
Zeitschrlft für Analysis und thre Anwendungen 
Bd. 4 (3) 1985, S. 257-207 

Laplace-Gatill Integrals, Gaussian Measure Asymptotic Behaviour 
and Probabilities of Moderate Deviations 

W.-D. RICHTER 

Mir beliebge endlichdimensionale Borelmenn-vird eine ailgemeine Formel zur Bestimmung 
ihres Gaul3maBes angegeben, weiche die von B. Cavalieri und E. Torricelli entwickeltc ,,Methode 
der Indivisibein" widerspiegelt. Darauf aufbauend werden für Mengen, deren Abstand voni 
Ursprung gegen Unendlich strebt, entsprechende Aussagen uber das asymptotische Verhalten 
ihres Cau3mal3es formuliert und zwei spezielle Grenzwertstze für Wahrscheinlichkeiten mitt-
lerer Abweichungen von Summen unabhangiger, identisch verteilter Zufallsvektoren abge-
leitet. 

Llin m,IqnqJIeHuH rayccoscKol Mepax Ino6oro HoHe4HomepHoro 6openescKoro MHOReCTBa 
nwB011TCg o6uaii 4lopMya, xoopai oTpaxaeT Merog ,,HegenxMaix BeJIMMIsH" B. HaBa-

II D. Toppa'exxx. Ha ocnoBe DTOil OpMynbl HayaeTcfl acxlMrlToTll'lecseoe noegeiie 
rayCCoBCROft MbI Ha Muo+cecTBax, paccosune KOTO1JX OT iiaqaia KOOUHT CTMHTCR 
K 6ec!coueqHocTH. HpoMe Toro HHBOHTCM ge cne111anhI1ue npegeilbnhle TOCMbL gg 

MHH&X yH3IOHeH1ltl CMM HeaaBHcHMbIx cJiyaftiibix BeRropon. 

There is given a general Gaussian measure representation on arbitrary finite dimensional Borel 
sets. This representation reflects B. Cavalieri's and E. Torricelli's "indivisibein method" in 
a modern language. Based upon it, assertions are derived 'about the Gaussian measure asymp-
totic behaviour on Borel sets whose distance from the origin tends to infinity. Also two specific 
multivariate moderate deviation limit theorems for sums of i.i.d. random vectors are deduced. 

1. Introduction 

The most general integral limit theorems for probabilities of iarge deviations of 
sums of finite dimensional random vectors have been considered by L. VILIusKAs 
[21], A. A. BoRovKov and B. A. R000zrN [21 -and A. V. NAOAEV and S. K. SAKOJAN 
[12]. Their results, however, due to insufficient knowledge about the Gaussian limit 
law, are not quite practicable at present. B. von BAlm [1: § 8] has pointed out one 
of the underlying problems, and both he and many authors after him have considered 
various more or less specific cases. 

The main purpose of the present paper is to give a general Gaussian law represen-
tation on arbitrary . Borel sets and to derive from it some asymptotic properties of 
the Gaussian law. The underlying idea is a generalisation of B. Cavalieri's and E. Tor-
ricelli's indivisibein method, which will be deduced and formulated here 'With the 
help Of some standard methods of measure theory. After a discussion of different 
examples, we will finally formulate, two specific multivariate moderate deviation 
limit theorems as a consequence of the aforementioned results and those in [16]. In 
[17] we use the results of the present paper for deducing some general assertions 
related to the structure of multidimenèional central limit theorems under moderate 
deviations. 

N 

17 Analysis Bd. 4, Hell 3 (1985)



258	W.-D. RICHTER 

Let It", k	1 be the k-dimensional Euclidean space equipped with its Borel 

^x i
\1/2 

a-field 8 k and the usual Euclidean norm x ---)- lx ii = I 2 ) , x = (x1,...,x) E It". 
 I 

We denote by ii(.) the standardized Gaussian law on 8" and by	the Lebesgue

measure on Ok . Further, put AA = {(Ax 1 , ..., Ax): x E A). Then 

cb(AA) = (27r)— (k/2) J) 

for all A> 0 and A € 8"; where the parameter integral 
•/	 1(2) =f exp {-Hlx2/2} jz ( " (dx)	 (1) 

AA 

•	will be called a Laplace-Gaul) integral. 
Finally, let us make reference to the considerations [7, 8] on Brownian motion and 

renewal theory, where integrals of type (1) or similar also arise. 

