
Zeitschrift für Analysis 
und ihre Anwendungen 
Ed. 4 (3) 1985. S. 193-200 

Generalization of Cramer's-and Linnik's Factorization Theorems 
in the Continuation Theory of Distribution Functions 

H.-J. ROSSBERG	 -. 

Angeregt dureh ein Problem von Kruglov und ein Resultat von Titov gewinnen wir einen 
elementaren Fortsetzungssatz für Vert-eilungsfunktionen. Er impliziert die folgende Ver-
allgemeinerung des Theorems von Cramer. Für die nicht ausgearteten Verteilungsfunktionen 
F 1 und F, gelte	-	 -	 - 

-F1 * F2(x) =	z	XO , -	 -,	- 

wo z0 € R1 und 1,, , ,, die Normalverpeilung' N(a, a2) bezeichnet; wenn die charakteristischen 
Funktionen /i und /2 keine Nuflstellen in der oberen Halbebene haben, dann sind F1 und F2 
auch normal. Linniks Theorem ltl3t sich analog veraligemeinern. Auch allgemeinere Varianten 
werden erörtert. 
Boa6y-^KAqif. bi npoGJleMot! FcpyriloBa u peay.nwraToM 'I'uTona MI,! goma3LIBaeM 3.TIeMeHTapHoe 
npeioeiie o npcioJIReHMu (PYI-Iligilft pacnpeLeJieIIun. Raii CJ1eCTBIIe MISI noyae 
cJze1y1ouee . o6o6uleHHe TeopeMbl Hpariepa. Ilycm'F1 ii F2 .e HCBhIO eIIHUe ()YHHUU[! 

- pacrIpeJwJTeIIHI, IrnTopale ygoBa eTBOPRIOT YCJ1OB1110	 -, - 

* F2(x) =P00(x), - x	XO - 

"1w x0 E R1 , a	oaiiaaer HopMalbHyIo ()H}1(O padnpe)e.ueHIIH N(a, a 2). Ec.'iii COOT-
11eTc'rByIoIuue xapalvrepllcTli'IecHIIe 1YHKHI1 / ii /, He HMeI0T IiyJieuI B nepxnoü ioJiyniioc-
I(OCTII, ro'F1 : ii F2 i'ai1+ce HOJUIIOTCH iiopiaJiarrniu. I1oo6iia.i o6pa3oM o6o5uaeTcn 'reopeMa 
,fluuIIHIa. ,Lciy'riipyioci raxe 6o.mée oGique BapHaHmi.	 . 

•	Stimulated by a problem of Kruglov and aresult,of Titov we derive an elementary continua- - 
tion theorem for distribution functions. It implies the following generalization of Carmér's 

• - -	 theorem.' Let F1 and F be two non-degenerate distribution functions sucht that	- 
- F1 * F(z) =	0 (x),	X	X0,	 / 

where x0 € H 1 and rPa a stands for the normal distribution.N(a, a 2); if the corresponding charac-
teristic functions / and /2. do not vanish in the upper half plane, then F1 and F2 are also 
normal. Linnik's theorem can be analogously generalized. More general variants are also dis-
cussed.  

1. Introduction	 -	 -	- 

Throughout this paper P stands for the normal distribution function N(a, a2) 
and * denotes a convolution. The following theorem was first conjectured by P. 
LEvI and somewhat later proved by H. CaMEa; it is well known in the analytic 
theory, of probability, for details see [5] or [12]. 

•	Theorem 1.1: Let F, and F2 be non-degenerated distribution junctions such that 

F, * F2.=	(a real, a2 > 0).	 5	 - '	 (1.1) 

Then F, =	(i = 1,2) where a1 + a2 = a,- a 2 + a22 = a2 .	 - - 
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In the usual proof, one switches from (1.1) to the corresponding characteristic 
functions; so /1/2 = q'• Then one proceeds in the following three steps. 

1. A theorem of P. A. RAJKOV implies that / and /2 are integral characteristic 
functions without zeros. 

2. Next one proves that the ,orders of /i and /2 are not greater than 2. 
3. We use the fact that such integral functions without zeros can be represented- as 

e" where P2 denotes a polynomial with a degree 2. 
Later it was Y. V. LINNIK who proved the following analogous result. Its proof ,is, 

by far-more complicated and was remarkably simplified by E. Luos [5]. 

