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A Note on Optimal Domains in a Reaction-Diffusion Problem 

C. BANDLE	 -	 -	 - 

Es wird untersucht, weiches Gefäf3 für ein ehemische Reaktion optimal ist im Sinne, daB 
keine toten Zonen auItreten und daB der ,,Wirkungsgract" mogliehst grot3 wird. Es zeigt sich, 
da8 bei vorgegebenem Volumen das GefäB moglichst dunn sein mull. Der Beweis stützt sich 
auf die Methode der Ober- und Unterlosungen und auf die Abschatzung für die Lösung des 
Dirichletproblems, die vom Inkugelradius abhangt. 
HccJIejyeTcn, xaxo(l cocy npfl xnMiqecKol peaitsiu onTHManeH B Ta}coM cMaIcJIe, 'ITO Her 
MTBEJX 3011 H 'ITO Hoe44HrxneHT noIeaHoro )eflcTBl4$1" }aK MO+{H0 6omine. OKasal-
'BaeTeR, 'ITO ripu JHHOM o6beMe cocy	oJ1}fceH 6hiTb HaM6oJlee T0HXII14: IOKa3aTeJ1bCTB0

om4paeTcH Ha meTOR BBCXHHX 11 HHIIHX pewenun H Ha oilefifill peweliHn 3aauH JnpHxJ1e, 
aaBLICHigeft or pauyca nrmcanHoro mapa. 

A simple model for a chemical reaction is considered. The-vessej where the reaction takes place 
is optimal if no dead core appears and if effectiveness is high. By means of the method of 
upper and lower solutions*  it is shown that, independent of the volume, sufficiently thin domains 
have this property. The proof is based on an estimate for the solution of the Dirichlet problem. 

L. Introduction 

Set D	RN be a bounded domain; x = (x 1 , x2 , ..., XN) a gen'ericpoint and 

S	 A=	 [aq(x)_] 
g jl Xi 

a uniformly, elliptic operator such that 
-	N'.	 N 

a15 = a5 E C1 (D) and E a1 (x)  	in D.	 . (fl) 
1.5=1	 i=1 

This note deals with the problem 

- Au = 2g(u) in D x R,	A E R4 -  
u=O	 on3DxR,	 (P) -. 
u(x,°O) = 0' 

the-function g	g(a) being subject to the following conditions 

(C-i) q> 0 in (—cc, 1), g E C°(R) and g E C1(—oo,i), 
(C-2) g is non-increasing in (—cc, 1), 
(C-3) g(0)-= 1,	 - 
(C-4) g() = 0 for a 

• (C-5) g(a) = g0(a) (1 - a)+P for s6me p, 0 <p < 1, with g0 (1 - 0)> 0 'and 
(lo'( l. - 0) <. oo (a + := max (c, 0)).
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Such problems occur in simple models for reaction-diffusion processes [1, 4, 9] in 
the case where the reactions are endothermic or isothermal. Here D represents the 
domain where the reaction takes place, and 1 - u c is the concentration of the 
reactant. A considerable amount of work has been devoted recently to these equa-' 
tions [1, 3-5, 9, 10].	- 

An important tool in the study of problem (P) is the method of upper and lower 
solutions. A function i = (x, 1) is called a upper solution, if 

- All 1g(U) in 'D x 1t, Ii > 0 on OD x R, lZ(x, 0) 0. 

Conversely, a = u(x,) is a lower solution if the inequality signs are .reversed. The. 
theorem [8] states that, if there exist upper solutions such that 11 in D x [0, T], 
then the problem (P) possesses a solution u with u u s 11 mD x [0, T]. In our 
case the assumptions are satisfied for ll = 1 and Lt = 0. Consequently problem' (P) 
has a solution u such that 0 u(x, 1) 1, which is unique by virtue of the mono-
tonicity of g (C-2). Observing that u(x, 1 + t) =: ll(x, 1) is an upper solution for 
problen (P) we conclude that 

u(x, t)	u(x, 12) for 1 1	.t2.	 '	 ( 1.2) 

Furthermore, by standard arguments we have lim u(x, 1) = U(x), where U(x) is the 
solution of the stationary problem.	 t-±oo 

The set Q(t) {x E D: u(x, I) = 1) is called the dead core. It represents the region 
where no reaction takes place at the time I. We shall write Q(oo) for the dead core 
of U(x).'The special feature about oCr problem is that für A sufficiently large, .Q(t) 
is non empty if I	(A) [4]. From (1.2) it follows that 

Q(t1 )	Q(12 )	Q(oc) for 1	12 .	.	'.	 (1.3)


Clearly, Q(t) depends on the geometry of D and on).. We have for example [4] 

(i) QD,(t)	QD,(t) for D1	D and A fixed,
	4 

(ii) QA ,(t)	Q,(t) for )	A and D fixed. 