2. Laplace-GauB integrals in R" 

With the notation 

a = inf {lix11 2: x  A},	m?.)= a22/2,	M(A.) = sup {22 Ilx2/2: x E, A)

and

Jp(k) ({x E A: )2 114 2/2 < c}) if C > m(2), 
A.AC1 - 

TO	 elsewhere, 

we are able to formulate the starting point of our considerations. 
Lemma 1: There ekists a 1i(1)zero.et E	112 such thaton R' \ E there exists a 

derivative V of the function VA2. Putting V 1 (c)	0 for c E E, the function V Ad 

is Lebesgue integrable on 1t1 and	 - 
M(A)-m(A) 

I(.'.) = 2k exp {-22a/2} f. Va(c + m(),)) e'u(1)(dc),	 (2) 

for all 2> 0. 
Define S,.= WE Itt : j jxjj r}, r ^ 0. For x E 11k with 114 = r and x/r = 0, 

0 € S write x = (r, 0). Let co denote the uniform distribution on S (with a(S1 ) = 1). 
Put

.LA C(0)	
11 if . x=(c,O)EA,	 - = 0 elsewhere, 

for alic	0, 0 E S 1 and 
= 211f(k12), 

where I' denotes the gamma function. Now we are in a position to formulate the 
main result of the present paper: 

Theorem 1: For all 2> 0 it holds that 
1(2) = 00k,tk2 e'2	 . • 

0	x / (2c/22 + a)kI2 e_(i/ + a ( 1 )(dc),	•	 (3)
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where	 S	 - 

• . .	 9(c)' = f 'A.c(0) th(dO),	. C ^t 0.	 .	.	. 
S i	 - 

Remark 1: Because of	 . 

	

(c) = w({O E S: x = (c, 0) E A}),	c	0 

one can explain (c) as the "percentage" of A n S with respect to S. The consider-
ation of the function reflects B. Cavalieri's and E. Torricelli's "indivisibein 
method" [13, 22] in a moder,n language. Namely we extend this method to aniulti-
dimensipnal measure which is not a usual volume but a Gaussian measure. One may 

• say that two solids have _equal (centred) Gaussian volumes if they are situated 
between the same two fixed spheres, centred at zero, of radius' r1 and 1:2 , 0 :^,- r1 
<2 :^-.oe and if for almost all spheres centred at zero and having radius r, r  [r1,r0], 
their values (r) coincide. To evaluate the actual (centred) Gaussian volume of a 
given solid one has to multiply the respective function 

•	c	QI2cp. + a),	c 0 - 

by some dimension dependent constant and by a weight function 

c - 2c/22 .+ )k/2_1 e_ c ,	C	0 
• " 

befre integrating this product with respect to the Lebesgue measure. 

Remark 2: Because off ch/2cdc ' 2 1/	>O the integral in relation (3)f 

•	is also well defined in the case a = 0, k = 1. 

Proof of Lema.1: Replacing x by 2x and applyiig integral transformation 
fornmulae{9: p. 163], we obtain

M() 

/	1(2) = k f e 9IxII'I2)(dx) = ;k f C_C dVAI(c).	
0 

A	 m(A) 

With the notation 

'A.l(B) =	k)({x E A: 22 Jjx 11
2/2 E B))	 •	 S 

for B SE 93' it follows that 

V 2 (c)	,VAA(ft E R1 : t< c}),	CE R1	 • 

That is why V41 is an absolutely continuous function iff the measure VA.1 is abso-
lutely continuous with respect to the measure (') [9: p. 181]. We shall IIOW show 
the validity of the aforementioned relation between VA.A and ('): As the product 

•	measure wkw(dO) rk_ i)(dr) coincides with the Lebesgue measure /)(dx) [4: pp. 36, 
631, it holds that	,.	 S	 S 

vA(B) = f	f 'A.r(0 ) wka)(dO) rlC_1 u( 1 )(dr) .	 . 
r 'E 2B / A ' OES,	- 

•	Hence	 S	 •	 • 
VA (B) ^S (a/2) f zk/2_ 01 )(dz).	 S	 •!

