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Generélization of Cramér’s-and Linnik’s Factorization Theorems
in the Continuation Theory of Distribution Functions

H-J . ROSSBERG |

Angeregt durch ein Problem von Kruglov und ein Resultat von Titov gewinnen wir einen
elementaren Fortsetzungssatz fiir, Vertellungsfunktlonen Er impliziert die folgende Ver-
allgememerung des Theorems von Cramér. Fir die nicht ausgearteten Verteilungsfunktionen

und Fz gelte

'.\ 1* Fz("?) a.a(z)’ x é Zo>

wo z, € R, und @, , die. Normalverteilung' N(a, 0®) bezeichnet; wenn die charakteristischen
Funktionen f, und f, keine Nullstellen in der oberen Halbebene haben, dann sind F, und F,
auch normal. Linniks Theorem laBt sich analog verallgemeinern. Auch allgemeinere Varianten
werden erortert.

. . . R ' A -
Boabyuenun npoGnemoit Kpyraosa n pesyasratoM THTOBA MH 0KA3BIBAEM -3j1€MEHTAPHOE
npepsiodeHHe o mpomoJikeHuu QyHKUuMi pacnpenenenna. Kak chemcreine MH moayuaem
cuenyomee obo6uenue Teopemu Kpamepa. Ilycts' Fy, u F, ase- Heuupomuelmue GyHKLHU

pacnpenenelmﬂ KO‘l‘Opble YIOBJIETBOPHIOT yC-TIOB"lO
’ ,§, ‘Fz(x) aax)’ z =7

rie z, € Rl, a @, , o3Hayaer Hop\ia'u,{{ylo $yuxumo pacnpeneseHns N(a, o?). Ecan  coor-
BCTCTBYIOLMC XapaKTepHCTHICCKIe QYHKUUH f) 1t f, He UMEIOT HyJcit B BepXHOIli flosynJtoc-
KocTH, To"F,'u F, Takmke ABIAITCA nopMaibsHEMu. [Tomobueiy 06pasosm o6obuiaerca TeopeMa
JInnxuka. ,I[ncx(y'rnpy!omﬂ Takme Gonee obLie BAPHAHTHL. }

Stimulated By a problem of Kruglov and a result.of Titov we derive an elémentary continua-
tion theorem for distribution functions. It implies the following generalization of Carmér’s
theorem. Let ¥, and F, be two non-degenerate distribution functions sucht that

O ‘1’(22) 3.0(%) r S %, /

where z, € R, and @, 3.0 stands for the normal dnstnbutlon N(a, ¢*); if the corresponding charac-
teristic functions f, and f2.do not vanish in the upper half plane; then F, and F, are also
nérmal. Linnik’s theorem can be analogously generalized. More general ‘variants are also dis-
cussed. « N ‘. oo-

’

.

1. Introduction .
Thi‘ou_gholut this paper @, , stands for the normal distribution function N(a, ¢2)
and % denotes a convolution. The following' theorem was first conjectured by P.
Ltvy and somewhat later proved by H. CrRAMER; it is well known in the analytic
theory, of probability, for details see [5] or [12]. )

Theorem 1.1: Let F, and F, be non-degenerated dz'.sirz'butjon functions such that
Fyx« Fp=®P,, (a real, 0 > 0). . ST (1.1)

Then Fi= D0, (2 =1, 2) where a, + ay = 'tlz,~ o, + 0,2 = g2,
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In the usual proof, one switches from (1.1) to the correspondmg characteristic ‘
functions; so f,f; = ¢a..- Then one proceeds in the following three steps.

1. A theorem of D. A. Rasgov 1mphes that f, and f, are integral characteristic
functions without zeros.

2. Next one proves that the orders of f, and f, are not greater than 2.

3. We use the fact that such'integral functions without zeros can be represented as

eP» where P, denotes a polynomial with a degree < 2.
Later it was Y. V. LINNIK who. proved the following analogous result. Its proof . i
by far-more comphcated and was remarkably simplified by E. Luxacs [5].

Theorem 1.2: Let Fy and F, be two non-degenerated distribution functions such
that

Fix Fy = a,,*P; (a real, 62 > 0, 2 = 0)

where P; stands for the Povsson dustribution function with parameter A. Then F; = &, o0
* P (7=1, 2)whereal+a2—a,a, + 0,2 = o2, ),+)‘2=/

It is the aim of this paper to.generalize these results in a unified manner. The
essential tool will be firstly the elementary new continuation Theorem 3.1 (and its
Corollary 3.1) and secondly deep results of B. JEsiax [4] and N. M. BLawk [1] which
are ba.sed on the value distribution theory.