A comparison result of a different nature was obtained by means of rearrangement 
methods [4] and is expressed as follows. 

Theorem I: Let Q*(t) he the dead core corresponding to problem (P) with A replaced 
by the Laplacian and D . by the sphere .D*:= {x: jxj <R, volD = vol D*} of the same 
volume as D. Then meas Q(t) meas Q*(t). 

Another quantity of physical interest is the so called effectiveness defined by 

(t) = vo D 	
g[u(x, I)] dx < 1. 

It is the ratio of -the actual average reaction rate in a region to the rate corresponding 
to reference values of reactant concentration and temperature. Rearrangement tech-
niques yield [5 1 3].  

Theorem II: Let f" be the effectiveness' corresponding to problem (P) with A = 
and]) _ D". If in addition to (C-1)—(C-5) g is concave, then	In the stationary

case ( j (oo)) no concavity on q is required.' 

For practical purposes it is desirable to have a small dead core and a high effec-
tiveness.	'	 '
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If we restrict ourselves to the case where A	L, then the Theorems I and II 

imply the following extremal properties of the sphere: 

(i) Among all domains of given volume the zolunze of the dead core is biggest for 
the sphere.' 

(ii) Among all domains of given volume the sphere has the smallest effectiveness. 
The sphere is in some sense the worst region. In the "International Meeting on Opti-
mization Techniques" a the Wartburg 1983, Professor R. KlOtzler asked the ques-
tion: is there a best domain? Since the worst domain is fat, the beat domain, provided 
it exists, has to be thin. In fact, it turns out that for any fixed 2 there is always a 
domain of given volume such that Q(oo) is empty. Morebvèr there exists a sequence 

• of domains {Dk } l such that 
•	 volD = V and linl 1?Dk (t) -1. 

Those statements- follow from counterparts of Theorem I and II, which will be 
formulated in Section 3. 

I'm indebted to Prof. R. Klötzler for having suggested this problem. 

2. Preliminary bounds for the solution of a Dirichiet problem 

2.1 We proceed now to derive bounds for the solution of the Dirichiet problm 

A i, + 1=0in D,	v.=O on 49D.	 (2.1) 
For N 2 and A z, ' coincides up to a constant factor, with the warping function 
in the torsion problem of a cylindrical beam. .A number of inequalities relating Pmax 
to 'several geometrical quantities has been derived (cf. [2, 14-161 and the literature 
cited there) The following lemma extends an inequality of PAYNE [14]. Its proof is 
very similar and will be given for the sake of completeness. 

Lemma 2.1: Let coN be the volume of the unit sphere and let A satisfy (1.1). Then 
we have for the solution.of (2.1)	 . 

,1+N12	2 "T (2N)_'/2 fvdx.	• 

WN  

Equality holds for ' D = D* and A= .'	• 

Proof:Th proof is based on rearrangement techniques developed in [2, 17] For 
this purpose let us introduce the notation	- 

D() ={xED:(x)},	a() =measD(). 
By Schwarz's inequality . and (1.1) we have • - 

dTp{ f.	v dx}	{±. f I'wI2 
dXa - a(3 + d)} 

DW - D(O +	D(^)—D(^+d^) 

^	
f	(j=1

kaitxtxi) dx a() - a( + d)j	-	- (2.2) 

In view of Fleming-Rishel's formula	 - 

d 	 -	 • •	 (2.3)

dP

D()	 -	 S	 - 

14 Analysis Bd. 4, Heft 3 (1985)



210	C. BANDLE 

where P() is the perimeter of D(ji) in the sense of de Giorgi. In addition 

Ia
ivzvx) dx 

= j Ap dx = —a(). (2.4) 
D()	 D() 

If we let d	tend to zero, then (2.2) combined with (2.3) and (2.4) yields 

/	P2 (i) < —a() a'()	for almost all	.	 . '(2.5) 

From the isoperirnetric inequality P() ? No N hINa(_ h/N , it follows that N2wN2In 
±_) .21N.	1 

X a_1N	—a'(3). Integration gives	 -. Since	3 = 0 for 
= A, we get	 .	 UiV 	2 

A 2 IN	1 
'Pmax	

(-;;)	 .	
. (2.6) 

Hnce, setting	(t)	ml {: a(i) < t} we find 

/a ^f	da	J{,rnax -	
)211V .

}da;	= (2Nmax)N12W.
CON •

From

a	2/N	1'	 2 1'I pmax -	- da = (2N) N/2 Wy	. 