2B/1' 

17*
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Consequently ,0 1) (B) = 0 yields VA 2 (B) = 0 for ary B E '. Now, from 

I(;t)	,k f e'v4,2 (c) 1u(1)(dc) 
m(2) 

after replacing c by c + m(2), equation (2) follows I
/ 

Firstproof of Theorem 1:IfcER'\Ethen. 

VA 1(C) = urn [VAA (c + h) - VAI(C - h)]1(2h)

/ 
=	urn h-'_f rk_1(r) 4u(')(dr). 

From Lebesgue's theorem [10: p.277] it follows that 
2c/2'+h 

urn h' f (';) z"2111(1)(dz) = 
h—+O	2c/A'	 - 

Hence	 -	* 

V'4 2 (c) = k22(I)2)21  

Putting z = r2 and replacing c by'c + m, Lemma 1. now yields (3) I 

-' Second proof of Theorem 1: Since 

VA 2 (c) =wk f IA.r(0)0)(d0)TkhI)(dr), 

s,x(o.}'7z) 
by Fubini's theorem [4: p. 351 it follows that	 ' 

-	
VA 2 (c) = wk f r"'(r) 1u(1)(dr). 

• If 	R'\Ethen 

V ,2 (c)	we(I2)1	)—i	(/2).	
-S 

•	Finally, Lemma 1 implies	 • 

1(2) = Wk 2k/2_1 e1'	 5 

MM—M(A)
	k121  X 

f. 
( +T)	Cc	

2c 

(v	
+ a) ( 1 )(dc) I 

In the following let {A)) 1 > 0 be a systeni of Borel sets in It s'. Further, define the 
*	quantities a = a(2), rn(A), M(2) and.( . ) = (2, .), A > 0-in the same way as above . 

and put

	

= f eI'1a( k)(dx), A > 0.	- 
*	IA(2) 

We shall now formulate some consequences of Theorem 1 concerning the asymptotic 
behaviour of the integrals I, (A) when 2 tends to infinity.



- Laplace-Gaull Integrals	261 

Corollary 1: Suppose that la o., c)	for all c> 0 and all A > 0. Also, assume

- that a(2) a0 for some politive a0 and all A > 0. Then 

I(2)	WkO(A Va2_2 e 110(12 as A --> co.	 (4)


Here 1(2) i-' g(2) 'means urn /(1)/g(2) = 1. 

Proof: Let Q be a functioh with the properties 

limp (A ) = oo and urn ().)/22 = () 
2-oo	 2-,00 

Then the following two relations hold as A -> oo: 

(2c/),2 + a(A))k12_1 edc Ta)21 
and

 

f(2c/22 + a( -/2-1 edc = o(a(2)k/2_1). 

Here f(2)	o(g(A)) means lim 1().)/g(A) = 0. Hence, (3) implies (4) - I 
Corollary 2: It holds that 

O(AA = o(1)A1r_ 2 e—l'a(l)12 '	(5)


• as2-00if and only if 
•	 M(2)-m(2)  

f (2c/). 2 + a(A)) kI 1 e(2, (I/2c/22 + a().)) (')(dc) = 0(1)	(6)


as 2 -+oo. 

Remark 3: Condition (6) can be understood both as a condition concerning 
M(2) - m(2) and as a condition concerning the "percentage" 'of the volume of the 
set {x E A().): y	J x II	y + 6} with respect to the volume of the set (x E R": 
y IIx I ^ y + 6), where y + 6 = (2c/2 2 + a(2))1/2_.. a(A)112 = y as 2 -* 00. Further 

'note that condition (6) plays an importand role in limit theorems for probabilities 
of moderate deviations. Namely it describes all cases in which the function d from 
[16: . (3)] satisfies x2(d(x) — a) -/ 00 as x -* 00. In all these cases [16: (11)] cannot 
correspond to [16: (12)].  

Crollary 3: Let p be a function with 1im().) = oo and put 

•	J(2) = f (2c/).2 + a(A)) k/2_1 e_(2, 112c/22 + a(1)) 1u(')(dc). 

