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Riemanni_aﬁ Manifolds for which a Power of the Radius is k-harmonic

’

Es sei 0 = a(x, y) die Syngesche Funktion einer Riemannschen \megfaltlgkext (M, g) belie-
blger Signatur. Wir betrachten dic Bedingung, daB eine bestimmte Potenz von ¢ oder der
Logarithmus von ¢ k-harmonisch ist." Dann erweist sich (3{, g) in vielen Fillen als flach. Be-
stimmte Klassen nicht-flacher Ma.mugfaltlgkelten koénnen durch eine Bedmgung vom genann-
ten Typ charaktensxert werden.

[yerb 0 = o(z, y) — (I)yﬂmum lera PHMaHOI‘O MHOroo6pasus (M, g) npouanonbuon cuHraa-
. TYpH. PaccMaTpuBaeTcA yCIOBHME,'duTO HEKOTOPAdA CTEMEeHDb, 0 WIN JOrapudm o ABIACTCA
- k-rapmMoHUYECKOH d)ylmuueﬂ Torpga B MHOrHX ciyuaax (M,g) OKasHBAeTCA IJIOCKHUM:
Heroropre KnacChl HEMJIOCKUX MHOT00Gpasmit wory'r GHITH oxapamepuaonaﬂu ycaoBuem
Ha3BAHHOTO THIOA. . . :

Let ¢ = o(z, y) denote Synge’s function of a,Riemannian manifold (M, g) of any, signature‘and
“consider the condition that some power of o or the logarithm of ¢ is k-harmonic. Then in many .
cases {21, g) turns out to be flat. Certain classes of non- -flat ma,mfolds can be characterized ]ust
by a condltlon of the aforesaid type . :

Introduction
' _For", p'oiﬁts z,y of é, smooth n-dimensional properly Riem@nhi&h manifold (M, g)
which. are not too far from each other the geodesic distance r = r(z, ) is defined.

. For fixed y and variable x we call r =7(x, y) short,]y the radlus Recently the.
- problem . :

;. A2t —g . - ' o o (1)

. has been posed, i.e. the condition that some p0\ver of the radlus is k-harmonic.
[2 4 6, 7). Here Ic denotes a positive integer, [ a real number and

Ny
¢

4:= g‘f’V Vﬂ ='Laplace opera,tor tog, L
V = dx“V = Levi-Civita denvatlve tog, i
g = gaﬂ da* dx" Riemannian metric,

(9°) = (gap) ™™

. One motivation' for the problem comes from the fact thab ce‘rta.m classcs of mani-
folds can.be characterized just by a.condition (1), namely the simply harmonic
spaces with .= 3 by k = 1, 2l = 2 — n, and the 3-dimensional spaces of constant

" curvature by k =2, 2l = 1 On the one hand it is an aim to-find farther .such

- characterizations, on the other hand it is to be expected that for many combinations '
(k, I, n) the condition (1) implies local flatness. For instance, [4] is devoted to the

, (still open) conjecture that this should be the case for k=22 = 2 — n <0. There



236 - R. ScamMING

Ie

is .also another motivation: for 2(L — 1) =mn, l <0 from (1) there follows that .

A¥ 172 is an elementary solution of the Laplace equation. In general it is very diffi-
cult to calculate an elementary solutlon in our special case we have an explicit ex-
pression for it. - . . \
The present paper will introduce some new aspects

I. The Riemannian metric ¢ may be of any signature (properly or.pseudo-Rie-
mannian). The usual definition of the geodesic distance fails then; instead. Synge S
two-point function ¢ = o(z; y) is to be taken as a prlmary quantity and -

ri=2|o)V2, . e:=signao ) : s
as secondary quantities. It will turn out  that ‘results are avmlable especmlly for
lorentzian g, i.e. for a signature (4 — -+ ) or (— 4 - +) ‘
II. We will study the problem -
A*(log 7) =0 : : o © ()

too. It is a naf‘,ul'al completion of.(1) because
© lim A%22] = A"(log r)
=0

- IIL There are no upper bounds for the numbers , I, # in our results Contranly, .
the literature until now concentrated to small valucs of k J Ercunory [7] studied
also general £ for definite g.
We always consnder Y € M as fixed and z-€ M as variable; all differential opera- -
‘tions refer to the point z. Let N(y) denote a normal nelghbourhood of y € M;in it
6 = o(x, y) is defined. Let further . S ‘

N@y) :={z € N(y)lo(z, y) =+ 0}.
Now we make precn_sc the - _
Problems: Search for quadrupels (M, g, k, 1) consisting in —

— a manifold M of class C™ and of dimension' n =:2m + 2 = 2,
— a Riemunnian metric g over M of class C* and of any sv,gnature,
— a positive integer k,