2.. Remarks on the continuation theory of distribution functions

’

It was A. N. KoLM0oGoROV who conjectured that an infinitely divisible distribution

function F coinciding with ¢a . on & half line equals @, ,. The affirmative answer to )

this question was published in [8] and can now be considered the starting pdint of
what we call the continuation theory of distribution functions. Its present state is
surveyed in [11] and elaborated in [12]. The theory of Phragmén and Lindelof plays
a considerable role in it as is seen also from the present paper. Already at several
occasions, we have taken the view that that theory provides powerful tools which are
very applicable also in other fields of analytic'probability theory, see e.g. [9] and [10].
A remarkable deep result of -continuation theory is due to I. A.IBracmmMov [3]
who generalized the above menbloned continuation theorem in the following way.

Theorem 2.1: Let F be an infinitely divisible distribution /unctwn which is positive
on the whole line, and assume that its characteristic function f vs continuable to the upper
half plane

Po=le=t+iy:u= 0.

Let G be an infinitely divisible distribution function satisf_ﬁng

Flx) =G(z), z= 2:0; . . 4 (2.1)
for some real %y Then F = G.~

For the proof Ibragimov used Nevanlinna’s value distribution theory. Later on,
"it was B. JESIAK [4] who recognized that part of this result has little to do with infi-
nite divisibility. Namely, using Ibragimov’s method he proved that the problem
concerns mainly the zeros of the characteristic function under ¢onsideration. For a
brief formulation of his result, we write I for the class of all distribution functions #
having a characteristic function f which is continuable to §, and satisfies the condi-
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tions

V lim log fy)
poeo Ylogy

where n sta.nds for the number of zeros of fin the semi-disk (z: [z| = 7,y > 0).

— o, .l =0(ogn,r>ee, - (@2

Theo rem 2.2: Assumethat F € T and that for the dzstmbutwn function G’ we have
(2.1). 1f, moreover, n(r; g) = O(logr), then F = G. , - a

The Harkov school of analytic probability theory also dealt with continuation
theory and used results of the value distribution theory It, was 1. V. OSTROVSKIJ
- [6] who introduced the following class of functlons ' }

-

Defxnltlon 2.1: Let H: R, - R, be a functlon of bounded varlatlon We say that
it belongs to the class B if it possesses the following propertles (where lext stands for
“left extremity*): - ‘ .

(i) H(—o0) =0, H(co)—l H(z — 0)= H(z);

(ii) lext H = —oo; o o
(iii) the “characteristic functlon“ h(t) = f e dH(x) is continuable to §, and has
no zeros here . , —&

L V OSTROVSKIJ obtained the following result.
Theorem2 3:1f H, and H, belong to B and f ,

H(z) = Hy(z), = g Zys ke ; ' - -(2.3)
- for some x, € Ry, then H, = H,.

In the particular case that H, = &}, we need con31dera.bly weaker assumptlons
than the coincidence (2.3) on a half lime. The first to notice this' was M. RIEDEL [7]."

' 'Generahzmg his result N. M.BLANK and I V. OSTROVSKIJ [2] proved the followmg

Theorem 2.4: If H belongs to B and .

/7

| IH(—Z) - (bo,l(_-’”)l < exP (_3;21 - ':z:Q(x)), z> 0)

. ’\where 0: (O o) - R, satw/zes hm 2(z) = oo, then H= (Do 1

Fma.lly, N M. BLANK [1] considered ‘the subclass 58, 3 of functlons H whose ;'
“characteristic function” & satisfy
. Ed

h(vy) = exp (p~1y")

for some p > 1 and sufficiently large y > 0; since @, , € 531 her result stated as
Theorem 2.5 generalizes Theorem 2.4. )

Theorem 2.5: Let 2 be as vn Theorem 2.4. If H, € B and H2 € B, and

.

|Hl(—z) — H,(—2)| g exp (—% zk — k-1 .Q(x)), oz g 0,

where k ___,__p_ then H, =H,., . ‘
p.— 1 ) o .

T 13+
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In view of these deep results, the following continuation theorem of A. N. Trrov
[14] deserves particular attention for two reasons. Namely, neither infinite divisibi-
lity nor zeros of characteristic functions are méntioned ; moreover, the corresponding
proof is nothing but an elega.nt application of elementa.ry facts which are well known
from the theory of Phagmén and Lindelsf. In Remark 3.1 we indicate how this result
can be obtained in our context though our approach differs from that of Titov. In
[12] we also present further results of Titov which are relevant in this connection.

Theorem 2.6: Assume that /or a distribution /unctzonl-l and some natuml number
n = 2wehave. .. _ . : RN .