Then it holds that	-	 S 

1.1 (2)	a)kAk2 e'/2J(A)	.	-	.	 •	(7) 
as 	ooi/ and only if S	 - 

0. 
•	f(2c/2 + a(A))k12_1 e(2, 2c/A2 + a(2)))(dc)T o(J())'	 (8)


Q() 

as A	co. -
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Remark 4: Condition (8) will be fulfilled if the function (A, .) satisfies suitable 
lower and upper inequalities for c E [IIi), a(2) + 2(2)/22] and c > JIa(2) ± 22)/22 
respectively. If M(A(2)) = {x E R": xxv' = a(2)} then (8) expresses how large a 
neighbourhood of MP(2O) must be in order to determine the exact asymptotic be-
haviour of..(),A(),)) as 2-* 00.	 - 

3. Examples of Gaussian measure asymptotic behaviour 

In this chapter we shall derive some assertions about the Gaussian -measure asymp-
•	totic behaviour on various Borel sets whose distance from the origin, generally 

spoken, tends to infinity. 

Lemma 2:It holds that	 - 
-	-	({x E,Rk: j jxjj	A}) ._- 2' '2[r(k/2)]' 2k-2	 (9)	- 

(is	00.	- 

Proof: By Theorem 1 

1(2)	ok2k2 ehI2f(2c/22 + 1) k/2 1 e dc	- 

so that
({x E Uk: lxii > 2))	(2n)-k/2 o k2e'2 •	 -. 

- Lemma 3: Let / and g be positive functions with	0 and g(2) -->0 as 2 —>00. - 
Assume to be a function satisfying (),)	for some ppsitive	Also, suppose that 

(2) 1(2) -^ 0, (2) g(2) --* 0 as A - 00. If	 - 
A(2) = {x E Rk: (A) - g(2)	ilxj	(2) + f(A)}  

then	-.
2'-"/2[I'(7,12)]1 (1( ). ) +g(2))	)k-1 e'(2)12	 (10) 

as2-*oo.	•	 -	 .	 - 

Proof: First let A = 1 in definition (1) of the integral I. Next put A = A(A), 
in (I). Then we get a = ((1) -. g(2)) 2 , m(1) =af2 . and M(1) = ((2) ± f(). ))2/2 . - 
From Theorem lit follows that • 

(A(2)) 
= (2)- kI2 Wk e_(9) 2I2	•	-	 . 

-	.	 0(A) 

-	 X  [2c + ((2) - g(2))21k/2_I e dc,	• - - 

where	 ••	-	 .	 - 

0(2) =	+ f(),)) 2 -- ((2) - g(2))2]/2	[f+ g] + [/2 - g2]/2. 
From Lebesgue's theorem'[ 10: p. 277] we get	 . 

0(A)	 -	 -	- 

f [2c + ((2) - g(2))2 ]k12_I e dc -_, [(2) (1(2) + g(2))] ().) Ic-2 • 

Lemma 4 (see Figure 1): Let k = 2,s> 0 be a constant and I be a function with 
the properties 0 < to 5 ((1) <s and (s - 1(2)) 22 --> oo as -9- oo. Put A(2) = {(x, y)
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E K2 : x218 + y2 /1(A)	11. Then	 - - 

	

F28 [j/ . 1(2) . (s - 1(2)) 2 e A')I2]'	 (11)


as' 2 - 00. 

Proof: It is easy to check that a = 1(2) and sup {x2 + y2 : (x, y) E A} = 8. If 
C ^ (8-- 1(2)) 2 2/2 then	/2 + a)	1 and if O:!E^ c :!^ (s - 1(2)) 22/2 then 

(A, 1/2c/22 + a) equals 4f f i + y0'2(x) dx divided by the circumference of the circle 

= I + 2c/22 , where x0 = (2sc/[(s - 1) 22]) 1/2 . Using the same method as in 
the preceding example, we obtain (11) I 

S	
S	 I 

x+yb 

S	 7	 S / 
.-	x2-'-y2=2c-fa, 

-	 O<2c<s-t 
Fig. 1: (2	1)	 Fig. 2	 - 

We return now to an arbitrary finite dimension k. Let B be a symmetric positive 
definite k x k-matrix. Put 

	

= [(2 detB]M2f exp {_yB_1yT/2} dy,	ME k, 

	

x. = (x,, ..., x) - with x > 0,	i'= 1, ..., k, 

= (r,, :.., rk) = xB_1T (B' denotes the inverse of B) and 

	

1k	\ 

	

Q(2, x). = [(22)k det B]/2 ( H	exp {_).2xrT/2}. 
0	

\i=1	/	 S 

Further, let	 S 

I	 \	/ 
A =(X[

i-
 x 1 ,00)) x( X

k 
(_oo,x1]) forsoir,e jE{l,...,k-1}. 