Theorem 1.2:,Let F1 and F2 be two non-degenerated distribution functions such 
that

F1*F2 = 00 *P1 (a real, a2> 
where P2 stands for the Poisson distribution function with parameter ). Then F = 
* P1 , (i = 1,2) where a1 -f- a2 = a, a1 2 + a2 2 = 2, 2 + 22 = 

It is the aim of this paper to.generalize these results in a unified manner. The 
essential tool will be firstly the elementary new continuation Theorem 3.1 (and its 
Corollary 3.1) and secondly deep results of B. JEsI&x [4] and N. M. Bi.&NK [1] which 
are based on the value distribution theory.	 - 

2. Remarks on the continuation theory of distribution functions 

It was A. N. KoLM000Rov who conjectured that an infinitely divisible distribution 
function F coinciding with on a half line equals The àJfirmative answer to 
this question was published in [8] and can now be considered the startipg paint of 
what we call the continuation theory of distribution functions. Its present state is 
surveyed in [11] and elaborated in [12]. The theory of Phragmen and Lindelof plays 
a considerable role in it as is seen also from the present paper. Already at several 
occasions, we have taken the view that that theory provides powerful tools which are 
very applicable also in other fields of analytic *probability theory, see e.g. [9] and [10]. 

A remarkable deep result of'continuation theory is due to I. A. IBRAGIMOV [3].' 
who generalized the above mentioned continuation theorem in the following way. 

Theorem 2.1: Let F be an infinitely divisible distribution /unction which is positive 
on the v)hole line, and assume that its characteristic function / is continuable to the upper 
half plane	 -	- 

+={z=t±iy:yO}. 

Let 0 be an infinitely divisible distribution function satisfying 

F(x)=G(x), X:!g X,	 .	.	 (2.1) 


for some real x0 . "hen F = U. - 

For the proof Ibragirnov used Nevanlinna's value distribution theory. Later on, 
it was B. JESIAK [4] who recognized that part of this result has little to do with infi-
nite divisibility. Namely,.using Ibragimov's method he proved that the problem 
concerns mainly the zeros of the characteristic function under consideration. For a 
brief formulation of his result, we wFite Z for the class of all distribution functions F 
having a characteristic function / which is continuable to + and satisfies the condi-
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N 
tions

lim log/(iy) 
= cc,	.rt(r;f) = O(logr),r–s. co,	 (2.2)
j,-+,oyogy 

where n stands for the number of zeros of / in the semi-disk (z: jzj r, y > 0). 

Theorem 2.2: Assumethat F E Z and that /or the distribution function Owe have 
moreover, n(r; g) = C(log r), then F  

The Harkov school of analytic probability' theory also dealt with continuation 
theory and used results of the value distribution theory. It was I. V. OSTROVSKIJ 
[6] who introduced the following class of fnctions. 

Definition 2.1: Let H: R1 -* R be a function of bounded variation. We say that 
it belongs to the class 58 if it possesses the following properties (where lext stands for 
"left extremity"): 

• (i) H(—co) = 0, H(co) =_ 1, H(x - 0)'= H(x); 
- (ii) lext H	—cc; 

(iii) the "characteristic function" h(t) 
= f 02 dH(x) is continuable to	and has


no zeros here. 

I. V. OSTROVSKIJ obtained the following result. 

Theorem 2.3: I/ H1 and H2 belong to 8 and if 

	

•	 H1(x) = 112 (X); X	X,	 •(2.3) 

for some x0 E R1 , then H = HI. 

In the particular case that H2 =	we need considerably weaker assumptions 

	

•	than the coincidence (2.3) on a half lime. The first to notice this was M. RIEDL [7].'

• Generalizing his result N. M.^BLANii and I. V. OSTROVSKIJ [2] proved the following. 

Theorem 2.4: 1/, H belongs to Z and 

IH(—x) - 0 , 1 (—x)l <exp (--- - 'xQ(x))	> o, 

'where Q: (0, cc) –a- R satisfies urn .Q(x) = cc, then H = 

	

•	Finally, N. M. Br	[1] considered 'the subclass Z,c0 of functions H whose

"characteristic function" h satisfy 

h(iy)	exp (plyP)	 . 

for some p > 1 and sufficiently large y> 0; since	€ 58, her result stated as

Theorem 2.5 generalizes TheOrem 2.4. 

Theorem 2.5: Let Q be as in Theorem 2.4. If H E 18 and 112 €	and 

1H 1 (—x) - H2 (—x)I ^S exp	X  - xk_1 S2(x))	x 0, • 

where k =, -p—, then H = H2. 

j3*	-

,¼
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In view of these deep results, the following continuation theorem of A. N. TIT0v 
[14] deserves particular attention for two reasons. Namely, neither infinite divisibi-
lity nor zeros of characteristic functions are mntioned; moreover, the corresponding 
proof is nothing but an elegant application of elementary facts which are well known 
from the theory of Phagmén and Lindelöf. In Remark 3.1 we indicate how this result 
can be obtained in our context though our approach differs from that of Titov. 1n 
[12] we also present further results of Titov which are relevant in this connection. 

