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S. 

Es , sei a = a(x, y) die Syngesche Funktion einer Riemannschen Mannigfaltigkeit (M, g) belie-
biger Signatur. Wir betrachten die Bedingung, daB eine bestimmte Potenz von a oder der 
Logarithmus von a k-harmonisch ist. Dann erweist sich (M, g) in vielen Fallen als flach. Be-
stimmte Kiassen nicht-flacher Mannigfaltigkeiten könñen durch eine Bedingung-vom genann- 
ten Typ charaktcrisiert werden.	 - 
flycTb a = a(x, y) - YHKItHH Cilhira PmsaHoro MHoroo6pa3MH (M, g) npO1l3BO1bHO1 cnriia-
Typal. PaccMa'rpuuae'rcfl ycMoBMe,. qTo HeKOTOpan c'reneHb,a uniorapu4M a RBJIHCTCR 
k-râprooHH4ecxo yhIHwhefl. Torga B MHorHx ciyasix (M, g) oKaabIsaeTcsI flJIOCKHM: 
HeKoTopale ijiacci hIerLrIocmix MHoroo6pa3IU MOPT 6uTb oxapaiepiaosaai S yeJiosueM 
Haasaulhoro Tuna.	 -	- 
Let a = a(z, y) denote Synge's function of a . Riemannian manifold (M, g) of any signature and 
consider the condition that some power of a or the logarithm of a is k-harmonic. Then in many, 
cases (M, g) turns out to be flat. Certain classes of non-flat manifolds can be characterized just 
by a condition of the aforesaid typo.	 . 

Introduction	•	:	 . - 

• For points x, y of a smooth n-dimensional properly Riemannian manifold (M, g) 
which are not too far from each other thegeodesic distance r = r(x, y) is defined.	S - 

For fixed y and variable x we call r =.r(x, y) shortly the radius. Recently the 
• problem	 '	 . 

k 21 •	-	= 0	 .	 -	(1) 

• has been posed, i.e. the condition that some power of the radius is k-harmonic. 
[2-4, 6, 7]. Here k denotes a positive integer, 1 a real number, and	- 

gV17 =Laplace operator to g, 

dxf7 :== Levi-Civita derivative to g, 

g = g dx4 dx = Riemannian metric,	 -	S 

(g) := (gfl) 1 .	.	 S	 , . 

• One motivation for the problem comes from the fact that certain, classes of mani-
folds can be characterized just by a condition (1), namely the simply harmonic 
spaces with n 3 by k = 1, 21 = 2 -, n, and the 3-dimensional spaces of constant 
curvature by k = 2, 21 = 1. On the one hand it i•s an aim to find further 'such . 
characterizations, on the other hand it is to be expected that for many combinations. 
(k, 1, n) the condition (1) implies local flatness. For instance, [4] is devoted to the 
(still open) conjecture that this should be the case fork = 2, 21 = 2 - n <, 0. There
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is also another motivation: for 2(k - 1) = n, 1 < 0 from (1) there follow that 
.4 k_ 1r21 is aii elementary solution of the Laplace equation. In general it is very diffi-
cult to calculate an elementary solution, in our special case we have an explicit ex-
pression for it.	 - 

The present paper will introduce some new aspects:	S	 - 

1. The Riemannian metric g may be of any -signature (properly orpseudo-Rie-
mannian). The usual definition of the geodesic distance fails then; instead.Synge's 
two-point function = a(x, y) is to be taken as a primary quantity and	 S 

r := 2 l a P 112 ,	e := sign a	- 

as secondary quantities. It will turn out that 'results are available especially for 
lorentzian g, i.e. for a signature (+ -	) or (- + ...	 . 

U. We will study the problem 
k(logr)o	S	 .	

5	 (2) 

too. It is a natural completion of.(1) because 
5	 lint zl kr2t/21 = zl C (log r).	

.	S 

l-o	S	 . 

M. There are no upper bounds for the numbers k, 1, n in our results. Contrarily_ 
the literature until now concentrated to small values of k. J. ElcrrnoBN [7] studied 
also general k fo,r definite g. 

We always consider y E M as fixed and xE M as variable; all differential opera- 
• tions refer to the point x. Let N(y) denote a normal neighbourhood. of y E M; in it 
a = a(x, y) is defined. Let further	 S	 . 

