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A Note on Optimal Domains in a Réaction-Diffusion Problem

C. BANDLE

N\ \

Es wird untersucht, welches Gefa3 fur eine chemische Reaktion optimal ist im Sinne, daB
keine toten Zonen auftreten und daB der ,,Wirkungsgrad** méglichst groB wird. Es zeigt sich,
daB bei vorgegebenem Volumen das GefiB moglichst diinn sein muB. Der Beweis stiitzt sich”
auf die Methode der Ober- und Unterlésungen und auf die Abschatzung fir die Lésung des
Dmchletproblems, die vom Inkugelmdlus u.bhangt

I/Iccnenye'rcn KaKoit cocyn mpu XMMHUeCKOH PearilHi ONTMMANEH B TAKOM CMEICIE, YTO HeT
MepTBHX . 30H M, 4TO ,,KOeQPUUMEHT NMONE3HOTO NEMCTBHA'C KAK MOMHO GoJblue. OKA3H-
'BagTCA, YTO IPU NaHHOM 0GbeMe COCYR RoxeH OnTh HanGosnee TOHKuM. JIOKasaTeNbCTBO
OIYPAeTCA HA METOJ BBEPXHUX H HHAMHMX PelleHH! U H3 OLIEHKH pemeuun safauu JTupuxne,
3aBUCAIeEH OT pajiyca BIMCAHHOrO Iapa.

A simple model for a chemical reaction is considered. The-vessel where the reaction takes place
is optimal if no dead core appears and if effcct,lveness is high.' By means of the method of
upper and lower solutions it is shown that, independent of the volume, sufficiently thin domains
have thls property. The proof is based on an estlmate for the solutlon of the Dirichlet problem

1.'. _Introdﬁction

" Set D = R¥ be a bounded domain, z = (z;, 2,, ..., zx) & gen'eﬁc,point and

a 3 / . . “ -
o ':Zl [ @i (%) 33’:’] L o
& uniformly, elliptic operator such that C '

ay = aj, € CY(D) and );a,, x)g,g,gzg,z in D. (L)

ij=1 . N
This note deals with the problem
361: Au =g(u) inDXR*, A€R+ . .
. . ")
u=0 on D X R*, o o (P)
‘ u(z,'0) =0 - ' A
the-function ¢ = g(o) being subject to the following conditions 4
(C-1) g>0in(—o00,1),g€ CR)and g € C}(—oo, 1), ; -
. (C-2) gis non-increasing in (—oco,1), = . . ° ¢ .
(C-3) g(0)=1, S v |
(C-4) g(o) = 0 fo o =1, .

(C-5) g(o) = golo) (1 — a)*” for some p, 0<p<l1, with go(l — 0)>0 apd
' g0(1—0)<oo(+—ma.x{00}) . - :

'Y
i
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'

Such problems occur in srmple models for reaction-diffusion” processes [l 4, 9] in
the case where the reactions are endothermic or isothermal. Here D represents the
domain where the reaction takes place, and 1 — u = ¢ is the concentration of the
reactant. A considerable amount of work has been devoted recently to these equa-'
tions [1, 3—5, 9, 10}. .

An important tool in “the study of problem (P) is the method of upper and lower
solutions. A function % = %u(z, t) is called a upper soluuon if =

u — Au g.}»g(u) in DxR*, %=0 on oD XR"*, u(x, 0) = 0.

Conversely, u = u(z, {) is a lower solution if the inequality signs are reversed. The.

theorem [8] states that, if there exist upper solutions such that ¥ < % in D X [0, 7',
_then the problem (P) possesses a solution » with ¥ < v £ % in'.D X [0, 7']. In our

case thé assumptions are satisfied for Z = 1 and u = 0. Consequently problem’ (P)

has a solution % such that 0 < u(x,?t) = 1, Whlch is unique by virtue of the mono-

tonicity of g (C-2). Observing that u(z, t + At) = u(:v t) is an upper solution for
-problem (P) we conclude that ‘

u(@, b) < u@, ) for 4 <t - . de)
" Furthermore, by standard arguments we have lim u(z, ) =U U(z), where U(x) is the
solution of the stationary problem. toeo

- » The set Q(t) := {x € D: u(z, t) = 1} is called the dead core. o It represents the region
where no reaction takes place at the time ¢. We shall write 2(co) for the dead core
of U(x).-The special feature about our problem is that fiir 2 sufflclent]y large, £2(¢)
is non empty if ¢t = 7(2) ) [4]. From'(1.2) it follows that

Q) = Q) = F(00) for 4 <ty S - (1.3)

Clcarly, Q) depcnds on the geometry of D and on'2. We have for example [4]
()  Qp,() = Qp,) for Dy — D, and flxed

_ : (1.4)
(i) Q@)= 2, () for 4, =2, a,nd D fl\ed

A comparison result of a different nature was obtained by means of rea.rrangemenb
methods [4] and is expressed as follows.