J 	 \Wj/ 2N;	.	 -i-- 2 
.0  

and
/ 

A. S 

fiida=fpdx
 

D 

-	the assertion follows U	 S

- 

•	If we multiply (2.1) by V and integrate we obtain, observing (1. 1), 

1N 
f	d.x'= f (,	'	dx ^ f JVRJ 2 (ix.	.	• (2.7) 

D	 D	')	 -	D 

Schwarz's inequality together with (2.7) implies	• 

(1 vdx) 2	.	. ftpdx	 . 
vdx<	 , f - J	Vtpj 2 dx	fjVpJ2dx 	 . -	* 

D 

where V stands for the volume of D. Moreover by the Rayleigh- principle - 

f2 dx	 VV 1

5 

where A 1 is the.smallest eigenvalue of . 

w + A 1 w = 0 in -D,'	w = 0 on	D. (2.8) 
This leads to the following estimate for ,Pmax 

,1+N12 
max (2N)_1/2 .. . 

2WN



/ 
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Remark: This inequality is niever sharp. Clearly any lower bound for A l will pro- 
vide an upper bound for tPmax. 

In the next section we describe classes of domains of fixed volume whose first 
elgenvalue exceeds any given number. 

2.2 The best known bound for 2 is obtained from the Rayleigh-Faber-Krahn 
inequality [2, 15] 

>
 ( )

2/N


	

j-I	(jk first zero of the Bessel function J}), 

equality holding only for the sphere. Obviously this estimate is not of great use for 
our purpose. The only chance to achieve our goal is td restrict ourselves to "thin" 
domains. 
• Let us now introduce the following classes of domains	 - 

= {D RN lying between two parallel (N — 1)-dimensional hyperplane 
nit a distance 2, that is all domains of breadth :!z^ 2}, 

r. = {convex domains in RN of iiradius o l,	- 

= {plane domains of inradius 0 and connectivity k}. 

If we compare the first eigenvalue of a domain]) E P with the corresponding cigen-
•	value for the "strip" 'and use the monotoni'city of the eignvalues with respect to the 


domain [6] we get 

•21(D) 
	(2 

for D.E 8.	 (2.10) 

As , HxsdH [12] observed the same result holds for convex domains in the plane, 
that is	 . 

21(D)(-;)
	

for D E 2 •	 •	' (2.11)


Using Cheeger's method OSSERMAN [13] proved that 

2 1 (D) 2^ (
_j

o)
2

 for D E v	 (2.12) 

and	 '	 .	•	- 
2 1 (D) ^ () for, D E a, and L E a,.	 •	(2;13) 

The best result at the tune for D E c4k , k> 2, is due to CROKE [7], namely 

• A, (D)	---	for DEC4k ,	k^t2.	 (2.14) 

Little is known for higher dimensions except that, no lower bound dependig only 
on the inradius L can b6 expected to hold without further assumption on the geo-
metry of D. As HAYMAN [11] points out, the first eigenvalue of a ball doesn't change 
much if narrow, inward pointing. spiches are removed, whereas Lo tends to zero. 

•	j4*	 •
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• Inserting these estimates into (2:9) we get the 

Theorem 2.1: Let A satisfy (1. 1), p be the solutiow of (2.1) and D be a domain of 
volume V. Then the following estimates hold. 

(4 + 2N) (2Nyi2 
(I) i±NI2	 V2 for all D in C OT i

n
 max	

_r2 

(ii) )12
4 ±2N (2N)— N/2. V 2 for all D in	2 and v. 

(iii)	
k(2+ N') (2N)'2. Ve2 for all D in 4k (k> 2); 

/	Remark: In the case A	A, SPEEB [16] derived the estimate 

max	 for all D E 2 .	 (2.15)


Clearly (2.15) W not comparable to Theorem 2.1 (i). 

3. Main results 

Let us go back to problem (P) with the assumptions made in Section 1: It is imine-
diate that i ).(x), V being the solution of (2.1), is an upper solution for problem 
(P) and thus 

u(x,t)	Pmax for all (x, t) E D 	1t.	 S	

(3.1) 

This inequality together with the estimates of Theorem 2.1 yields


Theorem 3.1: Let D belong to either classes P,	or c4. Then 

max u(x,t)	cVe2, 
EJ)  

where c depends only on the number of dimensions N and on A. There exists there/ore a 
value	= () (2, N, V) such that	

S 

meas Q(t) ^ mèas Q(oo) = 0 for  	.	 - 
As an immediate consequence we have the	 - 

Theorem 3.2: Let the assumptions of the previous theorem 'hold and suppose that 
vol D = V. Then ij(t) —* 1 as —*0.	

S 

An optimal domain has to be thin in the sense that its.inradius is small. 

Remark: The Theorems 3.1 and 3.2 hold also if g(u) is replaced by g(x, u). Of all 
assumptions (C-1)--(C-5) we have only used (C-3),,(C-4j, the fact that g(a) takes 
values in[0, 1] for a E [0, 11 and the continuity of g. 
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