= {x E N(y) I a(x, y) . O). 

Now we make precise the  
13 rob1ens: Search for quadrupels (M, g, k, 1) consisting in 

- a manifold M" of class C°° and of dimension n =: 2m ± 2 2, 
- a Riemannian metric g over M of class C and of any signature, 
- a positive integer k,	 S 

- areal nunzberj, - 
• such that for each y E M 

4k aj = 0 'in .N(y).	 . .	 .	(3) 

This problem we will abbreiiiate by L1"a' .=.0. 
Search also for tripels (M, g, k) such that analogously for each y E M 

4k (log ) ' = o .	 .	
5	

(4) 
This problem we will abbreviate' by 4k log a = 0. 

Here we present a selection of our results: 

1. If Akal = 0 then one F the numbers I or 1 + m is an integer between 0 and k - 1 
5	 (inclusively). 
S Examples: .	 S 

1.1. Ifzla t =O then l=Oorl=—m. 
1.2. If 4 2a1 = 0 then 1 is one of the numbers 0, 1, —m, 1 - m. 
2. If L1c log a = 0 then n is an even number and n 2k.
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Examples: 

2.1. If A log a = 0 then n = 2.	- 
2.2. if A 2 log a	0 then n = 2 or n = 4.	 S	 - 

3. From, 4 k0.1 = 0 there follows local flatness if one' of the following additional assump- 
tions is fulfilled: 

3.1. k =2, 1 = 1, n	5, g definite.	 -

3.2. k = 2, 1 = —m, n ^! 5, g lorentzian. 
3.3. k,= 2, 1	1 - m, n :5: 5, g. definite or lorentziai,i.  
3.4. k =3, 1 = 1, n :!E^ 5, g definite, II = 0.	 - 
3.5.-k^211=k-1,n=2. 
3.6. , 4	k	m, £ ± m ='k'— 1, n even, g lorentzian. 
3.7 4 :!E^ k	n - 1, 1 + m = - 1, n odd, g lorentzian. 
3.8. 4 . k	m+ 1,1+nv=k-2,neven,glorentzian,R=0. 
.3.9. k	4, 1 + m= k - 2, n odd, g lorentzian, 11 = 0. 
4. From j  log a = 0 there follows local flatness if one of the following additional 

assumptions is fulfilled: 
4.1.k:!z^2,n=2.  
4.2. 2	m ± 1, q lorentzian. 
4.3. 3 :5: k	m +2,g definite. 
4.4. k = m + 1, n ^! 4, g definite or lorentzian.	 - 
5. There exist non-flat manifolds of any dimension n 4 (namely simply harmonic 

manifolds) satisfying for any . k A tcak_ i = 0 and Akalc_m_1 = 0. 
6. There exist non-flat manifolds of any even dimension n 4 (namely simply liar-

nwnic manifolds) satisfying 4Th±1 log a -- 0.	 - 
7. There exist ion-/lat manifolds of any dimension n 3 and of any non-definite 

signature.(narnely generalizations of the plane gravitational waves) satisfying 41 2a = 0. 
S. The 3-dimensional manifolds of constant curvature (of any signature) are charac-

terized by A 2 al l/2 = 0.	'm'	-	- 9. If A' aJ Ic_m_ i= 0 and	+ 0. then A k_ i a!k_m_1 is an elementary solution of 

the Laplape equation. This is logarithm-free for even n. 
10. If 21 m+ '(logJ ul) = 0 and n	4 is even then- A tm (log. al) is a logarithm-free ele-

mentary solution of the Laplace equation.	- 

Let . us shortly review results in the literature on the problem A kat = 0 for the 
properly Riemannian case: R. CADDEO [2] proved that A 2r = 0 if and only if ,n = 1 
or if (M, q) is a 3-dimensional manifold of constant curvture. R. CADDEO and 
P. MATZEU [3] showed that A 2r" = 0 if and only if (M, g) is locally flat or is a 
3-din,ensional manifold of constant curvature. In the papers [3, 4] the problems' 
A 2r2 = 0 and A 2r2 " = 0 are considered. Necessary conditions are derived; under 
certain additional assumptions these conditions imply local flatness. Especially, 
R. CADDEO - and L. VANHCKE [4] have shown that an odd-dimensional (M, g) 
satisfying A 2r2 " = 0 is a harmonic manifold. J. EICHHORN [6] proved that a har-
mdnic,rnanifold satisfying A 2r2 = 0 is simply harmonic, which implies local flatness. 
In [7] he initiated the consideration of arbitrary large k and became 'able to discuss 
a number of concrete examples.	 S 