'l‘heo rem I Let Q*(t) be the dead core corrésponding to problem (P) with A replaced
by the Laplacian and D by the sphere D* :={x: |z| < R, vol D = vol D¥} of the same
volume as D. Then meas 2(¢) < meas 2%(t).

Another quantity of physical interest is the so called e/feclneness defmcd by

nw%memmmhéL

It is the ratio of ‘the actual average reaction rate in a region to the rate correspondmg
to reference values of reactant concentration and temperature. Rearrangement tech-
niques yield [5, 3]. . N

i Theorem II: Let n* be the cf/eclneness correspondmg to problem (P) with A = A
‘and D = D*. If in addition to (C-1)—(C- 5) g s concave, then n =.m*. In the stationary
case (n(c0)) no concavity on g is requzred

For practical purposes it is deswable to have a small dead core and a thh effec-’
tlveness ) ’
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. If we restrict ourselves to the case where 4 = A, then the Theorems I and II
imply the following extremal properties of the sphere:

. (i)  Among all domams of given volume the volume of the dead core us biggest for

the sphere. . ’
(i)  Among all domains of given volume the sphere has the smallest effectiveness.

-The sphere is in some sense the worst region. In the “International ] \{eetmg on Opti-
mization Techniques” af the Wartburg 1983, Professor R. Klstzler asked the ques-
- tion: is there a best domain? Since the worst domain is fat, the best domain, provided
it exists, has to be thin. In fact, it turns out that for any fixed 2 there is always a
domain of given volume such that 2(co) is empty. Moreover there exists a sequence

of domains {D4}§>., such that - a

vol D, =7V and lun np,(t) = l _ 7

Those statements. follow from counterparts of Theorem I and II which will pe
formulated in Section 3.
I’m indebted to Prof. R. Klotaler for having. suggested this problem

2. Preliminary bounds for the solution of a Dirichlet problem

2.1 We proceed now to derive ‘bounds for the solution of the Dirichlet pr011)1e‘m .

Ay +1=0 in D, »=0 on .aD. (2.1)

For N'=2and 4 = A, p coincides up to a constant factor, wmh the warping function
in the torsion problem of a cylindrical beam..A number of inequalities relating pmax -
" to several geometrical quantities has been derived (cf. [2, 14— 16] and the literature
cited there). The following lemma extends an inequality of PAYNE [14]. Its proof i8
very similar and will be given for the sake of completeness.

Lemma 2.1: Let wy be the volume of the unit sphere and let A sans/y (1 1). Then ‘
_we have for the solution.of (2.1)

v < 2T oy f pdz.

b
Equalzly holds for D = D* and A = A

Proof: The proof is based on rearrangement tecllnlques developed in [2 17]. For-
. this purpose let us introduce the notation

D) =lz€D:§@) Z 7,  alp) = meas D(F).
By Schwarz’s inequality. and (1.1) we have ‘
L 1 Pt gy UF) = a(f + dF)
{d” f [Py dx} { = f [Vyl? dz d'7’ . } ,

D(§)— DG +d§) D(v)—D(J-l-dG)

N — d 4 e
§{—1‘ f '(.Zlaaiwx.w:,)dx 2®) ‘;(fu i tp)} - (22)
ij= L. .

149
D(¢) =~ Dy +dy)

In view of Fleming-Rishel’s formula ) .
p . . N
—_— Vy| dx = P(p), ’ 2.3
7 f l‘ vl dx (®) - (2.3)
D) : o

14 Analysis Bd. 4, Heft 3 (1985)
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where P(¥) is the perimeter of D(#%) in the éense of de Giorgi. In addition
a \ R |
2 ( 3 aupevs)dz = [ dpds = —a(@). @4)
Yy $i=1 N A
D(G’) . D(3) ) C.
If we let d§ tend to zero, then (2.2) combined with (2.3) and (2.4) yields ‘
;PP E —a®) a'(p) for.almost all . . +(2.5)

From the isoperimétric inequality P(§) = Naoy!¥a(p)i—1¥, 1t follows thab N2wy?In

2I1~
' >< al~ 2/N = —a'(y). Integra.tlon gives P = Wmax — ( ) . Since § = 0 for
a =4, we get
. ’ ANN 1
< (=) .—=. .
4,1/)1}1:13( = (au) 2N h (2 6)

Hénce, setting () := inf {§: ‘,%('7’) < t} we find

.A~ At a \2¥ q o
fl/)da ny)d\(b gf{wmax — (w_v) 2_N} da; y = (2N1pmax)bf2 wy .
0 0 o . v .

From : . .
. v 7 . . o
a \2I¥ 1 2 .
(= S — NIZ 0., 1+ N2
f{Wmax (wA') 2N} “la/ (2N) w‘\‘N T2 wlmax
.0 - N ] re
and ’ ’ : i . ~ -
: A - \ . ! " . , .
f pda = f pdz
0 D’

the assertion follows 8

If we multlply (2.1) by wand mtegratc we obtam observmg (1.1),

N fwda:‘: f( 2 a,]y)z‘y);,) dx = f ]l7z/)]2 dx. . 2.7
N D ' o .