— a real number.l,

. suck that for each y € M , ‘
C Afjo =0 ‘in Ny . o , . 3)

This problem we will abbreviate by 4%¢* ==.0.
Search also for tripels (M g, k) such that analogously for each yeM

~ d¥(og o)’ = 0. 4 ; )
. This problem we wzlé abbreviate by A* log o=0.
"Here we present a selection of our results

. 1. If A*¢' = 0 then one of the numbers l orl+ misan mteger between 0 and k — 1
(zmlumvely) . ,

Examples

11 Ian—_—Othenl—Oorl—— :
. If A2%¢ — 0 then [ is one of the numbersO 1, —m, 1 —m
2 I/ A% log o = O then n is an even number and n < 2k.
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Examples . S ‘ : -

2.1. IfAloga_Othenn_2
- 2.2, If 42 logo—Othenn_Zorn=4

-

- 3. From A*¢! = 0 there /ollows local /lamess if one of thc /ollow‘mg adduwnal o:ssump-
tions s fulfilled :

'

3.1, k = 2,l=1,n<35, g definite.
32, k=2l=—-m,n g 5 g lorentzian. :
33. k=2,l=1—m,n g 5, g.definite or lorentzian.
34. k=3,l=1,n <5, g le/mzte R = 0
‘3.5.»k’;2;l=k-—1,n= -
36.4sk=ml4m= y - 1 n even, ¢ lorentzum
3T 45k +=n— 1,14+ m=%—1,nodd, glorentzian.
38.4<k==m+ 1,1+ n_k—2 n even, g lorentzian, B = 0,
39. k=4, l+m=4k=— 2 nodd, glorentzwn R =0.

" 4, From A*logo =0 there /ollows local /lamess z/ one o/ the following additional
assumptions s fulfilled:

41. k<2, n=2 .
42, 2=k =<m+ 1, g lorenizian.

43. 3k = m +'2, g definite. - - .
44. k=m+4 1,7 =4, g definite or lorentzian. C -

\.

5. There exvst non-flat mam/olds of any dunenszon n = 4 (namely él??lply harmonic
manzfolds) satvsfying for any k A%*~' = 0 and A*c*—™"1 = 0.

6. There exist non-flat manifolds of any even dzmenszon n=4 (namelz/ szmpl y har-
monic manifolds) satisfying A™*! log o = 0.

7. There exist non-flat manifolds of any dimension n = 3-and of uny non-definite
stgnature. (namely generalizations of the plane gramtanonal waves) satisfying A% = 0.
- 8. The 3-dimensional mam/olds of constunt cumature (of any signature) are charac-

terized by A2 |o|V/2 = 0.
9. If A% |o*" ™ 1= 0 and %+ 0. then A" Ligjk-m-1 4g an elementa,rz/ solutwn of

. the Laplace equatzon This ©s loganthm frec for even m.
10, If A™*(log |o]) = 0 and n = 4 is even then A"‘(log lo]) @s a logarithm- /'ree ele-~
mentary solutwn of the Laplace equation. . , ,

Let us shorb]y review results in the literature on the problem: A‘a' =0 for the
properly Riemannian case: R. CappEO [2] proved that 4% = 0 if and only ifn =1
“or if (M, g) is a 3-dimenisional manifold of .constant curvature. R. CapDpEO and
“P. \L\TZEU [3] showed that 42r*~" = 0 if and only if (M, g) is locally flat or is a
'3-dimensional manifold of constant curvature. In the papers [3, 4] the problems:
4%2 =0 and 42" =0 are considered. Necessary conditions are derived; under
certain additional assumptions these conditions .imply local flatness. Especnally,
R.CappEo and L. VANHECKE [4] have shown that an odd-dimensional (M, g)
sa.blsfymg A% " = 0 is a harmonic manifold. J. Ercunor~ [6] proved that a har-
monic. manifold satisfying 472 =0 is simply harmonic, which implies local flatness.
In [7] he initiated the consideration of arbitrary large k and became able to discuss

a number of concrete examples.
The three problems to characterize all Rlema.nnlan mamfolds (M, g) which
~ satisfy d*' = 0 or 4*log ¢ =0,
— are harmonic ones, .
— admit a logarithm- free elementary solutlon of t,he Laplace equa.tlon

/
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|
respectlvely have much in common. They are of comparable difficulty and none
of the problems is solvedyet. Possibly, future progress in one of the problcms will
influence the other two’ problems.
Our main tool will be a version of the ‘“method of coincidence limits”, which has
been initiated- ~by J. L. S¥YNGE [13], combined with the calculus of symmetric diffe-

‘rential forms. It is to be noted that the method is not yet exhausted by the results -

which are presented here.
I wish to express my thanks to Al GBAY and to J. EICHHOR\ for suggest,mg the
problem a,nd to the aubhors of [2+ 4] for.giving me 1n51ght into their work.