The three problems to characterize all Riemannian manifolds (M, g) which 
- satisfy A"a1 = 0 or A" log a = 
- are harmonic ones,	 -	-	- -	- 
— admit a 1ogathm-free elementary solution of the Laplace equation
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respectively have much in common. They are of comparable' difficult' and none 
of the problems is solved' yet. Possibly, future progress in one of the problems will 
influence the other two'problems. 

Our main tool will be a version of the "method of coincidence limits", which has 
been initiated-by J. L. SYNGE [13], combined with the calculus of symmetric diffe-
rential forms. It 'is to be noted that the method is not yet exhausted by the results 
which are presented here.  

I wish to express my thanks to A. GRAY and to J. EIcHU0RN for suggesting the 
problem and to the authors of [2-4] for, giving me insight into their work. 

§ 1. Symmetric differential forms. The two-point.unctions a and't	 S 

A symmetric differential form of degree p  

U = UP  =	dxal dx'  

is a special notation for , a.symmetric covariant tensor field of degree p with local 
components	with respect to a local chart x -+ (x") = (x1, 2,	x'). Apart 

• from the usual tensorial operations there 'are specific operations for symmetric 

	

•	'forms:  
S '

	 Symmetric product of a.p-form u anda k-form  
V pVq ' =	dx' ... dx"' dx' ... dxa. 

2. Trace = tr with respect to the metric g  

tru := g" flu	.. dx"' for p	3,	 . . 

	

S	 '	 tru0 =0,	tru1 =0,	tru := g"up. 

3. Trace-free part uj,, of u, with respect to g. For p 4 one has 
S	 ,	 15 

-	 'lLo = U0 ,	U, = U1,	u2 = U2- - g tr U21 

	

S ,

	 (n ± 2) (u3 - u3) = — 3q . tr u3,  

•	(n + 2) (n + 4) (:u4 - u4) = — 6(n + 2) g tr u4 * 3g2 . tr2 u4 .	 S 

4. Symmetric differential d built by means of V 

du :=	dx" dxd i ... dx"'.	 ,	 S 

Lateron we will make use of the formula 

(p + 2) (p ± 1) trk gup)  
=4k(m'+pk±2)tr1' 1 up+(p+ 2_2k)(P'4 1 -- 2/c)gtru.'(1.1)' 

We choose the notations and c6nventions	
S	 •	 •	 • S 

Riem = Rq,,,(dx" t. dx's) (dx'A dx') = curvature tensor, 

(V. V	VV) v" =: R,p',v' for vector fields v	v" e, 

Rio = fl P dx" dx =. Ricci tensor := g"R,p dx" dx', 
- •	R = scalar curvature = g"'8 R,,	,	 S 

•	Weyl = W,(dx" A dx) (dx.A dx') = conformal curvature tensor.
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For quadratic expressions in the curvature we adopt special notations: 

Rid 2 :=R.pRO ,	jRiemj2:=Rp,,ROP,"', 

(Riem)2 : =	de dxv' de dx'. 

Proposition 1.1: A lorentzian metric g with n 4 and (Weyl) 2 = 0 is con-
formally flat.  

•

	

	A'pr'oof follows from a close inspection of the arguments which are given by 

A. Lrcirxxtowicz and A. G. WALKER in [10], and also slightly more explicit by - 
H. S. RUSE, A. G.	and T. J. WmuioRE,in section 2.7 of their book [11].. 