H”‘(x) aa(x)’ TS 3,
for, some real %o; then H is a normal dzstnbutwn

This is obviously related to Cramér’s theorem, and in view of this result it is natural
to ask if even the assumption '

Fyx Fy(@) = @oolz), S0 | A  . 23)

implies that the distribution functions F, and F, are also normal. Unfortunat,ely
‘such a desirable statement is wrong. .

Example (oral com. of A, N. Trrov): Put ) .

Fyz) = 220' ((Do,,(x — 2n) — ¢0,1(x - o — 1)),  z<0

vz), =z=0

v

where v stands for a monotone function on [0, co) such that F,(0) = »(0), v(co) = 1.
Let then ¥, denote the binomial distribution function attributing mass 1/2 to the -
-atoms 0 and 1: Then (2.3) holds for z < 0, bub F, % F2 =d,,. -

3 A problem of Vv, "M Kruglov and the main result

The results of A. N. Trrov described above made V. M. KrUGLOV pose the fol]owmg
problem:-
Assume ’ohat in (2 3) we have Fi(z) = F(z/o;) (7,' =1,2Yfor 0 < ¢, <. 05. Does it
then follow that F is normal? .
This question seems to be easy since Theorem 2.6 can be proved easily and wmh‘
elementary means. But in the present.paper we will give only a partial answer to this
problem. Nevertheless, it proved stimulating'since it led,us to introduce the root which
- plays an essential role in our proof of Theorem 3.1. _
First of all we have to:quote two lemmas the second of which is due to I. V. OsTROV-

sk1J. For the proofs see é.g. [12].*For the sake-of brevity, we write € for the class of _ -’ -

all functions w analytic in the interior of .i)+ and continuous in §, which are bounded
on the real axis R,. Further, for w € (S w== 0, we let

N

k, = lim y~1 log lw(zy)l

Y= .
' Lerilma 3.1: For a function w € €, w == 0, which is bounded in 9., we have ky > —oo.
Lemma 3.2: Suppose that w € €, w == 0, satisfies —oo < k,, S 0 and 4
() = Kexp(dy?), z€9., ‘ ‘ :
for some positive numbers K and d. Then w s bounded m .§)+ e

\ B
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. We are now in a position to prove the following contindation theorem.

.~ Theorem 3.1: Let F be a distribution function whick is positive on the line. Assume
that its characteristic function is continuable to §,, has no zeros in 9., and satisfres

.

fiy) < Lexp (dy»), y=0, | - (3.1)
for some L > 0, d > 0. If the distribution function G fulfills
| 6@) = F), 2=, ' : . (3.2)

for some real Z, and of its characterwtzc fun ctwn has also no zeros n ., then G = F.

. Proof: Wlthout loss of generality we set z, = 0 since Fo(z) = F(z + z,), too,
\satisfies the assumptions of the theorem. We introduce the function '

o k)= g(0) — /(6) = [ eHd(§(x) — Flz)
; |

“ where the latter equation is obvious by a,ssumption.' The continuation

k) = g(a) — fla).= Jedow —F@) zen.,

belongs to € and is bounded in ., [k(z)| = 2. Thus we have by the ridge property of
characteristic funct,lons lg(2)| < (k(z)| + If(2)| £ 2 + f(iy), 7€ .{).H and from (3.1) it
is seen that there exists K > 0 such that '

9@)I'S K exp (dg?), .z €9 : (3.3)
. The essential idea of the proof consists in introducing ‘
A@) =Vole) = Vi), z €9, | (349

where ]f— W) = 1. Then L(z) = A(z) m) + m) and, moreover, we have

- the estlmate

22 Ik(%y)l = |4(zy)| (Vg(z )+ Vi) 2 146y)| ViGy). (3.5)

’ Combmmg (3.1), (3 3), and (3.4) we obtam from the ridge property |4(z)| = (]/_-}— ]/_)
- X exp (dy?/2), y = 0. On the other hand, the assumption F > 0 implies

i

“lim y‘1 log f(iy) = o0. (3.6) -
y—c0 . .

Thus it is clear from (3.5) that |4(sy)| is ‘bounded for y > 0. Hence A satisfies all
assumptions of Lemma 3.2, and applying it we see that 4 is bounded. Assume now
4 == 0. Then our result contradlcts Lemmaea 3.1 since from (3 5) and (3.6) 11; follows
that k4 = —oo. Thus4A=0and f=¢g1ll

Remark: A function B which has bounded variation on the lime can be re'presented
as B = ¢,F, — c,F, where F, and F, are distribution functions and ¢, = 0, ¢, = 0.
This is the reason why Theorem 3.1 is true also for functions @, F € 8 with a minor |
change in the proof. '

Now we turn to the particular case in which

F = ¢a,q*4‘Pl‘.
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~

The-condition (3.1) is trivially satisfied for d = 0?2, and (3.2) can be replaced by an
asymptotic relation. Note that (3.7) implies G’(— z) = O(e"") x — +o0, for all
7 > 0, so that g is continuable to §, .