. §1. Symmetric differential forms. ’I‘he two-point.ﬁinctions o and‘u

A symmetrlc dlfferentlal form of degree p

U =u, = 'um, ap dx"" da* ... dats

"is a special notation for-a_symmetric covariant tensor field of degree p with local'

" forms:

’
4

*

- We choose the notations and conventxons . . . o o,

cOMPpONents uq,a,...., With respect to a local chart x +> (2°) = (2, %%, ..., 2"). Apart
from the usual tensorial” operatlons there are specific operations for symmctnc

!

1. Symmetric product of.a.p-fo.rm u, and a g-form v,
L Uplig = Uy VBB dzes ... da®» dx“’. date.
2. Trace = tr with respcct to the metric g
tru,:=g ﬂuaga, 2y A% ~. da#> for p =3,
trug:=0, tru,:_O bruz.—g“”uag. -

3. Trace-free part ~u, of u, with respect to g. For p < 4 onc has -

‘uo——lﬂo, U =y, ”az;uzf—v%g:(tru;z,
(n+2)(us—ua)——3q trug, o N
C 42) (0 4) (e — w) = —6(n + 2) g - trug + 3¢ trzu‘
4 Symmetrlc differential d built by means of v
duy = Vota,..c, da® da ... da.
Lateron we will make use of the formula | . '

-~ (p+2) (p + 1) tr* (gup)
= dk(m'+p — kot 2) b lup+(p+2—2k)(p+1—2L)gtr*up (L.1)°

Riem = R, B,,,(dx“ A dxf) (dx" Adz') = curvabure tensor,
VoV — VeVo) v = : Rygt,v for vector fields v = v* 3,,
2 Ric = R,pda* dz? = Ricci tensor = g” Ra,,,,, dz® d:v"
R = scalar curvature : = ¢g**R,, ‘ ‘
Weyl = W.p,(da* A d2?) (dz*A dz’) = conformal curvature tensor.
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For quadratic expressions in the curvature we adopt special notations:
. . ¢ ‘ . N

|Ric|? := R, R, |Riem|? i = Rap oo,
- (Riem)? 1= ' ,MR,,“‘?, do* da do+ da .
Prop081t10n 1.1: 4 lorenizian metrw g ‘with n = 4 and (Weyl)2 =0 s con-
formally flat. - e ' A . . .

A:proof follows from a close 1nspect10n of the arguments which are given by
A. Licanxerowricz and A. G. WALKER in [10], and also.slightly more explicit by -
H.S.Ruse, A. G. WaLker and T.J. WILLMORE in section 2.7 of their book [11]..
Thus the proposition may be considered as known, though to our knowledge not
expllcltly stated before. Nofe that similar — but not identical — arguments occur
in the contexb of the Bel Robinson tensor-in general relativity [1, 12] ®

Proposxtlon 1.2: A lorentzian metru;gunthn > 3and "Ric =0and "~ (R’Lem)2 = 0
28 .of constant curvature Y .

s

Proof: For n = 3 the assertion follows from ~Ric = 0. ‘Forn = 4 we apply Pro-
position 1. 1 Namely, from ~Ric = 0 there follows

(Rzem)2 = (Weyl)? + (n —.1) K2?g? with: nn — 1) K= R,
and as a conclusion ~(Riem)? = ‘(Weyl)2 '

: Defmltlon 1.1: Let N(y) be a normal nelghbourhood of y € M, i.e. the ekpo-
nential map with orlgln y ' . ,
g expy.x*r—»x 3 ‘ . o \ ,
'is a diffeomorphism out of the tahgeht’ial space of y onto N(y).or, equivalently, N(y) - -
is the domain of a normal coordinate system ' T

z > 2 > (%) = (2%, 2%, ven, )L

The quantity ,

t

o = o(x, y) =73 g(y) (eXPy" z, eXP,, )

4 :
5 g(y) (x* 2¥) = 5 gaply) 2z for z€N@y) (1:2) ,
is called Synge s two-pomt /unctzon From ¢ there are derived

ey =sign o y), | p=uy)i=g @do—n). 13)

* The two-pointA scalar fields o and [ are lngredlents of the “method of coincidence
limits” which is due to J. L. SYNGE [13].-The limit for z — y, if existing, of a two-
_ point quantity is called coincidence limit. The equality of the coincidence limits is -
. an equivalence relation of two-point quantities and will be denoted by = One -point
quantities and constants may be looked upon as special two-point quantities.