D

. Schwarz’s inequality together with (2.7) implies

(fwda:)?\ . .fy;"’dx
<

D D.

dv < <V ,
fw [ y)2d= [ 1Vyl? d
D T D

D

where V stands for the volume of D. Moreover by the Rayleigh. principle

. . ' \ |
ftp2 dx < ;—f|l71p|2dx, _ ~
¥ h .

where 1, is the smallest cigenvalue of

Aw+ 2w =0 in.D,” w=0 on aD. - (2.8)
This leads to the following estimate for ymax '
LN < 2 + N V..

Ymax (2N ) Nl_2 ')_
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S

Remark: This inequality is never sharp. Cleafly any lower bound for 2; will pro-
vide an upper bound for g, ' : .

X

In thé next section we describe classes of domains of fixed volume whose first
eigenvalue exceeds any given number. :

*2.2 The best known bound for 4, is obtained from the Rayleigh-Faber—Krahn
inequality [2, 15] .

2/N ,
= (wvv) “fv—22) (7& first zero of the Bessel function Jy),
N ] ’
equality holding only for the sphere. Obviously this estimate is not of great use for
our purpose. The only chance to achieve our goal is to restrict ourselves to “thin”
domains. . '

* Let us now introduce the following classes of domains ‘ . ;

f‘: D= RY iying between two parallel (N — 1)-dimensional hyperplane
at a distance 29, that is all domains of breadth < 2},

€y. = {convex domains in R¥ of inradius g},
" A = {plane domains of inradius ¢ and connectivity k}. oo '
If we compare the first eigenvalue of a domain D € P with the cox“rcsponding eigen-

* value for the “‘strip”” and use the monotonicity of the eigénvalues with respect to the
.’domain [6] we get .

(2.10)

. 2 B
(D) 2(210) for D.€ ®.

<

As HEerscu [12] observed. the same result holds for convex domains in the plane,
" that is '
WD) = (21) for De&,. , : : ' (2.11)

Q

sting Cheeger’érhpthdd OssERMAN [13] proved that

2kp?

1\2 L

WD) = (%) for D€y _ (2.12)
and o . o
: e . . o \

D) 2 (2—0) for. D€A, and D € ,. (2:13)
The best result at the time for D € A, k> 2, is due to' CROKE [7], namely

— 1 ] - = ’
MD) 2 —— for D€, k=2, : (2.14)

Little is known for higher dimensions except that, no lower bound depending only -

on the inradius o' can be expected to hold without further assumption on the geo-

_metry of D.'As Haymax [11] points out, the first eigenvalue of a ball doesn’t change
much if narrow, inward pointing spiches are removed, whereas ¢ tends to zero.

~

14s s
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\

Inscrbing thcsc estima.tes'into (2:9) we get the

Theorem 2 1: Let A satw/y (1.1), p be the solution of (2.1) and D be a domam of
volume V. ’I’hen the follouring estimates hold. .

(4 + 2N) (@2N)~ M
. Ty

" 4 4 + 2N 2N

- N

N)
(i) 1,;},1;;‘”2 < (—+—) (2N)-¥2. Vg2 /or all D in u{k (k > 2).
wy.

(i) w}n‘af <

Ve? forall D in P or in 5’2.

(i) zpma”’ (2N)=—N2. Vo2 /or all D in u{,, A, and By,

Rema rk: In the case 4 = A, SPhRB [16] derived the estimate -
Pmax ST&— forall D€ &,. - L o (2.15)

'Clearly (2.15) is not comparable to Theorem 2.1 (i).

3. Main results

Let, us go back to problem (15) with the ‘assumptions made in Section 1. It is imme-

diate that @ = Ay(x), y being the solution of (2 1), is an upper solution for problem
(P) and thus

u(z, t) < /upmx for all (1) € DX R*. - ‘ (3.1)
This mequahty together w1th the estimates of Theorem 2.1 ylelds '
Theorem 3.1: Let D belpng to either classes &P, Ey or A,. Then

max u(z, t) < cVo?,
z€D N .
~ where ¢ depends only on \ the number of dwwmons N and on A. There exusts lherejore a
value gg'= po(2, N, V) such that v ) oA

meas Q2(f) < meas .Q(oo) = 0 for o0 < gq.
As an immediate consequence we have the

Theorem 3.2: Let the assumplions of the previous theorem hold and suppose that
volD V. Thenn(t)—>1aso~>0

i
’

- An optlmal domain has to be thin in the sense that its.inradius is small.

Rell{ark: The Theorems 3.1 and 3.2 hold also if g(u) is, repié,ced by g(x, u). Of all
assumptions (C-1)—(C-5) we have only used (C-3), (C- -4), the fact that q(a) takes
values in, [0, 1] for o € [0, 1] and the contmunt,y of g.
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