Corollary 3.1:, Let G be an arbitrary dwtnbutwn function and a€ R,, a2 > 0,
A =2 0. Assume that /or some ¢ > o072 .

[G(—2) — Pyq % Pi(—2)] = O(e"), , z—> 00; _ 3.7
of the characteristic function g has no zeros in 9., then G = =D, o ¥ P;.

- 'The proof (R  ScHARM [13]) essentially proceeds hke above Namely, in this case
we have

'1/2 . ‘
lk(Z)IS3+lzl—‘/—c xp ) 'y=20,

so that we get a similar estinfate for g. Thus, instead of (3.5), we may write

0 (y exp ( 2)) = [k(iy)| = |4(3y)| exp (y g LA i)

_ Hence A(vy), y = > 0, proves to be bounded. Moreover, A( )/(‘% + 12), y = 0, satisfies
all assumptions of Lemma 3.2. Thus we get the desired result with similar conclusions
as before i

Corollary 3.1 obiriously implies the following theorem which gener"allzes Linnik‘s
Theorem 1.2 and, at the same time (for 2 = 0) Cramér‘s Theorem 1.1. Since

Fl(%) Fy (%)é Fy* Fz(x)

it is clear from (3.8) that Fy(—x) = O(e~"%), x — oo, for all 7 > 0, so that the charac-
terlstlc function f; (j = 1, 2) are continuablé to 9, .

Theorem 3.2: Let a €. Ry and o > O 2 2 0. Let, moreover, F,, F, be two distri-
bution functwns satzs/ymg :

|Fy % Fy(z) — By, % Py(2)] = O(e""') - (3.8)

for some ¢ > 07%; K2 moreover, ‘their chamctenstzc functions’f,, f, have no zeros in @H'
then the assertions of Theorem 1.1 and Theorem 1.2, resp., are true.

Proof: Putting @ = F, x F, we can apply Corollary 3.1 and obtain the assertion I’

Remark 3.1: Though in Titov’s Theorem 2.6 zeros of / are not mentioned, our
method enables us to prove it. Namely, let us put ' = @, in Theorem 3.1. Then the
assumptions made on the zeros of ¢ can be replaced by Vg € €”. Further, aslight |
modification of the proof shows that the more general assumption “therc exists -

n = 2 such that %E € is also sufficient. Then Theorem 2.6 follows from this ﬁew
version of Theorem 3.1, since we have then to replace g by A", - N

Corollary 3:2: Kruglov’s question can be answered in the affirmative provided that
f has no zeros or only zeros of an even order M Qs :

Clearly, we can now also generallze Theorem 1.2. Namely, putting
G=F, x F and f(t) = exp (iat — o222 + i(e" — 1))
we can apply Theorem 3 1 to obtain the followmg result.
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.Theorem 3.3; If . ,
Fyx Fy(z) = @oo % Palz), <20

*and the characteristic functions f; o/ F; (j = 1, 2) have no zeros in ., then the assertion
of Theorem 1.2 s true. . .

.
N

4, Cenclusions tro;n the value distribution theery

The results of § 3 are, amongst others, -of interest since they can‘be obtained with
. very elementary analytic methods and can be understood without any special proba-
bilistic education. Now we state briefly what directly follows from Theorem 2.2 and
‘Theorem 2.5, resp.

Theorem 4.1: Let F1 and F, be twod dzsh tbution /unctw'ns satw/ymg
 F % Fy(@) = Poo x Pi(z), -z =1, : S o @)

/or some i = 0;1f, moreover, their characteristic /unctw'ns frand /2 have (mly ew zeros”
" 95 in the sense that for j =1, 2

n(r, f;) = O(log 7),

as r — oo, then the assertions of the Theorem 1.1 and 1.2, resp., are true.

\ .
3

Theorem 4.2: Let F, and F, be two_dzstnbutwn /unctwns satisfying

2 o
AP, Fy(—2) — a,,*Pl( x)[Sexp(—%—xQ(x)) C 220,

- “

~—

- for some 1 =.0, where 2: (0, oo) — R, ¥s a function such that lim .Q(+x) = 00; 'Lf, v

00
moreover, their ckamcterwtzc /unctwns fiand f, have n0 zeros in .i)+, then the assertions
o/ the Theorems® 1 1 and 1.2, resp., are true. N )
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