The o rem 2.6: Assume that for a distribution function H and some natural number 
n^!2wehave 

lln (x) 0 (x),	xx0, 

for some real x0 ; then H is a normal distribution. 
This is obviously related to Cramer's theorem, and in view of this result it is natural 

to ask if even the assumption	 - 

F1 * F2 (z) = 050 (x),	x	 (2.3) 
implies that the distribution functions F1 and F2 are also normal. Unfortunately 
such a desirable statement is wrong. 

Example (oral corn, of A. N. TITov): Put 

F, (x) = 2Z ( 051 (x - 2n) 00, ,(x - 2n	1)),	x<6 

v(x),	x>O 

where v stands for a monotone function on [0, oo5 such that F1 (0) = v(0), v(co) = 1. 
Let then F2 denote the binomial distribution function attributing mass 1/2 to the 
atoms 0 and 1. Then (2.3) holds for z 0, but F1 * F2 

3. A problem of V.' 111. Kruglov and the main result 

The results of A. N. TITOV described above made V. M. KRIJGTSOV posc the following 
problem: 

Assume that in (2.3) we have F(x) = F(x/o) (i = 1 2for 0 < a <a2 . Does it 
then follow that F is normal?	 S 

This question seems to be easy since Theorem 2.6 can be proved easily and with 
elementary means. But in the present paper we will give only a partial answer to tb'is 
problem. Nevertheless, it proved stimulating'since it led us t6 introduce the root which 
plays an essential role in our proof of Theorem 3.1. 

First of all we have to. quote two lemmas the second of which is due to I. V. OsTRov-
S sKTJ. For the proofs see e.g. [12].'For the sake-of brevity, we write for the class of 

all functions w analytic in the interior of , and continuous in ., which are bounded 
on the real axis R1 . Further, for w E , w 0, we let 

= liiny' log w(iy). 1I-.00 
- L e in ma 3.1: For a function w E (, w 0, which is bounded in we have k,, > - cc. 
Lemma 3.2: Suppose that th E , w 0, satisfies —cc k,, 0 and - 

- w(z)	K exp (dy2),	z €	, 
for some positive numbers K and d. Then w is bounded in b,.	.-
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We are now in a position to prove the follow in continuation theorem. 

Theorem 3.1: Let F be a distribution /unction which is positive on the line. Assume 
that its characteristic function is continuable to ., has no zeros in , and satisfies 

/(iy) ;5 L exp (dy2),	 -	 (3.1)


for sone L> 0, d > 0. I/ the distribution /unction 0 fulfills 

0(x) = F(x),	x	x0 ,	 (3.2)


for some real x0 and if its chaaaeristic function has also no zeros in,,, then 0 = F. 

Proof: Without loss of generality we set x0 = 0 since F0(x) = F(x + x0), too, 
satisfies the assumptions of the theorem. We introduce the function 

k(t)== g(t) T/(t) =feitxd(ç(x) - F(x)) 

where the latter equation is obvious by assumption. The continuation 

•	k(z) = g(z) - /(z). = f ed(G(x) - F(x)),i	z E +, 

belongs to and is bounded in , k(z)I 2. Thus we have by the ridge property of 
characteristic functions g(z) f/c(z)I + If(z ) I 5 2 + f(iy), z'E , and from (3.1) it 
Js seen that there e*ists K> 0 such that 

Jg(z)[5 Kexp (dy 2 ),	z E	 (3.3)


The essential idea of the proof consists in introducing 

4(z) = 1/g(z) - }"f(z),.	z E	 (3.4) 

where 1/ö = 1/7ö) = 1. Then k(z) = 4(z) (I/) + ifi3) and, moreover, we have 
the estimate 

2	Ik(iy)I = 4(iy)I (i'	+ 1//( iy))	14( iy )I v75 .	 ( 3.5) 

Combining(3.1), (3. . 3), and (3.4) we obtain f rom the ridge property kl(z)I	(iIiL + 1rK)

X exp (dy2/2), y 0. On the other hand, the assumption F> 0 implies 

urn y' log f(iy) = cc.	 (3.6)' 

Thus it is clear from (3.5) that 14(iy)I is bounded for y> 0. Hence 4 satisfies all 
assumptions of Lemma 3.2, and applying it we see that 21 is bounded. Assume now 
4 0. Then our result contradicts Lemma 3.1 since from (3.5) and (3.6) it follows 
that k = —co. Thus A = 0 and / = g I 

Remark: A function B which has bounded variation on the lime can be represented 
as B = c1 F1 - c2 F2 where F1 and F2 are distribution functions and c1 01 c2 0. 
This is the reason why Theorem 3.1 is true also for functions 0, F E l3 with a minor• 
change in the proof. 