Let. us recall some propertles of o and x following [9, 13, 11, 12]:

Symmtry oz, y) = a(y,.z) '
Coincidence limits: : ' o : o

620, Vo=0, WVo=g., '

. VAV’;V,O' i‘O, ; —3V,VpV’V56 = .R,,,” + ‘Rb;ﬁr' - ) Lt (14)
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Differential equation: g**V,cVso = 20.
Ledger s formula: _ |
—(@ +. 1) dPoes = plp — 1) 4% 2(Rraﬂé da7 dz’) + X, b (5) d%0,,d"%0, (1.5)
q= 2 B

forp = 2-, where the sum for p = 2 and for p = 3 is to be taken as zero and where

we abbreviate. Oy 1= Voo, Gop == V,V3o.
Conclusions: -
do=0, .do=g, do*=da*, _ : :
dPec =0 for p =3, d”o‘é‘O' for *p ='2. - - (1.6)
Tmce version of Ledger s formula i l‘ e
—2(p + 1% = plp — 1) d** Rio + Z (p) dio,dP i, (L)
forp = 2. : ) q .
Conclusions: , ’ ;
w=0, du=0, —3d% = Ric,
—4d% = B4 Ric, - —15d = 184 Ric + 4(Riem)?, ,
—34u =R, =~ —2dp=dR, N 8-
Y —154% = 124R + 2(|Riem|* — |Ric|?). ‘

Special version of Ledger’s formula for n = 2:

—2(p + 1)dPu = (;’) gdP~2R + 4dPu?. ' - (1.9)
“We proceed with some technjcal preparations. , |
_' Proposxtlon 1.3: For a reqular two -point /unclwn/ = f(z, ¥)

ed(of f) =210~ Df ' R S o)

with lhe lmear differential expresswn of second order

Z<Z+m+m/+w/+—w/ (L11)

Proof Inser’o H = |o| , fo = f-into the product, rule
A(fifs) =~ A f: + har + 2¢° BVuhi Vite
and use ed-|o|' = 2 |o|"" 1 UL -+ m + u) B

Proposition 1.4: In the covncidence limz't

=1 5 (7 vy + 10+ m ot oy arp 5 () awrsat jor 22
r=2 ) '

, | : . . (112)

and . ‘

“dPADf = st=dPA%f + u ave ) f o+ - o (1.13)

forp22 s—l+€l,"—l+m+7’+q’ | ‘

w?zere ....tndicates terms which are of a differential order in / greater than 0 and less
than 4 -+ 2q '

~ \ , A
- 7
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The proof of (1.12) makes use of (1.6), (1.8). For the proof of (1.13) replace p in
(1.12) by p + 2¢°and apply the ltemted trace operator tr? with the he]p of (1.1):
| ’ tr? dP+u D, f = dﬂAqle + ’ :

(p _; 2q) “trd (gdP+2a24f) = 2g(m + p + Q) it (@)
‘ = ogm +p + 9 dPA%f + -

Here .. mdxcates terms which do not contrlbute to the expressmns (1. 13) The co-
efflclent of “d?A% becomes

(l+m+p+2q)+q(M+p+q)—(l+q)(l+m+p+q)—st 1

. . . ~ - '
s$a. Derlvatlon of the necessary condltlons

Proposwnon 2:1: Defme two-point scalar fields f' —f,, (x y) recurswely with
respecttok =0, 1,2, ... by

=1, fe=Dht e

Then : . . : o
. (ed)* o] = 2¥ o] AN » : 2.2)
The proof is done by mathematlcal induction with- respecb to k and by means of .

(1.10) 1 | \
Conclusxon A"o = 01f cmd only if fg
Examples o . :
/,-l(l—i—m—{»y) : L 23)

R == D[+ met ) G+ m— 1+u)+a«va/z]+ S lodu. - (24)
Proposmlon 2.2: There extst the limats . '
fii=lm Al for k=1 ‘ (2.5)
-0 ,

and with these there holds .
A¥log |o]) = 2o *fr. e (2.6)

Proof: Mathematical induction with respect to k shows that the sequence of
functlons which is recursively defined by :

fri=ma4p,  fe:=Dih -. ' 7).
 fulfills both (25) and (2.6) 8 |
Conclusion: 4*log o = 0 if and only z/f,, =0.
Proposxtlon2 3: In the commdem:e limat ‘ a : ‘

L (W( )(z-:m) , : TR E (2.8),

h _A.t(—l)f“lk!(k—l)!(z;&). S o (2.9)