I 

L em ma 6: The condition	- - 

	

sign r = sign x,	i = 1,..., k	 -- -	 (12) 

[15: p. 56/Bedingung J is necessary and sztf/icie-nt for

(13)
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Proof: First suppose that (12) holds. Substituting q 1 = J yj - Ax 1 J,1r, I = 1, ..., 
we get lB(L4 ) = Q(A, x) J(A), where 

J(A) =7.. .]exp {—qj - - qj + q5 + 1 + ... + q 

- (q11r1J) j.- B_1'(q1r1J)I	/(2A2)} dq. 

Because of (12) there exists Co > 0 with IrI _^'C0 for i =1, ..., k so that J(A) '-' 1, 
1--00. 

Now, suppose (13) holds. Condition (12) means that the quadratic form yByT 
has over the set A a uniquely determined minimum at the point x. Assume (12) 
does not hold. Then there exists x0 + x such that xx01' = inf {zB*T: z E Al 
<xB_1XT (see Figure 2). One can show then that	 - 

(.aA) >( A' e_)z0B_Iz,n12,	2 -* co	 (14) 
so that

Q(A, x) X 2-k e' TI = O(PB(1A)). 

Here 1(2) X g(A) means 0 < urn /(2)/g(A) urn /(A)/g(2) <cC. However, the last 

relation is in contradiction to (13) I 
It follows from Lemma 2 and (14) that the consideration's in [6] are incorrect. The following 

example shows that even in the case where (12) holds, the assertions in [6] are not right. Let 
00-00 

•	I(a,,a,)	 ff exp {' 2(i_L') 
z22}dZ	—1< t <0. 

01 0, 

A straightforward integration by parts , [14] then yields 
(1 - t')'

F
a,' - 2ta1a, + a,' 1(a, a2) I, =	exp  

(a, - ta,) (a, - ta,)	2(1 - t') 
as a1 - cc, a, -- cc, while [6:- Theorem 3] asserts that	 0 

I(a,, a,) -s-' J -	( 1° - t')' (a1' + a,')' exp	 a12 - 2a,a2 + a,' 

(a1' - 2a1a2t + a,') a,a,	2(1 - t') 
In the case a, = 3a1 , t= —1/2 one has 111, = 875/39, which is a contradiction to I—'I, 
andl — I,. 

For a slight generalisation of the preceding example let B = B(2) be positive 
definite,	-	 - 

.x(A) =(x1(2),...;'x,(A)),	x•().)—co as I-* oo,	 - 
Ii	\	1k 

A(1) = (X [x,(A), co)) x ( X (—co, —xi(A)I) 

and	 - - 
r(A) = (r, 	= x(A)B'(A). - 

Lemma 6: Put x = x(A), B = B0.), r =r(2), Q = Q and suppose that both (12) 
and	- 

r(1) 	C0 > 0, for all A> 0	 (15) 

are satisfied. Then  

cbB(A)(A(A)) -JQ2 (1, x(1)),	A -* cO.	 (16) 

/
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4.-Probabilities of moderate deviations in special sets of R' 

The aim of this chapter is to show with 'two examples how to apply the results from 
Chapters 2 and 3 to the moderate deviation limit-theorems from [16]. 

Let X1, be a sequence of independent random vectors, each having the 
same distribution as X, being defined on a probability space (Q, 91, F) and having 
values in R". Assume that there exist second order moments of X. Let EX = o 
= (0, ..., 0) E R  and EXTX = B, where B is a symmetric, positive definite k x k-
matrix. Put Z. = X1 + ... + X,,, n = 1, 2, ... and let Ek denote the k x k-unit 
matrix.	-	 - 

Theorem 2 (see Figure 1): Let k = 2, B = E2 , 0 <1 <8 and jxj	(x1 218 + x22/t)112


/or x = (x1 , x2 ) E R2: Then the asymptotic relation 

P(IZnI	).(n) I) =	E R2: J XJ 2^ 2(n))) (1 + 0(1)),	n -±00	(17) 

'holds uniformly with respect to 2(n) E [i, 6 /in], c> 0 if. and only 
if 

for any . norm 
Illill it holds that 

P (I. I XI II	Y) = 0(1) (log y)1/2+C/2 y_2-C'2,	Y	0.	 - (18) 
Remark 5: Note that condition (18) 'does not depend on 8 in an explicit way.' 

