z, y; k) 1s @ first order convex approximation for f at (x,y) (here:
1y (%, y; k) denotes the directional derivative of f(x, -) at y in the direction k). :

Proof: It follows from Example 1 that assumption a) of Theorem 2 is satisfied for
Wuo = fy (w, v; ). Thus it suffices to prove that, for each k£ € Y, the function (u, v)
> f/(u, v; k) is upper semicontinuous on U X V. Take any ¢ > 0, % € U,7 € V. Since

£/ (@, ¥; k) = inf {i-Y({(m, B + k) — f(7, D)) | A > 0}
(cf. [8: § 4.1]), there exists 4 > O such that ¥ + uk € V and . » '

By the continuity of f at the points (%,.7) and (%, 4 puk), there exist neighbourhoods
U' < U and V'< V of wand ¥, respectively, such that

‘max (I/(u, v) — [@,B)|, |f(w, v + pk) — [(%, T + pk)]) = ep/d
forallu € U’ v € V’'. Hence and from (14) we obtain that, for all ueU' and veEV’,

IS

/,(u,v'k)—mf{)‘( u,v+)k)—/u v))l? >0}

= lfl(/(u v + pk) — f(u, v)) .

= /fl(f(?‘ v+ pk) — f(@, T + pk)) + w Y f(@, T + uk) — f(7, 7). o
+ uY(/(z, ﬁ) — flu,v)) < /) (@, 05 k) + ¢,

e

and so (u, v) > £, (u, v; k) is upper semlcontlnuous at (u, 7)1

~

“We shall now apply the above corollary to obtain a variant of t,he Toffe-Tikhomirov -
extremum principle (cf. [8 §§ 1.1 and 5.1)). Let us consider the following extremal

problem ,

minimize folz, ¥) subject to )
fiz, ) <0G =1,..,n), Fla,y) =0, yeU - (15)

whereUcY/,XxY—>R(z=01 n\FX)KY——>Z(X YZ—normed
spaces).

o

+ Theorem '3 Let (T, 7)€ XX U Assume that
a) fi (=0, 1 ., n) and F.satisfy the Lipschitz condztwn on a 'nezghbourhood of

(@, 9); e \

b) U 7s convex and closed ; -
c) there are first order convex approxzmatwns (p, (z.= 0, 1 ., n)and y for fi(-, §) and

i ||F (-, %I, respectively, at %;

- d) for each z € X, fi(z,) (t =0, 1, n) and ||F(z, -)]| are convex on Y ;.
e) (Z,y)isa regulw point for F relatwe to X X U (i.e. there are &« >.0 and a neigh-
bourhood V of (%, ), such that, for all (z,y) € V.n (XX U), do(z,9y) < x| F(=, y)

"— F(Z, y)|l where @ = {(x, y) e XXU| F(z, y) F(x, ¥)} and dqo denotes the distance

Junction.to Q).
If (z,9) ¥s a local solution to (15), then there exist numbers

ligo (7'._——0: 1),'“) )’ T>O, (16)

| -
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) sw:k that . )
. ot A=1, WiE ) =0 for i=1,.\m, )
0 eig:o 78p0) + 7 op(0), SR - (18) -
2 WG+ IFE D | ‘ . \
{ . ’ i
= min( Z @) Lol )

Proof: Put g(z, y) = ||F(z, y)||. From Corollary 3 we get that the functions w;(k, &)
= ok) + (1)) @ T B) (=0, 1,...,m), n(h, k) = v(h) + g,/(%, 7; k) and &k, k)
= dg'(¥; k). are first order convex approxxmatlons for £;, ||F|} and dx x y, respectively, -
at(Z, 7). Hence and from [6: Theorem 2] we obtaln that there exist numbers (16) satis-
fying conditions (17) and :

» 0€ 21‘ dw;(0, 0)_+ r (0,0) 4+ 795(0,0). S (20

i=0

It is easy to verify (cf [11: Lemma 2]) that, for any continuous convex function w:

XX ¥ -> R, if 2* € dw(=, y), then there exist z* € d(w(-, y)) (z) and y* € Jw(z, - ) (@)

suchthat (2*,.(u, v)) = (x* u) + (%, v) for a.ll u € X v € Y. Thus, from (20) we
obtain (18) and (by (2)) ",

0624 a(/(ac 2) @) + r alots, >) J>+radu( S e

We readlly deduce from the definition of the subdlfferentxal (formula (1)) that

Y

radp() =0 (8- |1 U))(@ ~ ‘ (22)
‘where (- | U) is defmed as follows: ' ‘
0 if veU,
+oco if 4 U.

[y

(v | U {

Cénsequently, by the Moreau-Rockafellar theorem [8: § 6.3], (21) and (’22) imi)ly '
O0eod (..-f Aifi(®, ) + T IIFE, I+ o | U)) ®), a

which is equivalent to (19) B ' ‘ P

We shall now give another appllcatlon of Theorem 1: to extend the quffwlent, opti-,

‘ mality condition of DyckuO¥F [2] to the case of functions not necessarily directionally

differentiable. Let U be a convex-subset of X with nonempty interior, and let T € U.
Suppose that a function f: U —> R has first order convex approximations at all points
of the et U = (int U) \ {Z}, but may have no a,pproxxma.tlon at Z. We shall formulate
a sufficient condition for Z to be the global minimum point of f on U. ‘

Propos1t10n3 Assume that ' )
a) f1s hemi-continuous on each segment [a, 0] U, . &
. b} / has a first order convex approzimation ¢, at each x € U,

’

6‘
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. ¢) for each y €U, the functions x> ¢AZ — vy) and z > %(y — Z), restricted to -
1z, yl, are upper semicontinuous; :

d) ¢, —yy=O0forallycU. : ' :

Then f(z) < f(z) /orzall z€eU. . - ) s

Proof: Fix z ¢ U. By Theorem 1, there exist ¢ € ]z, [ and z* € 8¢,(0), such that
(@) — flz) = (z*, % — zy < <pc(:l: — z). Since ¢ € U, we have (by'd)) g(Z — ¢) < 0.
But Z — ¢ = AT — x) for some 7 > 0; hence @,(T — 2) = 0 and /(7) < f(2). :

Assume now that z € U\ U. Take any u € U. It follows from a) and from the con-
.vexity of U that, for each-e > 0, there exists w € ]2, %[ n U such that f(w) < f(z) + &
By the first part of the proof, f(%) < f(w). Thus (@) < f(z) B
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