\

16 Analysis Bd. 4, Heft 3 (1985)
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Proof: By passing to the comcxdence limits the differential recursions (2.1) shrmk
to the algebraic recursions : : -

for=1, fia=C-kHe+m=kfH', o .
h=m, fea=—kim—k)/f, . :

and these are solved just by (2.8), (2.9) 8
For k = 1 one can also write -

/' l(l—l) (l—k+1)<1+m>(l+m—1) (l+m—L+1) |
(2. 10)
e é(—l)"(k——-l)'m(m—1)...(m—k+'_1). . (2.11)
As a direct conclusmn we get the o

Theorem 2.1: If A%¢' =0 thenthepowerexponentlwanmtegeruntho Slsk—1
.orl—{—mzsanmtegerwuhoSl—i—msk—1 If 4% log o = O then the dimension n
28 even and 2 < n < 2k. '

Proposxtlon 2.4 In the coincidence limit
dPtf, = (o — ) (= R) PO+ (L — k) (dPA) e+
for p,q20, s:=l+gq, t:=l+m+p+y, (2.12)

where ... indicates terms which are of a differential order in Ii' greater than 0 and less
than p + 2q9. For p + 29 < 3 and for p + 29 = 4, Ric = 0 these residual terms
vanish. -

¢

Proof: Proposmon 14 is a,pplled to the present situation; ! is to be replaced by
l—k Forp+429=4 the individual terms are to be mspected Especmlly, one
obtains inductively df! = 0 for all k,! § :

Proposition 2.5: De/me numbers ¢! = ¢'(p, q) by

. k _ _ o
o = Tk — (L ~ ,’) (jc ~ r) C=rd Dfir (2.13)

r

(Take the coincidence limit of fi_, on the nght hand side.) Then for1=p+2¢=3
and for p + 2¢ = 4, Ric =0
© APy = ol (p, q) ~dPA. ' ‘ (2.14)

- Proof: By lgnormg the residual terms ... the system (2. ]2) becomes an algebraic
recursion system for the commdcnce llmlts This is reduced by the ansatz (2.14) to
the recursion system for the ¢;' .

==k (t—ka'+ -k, c' =0,
 and the latter is solved just by (2.13) 8 -
Conclusion: If A*c' =0 then ‘
¢l0, 1) R =0, ¢'(2,0) Ric =0, / -
ce (0, 1) (2, 0) | (2.15)

!(1,1)d R =0, ¢'(3,0) dRic=0.
If 4%' = 0 and Ric = 0 then .
c'(0,2) |[Riem|* = 0,  ci'(4, 0) ~(Riem)® = 0. . (2.186)
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Let us cla_ssify_— for given n, k, p, ¢ — the values of I with it=0

(i)qgkf1andlisanintegerwithogjlgk—q'— 1.

(ii) ¢ = 1 and ! is a positiveinteger withk — ¢ <1 <k — 1.

(iii)ISp—i—q<k—landl—}-mlsanlnbegerthhOSl—{-mSk— —q—1,

(v)1=p+t+g<kandl+misa posmve integer with Jc—p—qSl+m
Sk—l N

Proposxtlon 2.6: There holds

e (p, g) = 0'4n the cases (i), (iii),
ci'(p,'q) > 0 in the case (i),

k(g _
- el(P,9) N-'é (s ) r) (p :L . ’_ 1) in the case (iv).

Ifn 1,'8 odd or 1 < 0 then the proportiomlitgf/actor 28 non-zero here.
"Proof: (i): By assumpt,lon s = l F g < k and thus (k _7) — 0 for 1 sr=<k

(iii): Byassumptxont=l+m+p+q<kandthus(k )—Ofor 1£7Sk

(ii): By assumption < k and because of (I — 7 + 1) f'_y =0 for r >l the summa-
tion in (2.13) stops at r = ! and each of the remaining summands is positive as a pro-
duct of five positive factors. (iv): By assumption ¢;' can-be transformed into

~

‘ E\'1f k—1 \1( 1 )'(fz+m )
al = kWk — 1)! ‘ )
ot ( )(Q) (p+q—1). (k—q k—p—4qf
kfs—\[ t—7r
X .
,g(Aq )(p+q—1).
. If.l is half-integer or negative then (k ! ) %+ 0. The other factors in front of the
sum are non-zero 1 —49 - _

A

Propbsition’ 2...7: Defrne numbers ¢, = ci(p, q) by

et It T T ™

wz'tht;:én—{—p-{—q. Then for 1 §p+2q§3mi'd/orp+2q=4,’1?ic,=0
T @A = alp, @) TP - . ‘ (2.18)

Proof Pass to the lnmt, l—0in Proposmon 2.5 accordmg to (2.5). The recursion "
system for the ¢; = c(p, q) reads Cn —,(q — k)@ —k)ci — kfi, ¢, = 1, and is
solved just by (2.17) 1

Conclusion: I/A"loga__Othen
a0, )R =0, (2 0)'-Rw=0 ¢

(2.19)
a1, 1)dR =0,  c(3,0)dRic=0. .