Now we turn to the particular case in which 

- F =	* P2. 

'S
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The condition (3.1) is trivially satisfied for d = a2/2, and (3.2) can be replaced by an 
asymptotic relation. Note that (3.7) implies G(—x) = O(e_t) , x --^- +oo, for all 
r> 0, so that g is continuable to +. 

Corollary 3.1:, Let 0 be an arbitrary distribution function and a'E R1 , a2 > 0, 
A ^! 0. Assume that br some c> a2 

I0(—x) — Oa.o * Pa(—x)I = O(e-'), , x -	;	 (3.7) 

if the characteristic function g has no zeros in +, then 0 =	* PA. 
- The proof (R. Sc rii [13]) essentially proceeds like above. Namely, in this case' 
we have

y 0 

so that we get a similar estimate for g. Thus, instead of (3.5), we may write 

/ y2 \\	. 	(y 2C2 ya .	2 0 I y exp	= k(iy)f	IzJ(iy)I exp -- - -- - 

Hence A(iy), y > 0, proves to be bounded. Moreover, J(z)/(3 + iz), y Z^ 0, satisfies 
all assumptions of Lemma 3.2. Thus we get the desired result with similar conclusions 
as before I 

Corollary 3.1 obviously implies the following theorem hich genealizes Linnik's 
Theorem 1.2 and, at the same time (for 2 = 0) Cramér's Theorem 1.1. Since 

F,. 	F1 * F2(x) 

it is clear from (3.8) that Fj(—x) = O(e_ Tz) , x - oo, for all r > 0, so that the charac-
teristic function /, (j	1, 2) are continuable to	. 

Theorem 3.2: Let a ER1 and a2 > 0, 2 > 0. Let, moreover, F 1 , F2 be two distri-
bution functions satisfying 

* F2 (x) - !ia , *:P2 (x) = 0(e,,)	 (3.8) 
for some c > a- 2; if, moreover, their characteristic functions j , f2 have no zeros in 
then the assertions of Theorem 1.1 and Theorem 1.2, resp., are true. 

Proof: Putting 0 = F1 * F2 we can apply Corollary 3.1 and obt 'ain the assertion I 
Remark 3.1: Though in Titov's Theorei 2.6 zeros of f are not mentioned, our 

method enables us to prove it. Namely, let us put F = in Theorem 3.1. Then the 
assumptions ñiade on the zeros of g can be replaced by "I/E ". Further, a slight 
modification of the proof shows that the more general assumption "there exists 
n 2 such that Vg E ES" is also sufficient. Then Theorem 2.6 follows from this new 
version of Theorem 3. 1, since we have then to replace g by h'1. 

Corollary 3:2: Kr'uglov's question can be answered in the affirmative provided that 
/ has no zeros or only zeros of an even order in ,. 

Clearly, we can now also generalize Theorem 1.2. Namely, putting 
0 = F1 * F2 and /(t) = exp(iat a2t2/2 + 2(e" - 1)) 

we can apply Theorem 3.1 to obtain the following result.
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Theorem 3.3: If 

F1 ' * F2 (x) =	* P1 (x),	x x 

and the characteristic functions fj of F '(j = 1, 2) have no zeros in , then the assertion 
of Theorem 1.2 is true. 

4. Conclusions from the value distribution theory 

The results of § 3 are, amongst others, of interest since they can be obtained with 
very elementary analytic methods and cah be understood without any special proba-
bilistic edication. Now we state briefly what directly follows from Theorem 2.2 and 
Theorem 2.5, resp. 

Theorem 4.1: Let F1 and F2 be two distribution functions satisfying 

,F i *F2 (x)aa*Pi(X),	•x^x0,	 :	:	(4.1). 

for some A 0; if, moreover, theii characteristic functions f and f2 have only "few zeros" 
inc. in the sense that /or j =. 1,2  

n(r,f1 ) = O(logr),  

as r —* 00, then the assertions of the Theorem 1.1 and 1.2, resp., are true. 

Theorem 4.2: Let F1 and F2 be two distribution functions satisfying 

* F,(—x) -	* Pi (—x)) 'eKp (_-- - xQ(x)) 	x 

for some A .0, where .Q: (0, oo) — R 1 is a function such that urn Q(+x) =,' oo; if, 

moreover, .their characteristic functions /, 'and /2 have no zeros in ^, then the assertions 
o/ the Theorems'1.1 and 1.2, resp., are true.	' s 

Acknowledgement. This paper owes much to discussions with J. Focke, B. Jesiak,' 
M. Riedel, and R. Scharm, and I am very grateful to them. 
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