For easy comparison with the case s = t we quote the corresponding conclusion 
from [16: Theorem 5] (see also [20] or [18]): If s = t then (17) is valid if and only if 
it holds that 

P(III X III	y) = o(1) (log y)1+012 y_2_C't,	/ , 00.	 (19)

Note that (18) is somewhat sharper than (19). 

We return now to the case of an arbitrary finite dimensionk. Let M1 , M22be sets 
of natural numbers with 

M1 u.M2 = ( 1 , -J) k) and M1 n'M2 = 0-' 
Using the rectangle	 . 

A 1 = {(z 1 , ..., z): z 1 ^ x, i E M1 , z	—xi , i E M2} 
for some positive xj, ..., xk and the complement of an ellipsoid 


A 2 (B) = {z E R zB 1zT la(B)},	1 > 1 

we construct the set A(B) = A 1 u A 2 (B). Here .a(B) = inf (zB_IzT : zE A 1 ). Note 
that in the case B = P.2k one has a(B) = x1 2 +	+ xk2 and condition (12) is satis- 
fied. If (12) does not hold, then B ./ P.2k.	 - condition ' (12)

 3 (see Figure 3): Assume that cóndition (12) does not hold. Further, put 
•	A = A(B) (where B + Ek ). If	 - 

P(X E yA)	o(1) (log y)(l+CO)f2y2C'O, .	J _4 Q	 (20)

then the asymptotic relation 

•	 .	 -	 P(ZnE2(n)1/A)=i((n)A)(1+o(1)),	n--oo	 (21) 

holds uniformly for 2(n) E [1, C flog n], c	0.	 . 
For the proof of Theorems 2 and 3 we shall use the following auxilary results, 

which can be checked by straightforward calculations.	
.
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/	 Fig.3 

Lem ma 7: The solution h = h(y) of the equation 

h exp {h2/(20)}	y,	y> 0 
satisfies the asymptotic (y -- co) relation 

h(y) = c }12 logy (1 ± O(log logy/log y)). 

Here f(y) = 0(g(y)) means limf(y)/g(y) <cc. 

Lemma 8: If 

.d(1) = a +1plog 2/22(1 + 0(1/log 2)),	2 - cc	 (2 

then the (probability-tail-) function 

T(k, y) = (log )k+C¼(h(Y))12 y-2-0d(h(v)) 

from [16] satisfies the asyrntotic (y —* cc) relation 

T(k, y) X log y)[k+cawI212 y_2cbo.	 (23) 
Proof of Theorem 2: Putting A = {x E R2 : lxi ^ 11, with the notation of [16], 

it holds that A(l) = IA. From [16: Theoreiii 11 it follows that (because of k = 2) 

O(M) -'O(2)- ' exp {-12d(2)/2},	2 —* cc,	 (24) 

where 00 is some positive constant and d is some function with the properties 

d(2) ^ inf {11x112: JXJ = 11 = t and d(2) — t for A --> ca. 

The relations (11) and (24) imply (22) with a = 1 and ip = 2, so that (23) is valid. 
Substituting (23) into [16: (11)], it follows from [16: Theorem 41 that (17) is equi-
valent to (18) U 

Proof of Theorem 3'. From (14) and (24) it follows that. 
.2'exp {_22x0B_1x0T12}' X ;. k- 2 exp {-22d()/2},	2 -oo. 

This yields (22) with a = xo.B_lxoT and ip = 2(k — 1). Substituting (23) into [16: 
(11)], one gets (20) and if follows from [16: Theorem 6], that (20) implies (21) U 

The author would like to thank Z. Sasvri, D. Krapavickaité and the referees fpr 
useful discussions and remarks related to this paper. 
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