If A% log o = 0 and Ric = 0 then o 4
(0, 2) ]Rzem|2 =0, cf4,0) (Riem) = 0. " ST (220

16*
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Prop051t10n28 I/n>3andq+ISlcSm—{—p—}—qthenckp,q):%:O

"Proof: By assumptlon Ck ——_c,,(p, q) can be transformed into .

o= () = DS (k: 1)_2(?237“1) (Z:Z) ( T;)' :

‘Here all summands are positive 1
| |

. §3. Results for 1 + m = k — 1. Elementary solutions.of the Laplace equation :

Let us remmd the notlon of an elementary solution followmg {9, 11]. We denote by
N a neighbourhood of the dlagonal in M X M in which Synge’s function ¢ = o(x, y) .
is defined and ,

N-:={(zy) € N | o(z y) + 0). , -
Definition 3.1: Let n.= 3. A two:- *point, function v = u(a:, y) which is defined

-

.
'

and C% inasebN and satnsfles T B
Au-—O in N7, ' ) - L (3.1)

limJo|™ u = const =¥= 0 . - B (32) ‘

. :—Py . )
is called an elementary solution of the Laplace equat:on
For even n = 4 such an elementary solutlon has ’ohe form
_ u—a""?l—{»—llloglol T 4 o (3.3)
with C*® functions ¥ = 'll(x, y), 11 N(z, y). The rare situations in wluch the log-
" arithmic part 11 log |o] is missing are especxally mterestmg

Definition:3.2: Let n = 4 be even and let the two—pomt function % — U (z, ‘;)'
bé defined and C% in a set N. An elementary solutlon of the Laplace cquamon of
the form : o ’

u = u(x, y) = g-m’l[(x, y) in N- S ) ' (3.4)

N

is called loganthm -free.

Fora lorentzian metric g there exists an mterpretatxon in other terms: The Laplace
equation then admits a logarlthm -free elementary solution if and only if Huygens’
principle in the sense of [9 5, 12] is valld < ,

Theorem 3.1: Let

! Ak |Ulk_m 1 -0 . | » N ’ (3.5)

and for even n additionally k < m. Then . a
. [ . o .

u = A¥1 |g|k-m-1 . o ’ (3.6)

s an elemeniary solution of the Laplace equation and for even n it 78 logarithm-free.

Proof: The Propositions 2.1 and 2.3 in fact realize the wanted formulas (3.4) and
(32) . : : .
441 IGI"""‘1 = (2} |o| ™ fiT 7,

\
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. Theorem3.2: Letn = 4 be even and , : : X
4™ (log |a]) = 0. R N & )
Then ‘ ‘ ' Co

u:=A™(log o)) . o (3:8)
isa logaruhm free elementary. solulwn of the Laplace equalum .

" Proof: The. Propositions 2.2"and 2.3 in fact realize the wanted formulas (3 4)
and (3. 2)

mlog [al) — 275, - ' fo = (—1)"2 mi(m — O
Proposxtlon 3.1: From the assumption of Theorem 3.1 lhere follows
_ m—k—1)R —OforkZI ch—O/oric22 . 39
' From the assumpnon of Theorem 3.1 and ch = 0 there /ollows . ]
'(me)2 =0 for k=4. _ (3.10) -
Proof: For 1 < p + ¢ < k we have the case (iv) of Proposmlon 2.6 WJth a non-

" zero proportionality factor. Especml]y we get,

‘ck‘(0,~1)~22(s—7)=k(kfn+1) for k21,
. r=1 - y
k /1 ke
-ck5(2,0)~2(t—r)=(,t)=(k+1) for k=2,
T 2 2 |- :

L S AN A k.+3)' K
. 6t4,0) ~ = =- - for k=4,
it 0~ 3 (157) = () (1) o vz

and we abply now the conclusion'following Proposition 2.5 8

Theorem '8.3: If A***™-1 =0 and if g is lorentzian and 45k < m for even n
or 4 S E'sn —1joroddn respectively then (M, g) s flat. '

The proof is composed by the Propositions 3.1 and 1.2. -
Proposntlon 3. 2 From the assumption of Theorem 3.2 there /ollows
Ric'=0, '« (Riem)* =0, [Riem]?=0. - o (3.11)

Proof: For m =.¢q and p + ¢ = 1 we have the situation of Proposntlon>2 8. For
the special case » = 4, p = 0, ¢ = 2 we calculate directly c2(0 2) ="1. The assertion
follows now from the conclusion to Proposition 2.7 1 -

Theorem 3. 4 If 4™+ loga =0 and 1,/ g 18 de/zmte or lorentzzan and n=41s
even zhen (M, g) vs flat. . )

' The proof is composed by the Proposmons 3.2 and 1 21

Let us now specialize £ = 1. This is only for the sake of completeness — the well-
known simply harmonic manifolds will emerge [11] A snnply harmdmc manifold
(M, g)is chamct,emzed by

p,=0 for any n = 2, ;Aa""-——-O for ng3, Alog‘q=‘0 for n =2.

] ‘-
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Theorem 3.5: If Ad' =0 with 1.5 0 then I = —m and (M, g) is a simply har-
monic manifold o/ a dimension n = 3. If Alog 6 = 0 then (M, g) s a szm/ply harmonic
mamfold of dimension n = 2.

PN

The proof follows immediately from
Ad' =261 + m + p), dlogo =20 Ym + u) 1

Lét, us now specialize k = 2, .

Proposnt10n3 3: If A%'"™ = 0 and m(m — 1) -LOthen : :
(n—3)R =0, '~Ric =0, . : (3.12)
“(Riem)2 =0, n{n — 1) |Riem|? = 2R?2. (3.13)

Proof: While (3.12) is a specialization of (3.9)," we derive (3.13) more directly
from (with a non-zero proportionality factor) .

0 = d*fy™ = m[6(d%u)? + 5diu] — 3gd*Au ¥

Theorem 3.6: If A% ™ =0 and n =5 und +f g is definite or lorentzian then
(M, g) s flat.

The proof is composed by the Proposmons 3. 3 and 1.2. (For definite g the result
is alrcady known [’% )

§ 4. Results for other situations

We w111 omit the proofs in the following as long as they run along the same lines as
in § 3.

Propos1t10n4 1:If A*¢*"™2 = Qand k = 2and/orevennaddu1,onallyk =m+1
then

“Ric =0. - ' (4 1)
'I/A"" m- 2.——OandR—Oandk>4a’nd/or ewnnaddmomllykSm—}—lthen
“(Riem)? = 0. i . o (4.2)

Theorem 4.1: If A%e*~™-2 =0 and if g s lorentzzan and R =0and k =4 and
for even n additionally k < m + 1 then (M, g) 2 flat.

Proposition 4.2: If A%¢*-™3 =0 and Ric = 0 and k =4 and for even n addr-
tionally k < m + 2 then (4.2) holds true.

Proposition 4.3: If A*¢*~"4 = 0 and Ric = O and k = 4 a’nd for even n addi-
tzonalh/ k< m + 3 then (4.2) holds true.

Prop051t10n44 If A¥g*-1 —OandL>2thenR—0 I/A" k“—OandL =2
~and ~Ric = 0 then |Riem|* = 0.

Théorem 4.2: If A%¢*~1 = 0'and n = 2 and k = 2 then (M, g) zs/lat
‘Proposition 4.5: If 4¥%*~2 =0 and k = 3 and Ric = 0 then |Riem|? = 0.
Proposition 4.6: If 4%™™ = 0 and n = 3 then o '
“Ric =0,  ~(Riem)? =0, . (4.3)
3(n — 4) |Riem|* = (5n% — 2n — 12) |.Rz'c|2. . . (4.4)
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Proof: While (4.3) follows from .
e ™2,0) =mm+ 1), ¢ ™(4,0) =3m(m + 1),
we derive (4.4) mbre directly from (with a non-zero proportionality factor)
0= dtf,™ = m{2d)* + d'u] — 29 d*p. o
(For definite g the results (4.4) and “Ric = 0 are alrea.dy known 3D I
Theorem. 4.3: If 4% ™ =0 and n = 3 and if g s lorentzian then (M, g) is flat.

Proof: From the Propositions 4.6 and 1.2 there follows that (M g) is.of constant
curvature. Then (4.4) gives E =0 § :

Pr0p031t10n 4.7: If A%¢ =0 then
‘R=0, |Riem|* = |Ric|?. - ‘ g o : (4.5)

The proof follows from A% = 24u and (1. 8) (Again, for definite g t,he result is
known [3]) . - .

_ Theorem 4.4: I/ 4% = 0 and if g is definite and n £ 5 or Ric =0 then (M, g)
15 flat. If A% = 0 and if g ¥s definite and n = 6 then (M, g) is con/ormally flat.

Proof: From (4 5) therc follows (n —2) IWeyll2 = (n — 6) |Ruc|® for n =z 3 and
definiteness arguments yield the assertion 1§

Proposition 4.8: If 4% = 0 then ) )

' |Riem|® — |Ric|® + 64R = 0. ' . (4.6)
The proof/ follows from 4% = 24% and (1'8) 8 , k
. Théorem 4.5: I/AA:’O": 0 and z;/ g\z\s definite and R
F:=6nn—1)4R — (n — 3) R =0 4.7)
‘. t.hen. (M, g) satisfies F = 0 and is

of constant curvature for n = 3,
flat for n = 4 and for n =5, -
conformally flat for n = 6.

Proof: Forn = 3 the condltioh (4.6) can be transformed into
nn'— 1) (n — 2) [Weyl|® + n(n — 1) (6 —n) |"Ric|2 + (n — 2) F =0.

Hence from F = 0 there follows by defmlteness arguments Weyl =0, (n — 6) ch
=0, F =01 , , _ -

Proposxt,lon 4.9:If A¥logo =0 then

mR =0 for 2<ksm+1, “Ric=0 for k=m+ 2,

mdR =0 for 2=kssm+ 2, “dRic=0 for k=m+ 3.
I/A"loga—OandRoc_.Othen ' ,
" RiemP =0 jor 3SkSm+2, ~(RiemP=0 jor k<m-+4.

Theorem4.6: If 4*loge =0and 3 = k <'m + 2 and if g is definite then (M, g) .
is flat. If A¥logo =0 and 2 < k <'m + 1 and if g Us lorentzian then (M, g) s flat. -

v .’.



248 ‘R. SCEDMDMING Lo

. Theorem 4.7: If A%log ¢ = 0 and n = 2 then (M, g) ¥s flat.
Proof: We evaluate (with non-zero proportioﬁality factors)
0= dify = AP +d% — gdodu,
0 =db, = 4(5d%u du + dbu) — 59 d34p .
with the help of (1.9). The resulting equation system
9AR+7R2—0 3dAR+5RdR—O

has R=0 as the umque solution 1

§ 5. Non-flat mahifolds for which a power of the radius is k-harmonic

A simply harmonic manifold with one of the additional propérties\
n<3,
. gis definite or lorentzian . A
g is conformally flat

is known to be flat [11] Otherwxse for each dlmensmn n = 4 and each signature of g
different from the definite or the lorentzian one there exist non-flat snmply harmonic
ma.mfolds [11]. These provide exaniples for our problems. : )

Theorem 5.1: A4 simply harmonic manifold (M, g) fulfills for any positive integer k

Ako k-1 __ =0, Akgk-m-1 — 0. - o - (5.1),
A szmply harmomc 'mam/old (M, g) of even dzmenswn n =2m + 2 fulfills V
4™ log o = 0 - : : o . (5.2)

Proof: From n= _ 0 there follows

V'VAkgl — 2"0‘;"(1‘:!)2 (i) (l +I., m),

A¥log o = toTH(— 1)1 k1(k — 1)! (’:)
and this gives the assertlon 1

Theorem 5.2: To any dwwnszon n = 3 and any. signature o/ g defferent /rom the
definite one there exist non- flat manzfolds (M g) which satisfy

A2 = 0. b o (5.3)
Proof: The metrics of the form ' :
g = 2da! da? + g;;(2t) dat dx’ (t,7=3,4,...,m)

are generalizations of the plane gravitational waves and have the followmg proper-

ties:
. do depends only on 2! and not on the 2,

Af(x!) = 0 for any smooth function f,
sign (9«5) = (+’ —, sign 9i7))- o
These observatlons — which are. essentmlly due to [8] — yleld the assertion 1
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’

Proposxtxon 5.1: A 3-dimensional mam/old of constant curvature K- .satw/ws,
4% = —8K. 4 :
~The proof follows from the formulas - ' . _,\ »
u = =1+ @Ko}l cot (2Koptt =: /o), - (54
A%—2A,u—4o/"a)+4(,u+m+1)/(0) T S (8.5) .
(For deflnlbe ‘g the result is known [2, 3] and with.its help in [‘3] hlgher—dlmensmnal

" non-flat manifolds satisfying 4% =.0 are, constructed) ¥ -

Theorem 5.3: The condmon A2612 = 0 chardcterizes 3-dimensional mam/olds ‘of

' constant. curvalure .o . v

Proof: From A20Y/2 =0 there follows n =3 by Theorem 2.1 and "Ric =0 by
Proposition 3. 3. Conversely, a calculation based on (5:4) and (2.4) shows that for
a 3-dimensional manifold of constant curvature there holds f,/2 = 0. (Again, the
result is already known for definite g [2, 3, 7]) 8 - :
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