• Thus the proposition may be considered as known, though to our, knowledge not 
explicitly stated before. Note that similar -. but not identical - arguments occur 
in the context of the Bel-Robinson tensor in general relativity [1', 12] U 

Proposition 1.2: A lorentzian metric g with n 3 and Ric = 0 and (Riem) 2 .= 0' 
ià of constant curvature.	 -	 -' 

Proof: For ii = 3 the assertion follows from Ric = 0 For n 4 we apply Pro- - 
position I.I. Namely, from Ric = 0 there follows 

(Riem)2 = (Weyl) 2 + (n —,l) ,K2g2 with n(n T 1) K := .R,	' .. 
and as a conclusion (Riem) 2. = (Weyl)2 1  

Definition 1.1: LetN(y) be'a normal neighbourhood of yEM, i.e. the expo-
nential map with origin y	 - 

exp,:x*	x	•.	,	 . 

'is a diffeomorphism out of the tangential space of y onto N(y)pr, equivalently, N(y). 
is the domain of a normal coordinate system  

X i-* X*	(x*) __ (z *l, x 2 , ..., x*.1)).  
The quantity  

or = a(x, y) := -- g(y) (expv' x, expy ' x)	 .	. 

•	. 
= .-- g(y) (x*, x*) = -- g(y) x 4'x	for x E N(y)	 (1:2)7 

is called Synge's two-point function. From a there are derived' 

e=e(x,y):= sign a(x,y),. /L=/J(x,y):=--(Lla—n).	1.3) 

The two-point scalar fields a and ,u are ingredients of the "methOd of coincidence 
limits" which is due to J. L. Sv'NGE [13]... The limit for x - y, if existing, of a two-
point quantity is called coincidence limit. The equality of the coincidence limits is 
an equivalence relation 'of two-point quantities and will be denoted by One-point 
quantities and constants may be looked upon as special two-point quantities. 

Let us recall some properties of a and u following [9, 13, 11, 12]: 
8ymmtry: a(x, y) = a(y,x).	•	- 

• •	•Coincidence limits:  
a0,	[7	 V. Vpagp,	•	 - 

,0, : —3VVpV7 i76a	B,,,p5 '+ Raapy. •	 -. (1.4)
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Differential equation:	VaVa = 2a. 
Ledger's /orrnula:	 -: 

P-.2 /pV 
—(p + 1) da	p(p - 1) dP-2 (R	dx dxö) + ' ( ) dd'o,/ (1.5)


q2 \q/ 

for p ^E! 2, where the sum for p = 2 and for p = 3 is to be taken as zero and where 
we abbreviate. a. := I7 a, o := VVa. 

Conclusions: 
da=O,	d2og,	ddx, 
dPa 0 forp ^ 3,	da	0 for p ^2.	 (1.6)


Trace version of Ledger's formula:
p-2/ \ 

—2(p -{- 1)d'1u	p (p — 1) d 2 Ric +	{ q 1 ) 
dqp-q.	 (1.7)


q=2  
for p > 2.	.	.	 . 

Conclusions:  

,u	0,	d,u	0,	—3d2,u	Ric, 
•	 .-4d31s	3d Ric,	— 15d4 u	18d2 Rio ± 4(lliem)2, 

•	 —34ull,	—2dA1sdR,	 . (1.8) 
_J542	rr 12/1k + 2(1Riem 2	JRic12). 

peciul version of Ledger's formula for n = 2: 

—2(p + 1) dPu	
() 

gd 2R +4d 2 . (1.9) 
We proceed with some technical preparations. 

Proposition 1.3: For a regular two-point function / = /(x, y) 

ez1(jJ' f) = 2 I aV' D/  

with the linear differential expression of second order	- 

D jf:= 1(1 + m)f + 1aAV0f ±	Jf.	, •.	(1.11) 

Proof: Insertf1 =	f =/- into the product-rule  

AU1/2) =(4/) /2 + f 1 4f2 H- 29 Vj 1 V/2 

and use e/1 1a1 1 = 2 I a I'	1(1 +m ± 4u) • 
Proposition 1.4: In the coincidence limit 

d'D,frr l dudTf+l(l-F m±p)dPf±( 0 JgdI2Jf 
(P )

iIp\ for p2 
2T	 h

(1.12) 
and 

.	-d4D1f	5t-dPJ/ + 1(-d4) f +	. 
• (1.13) 

for pZ^;2,	s:=l+q,	t:=l±m±pH-q, 
where . . . . indicates terms which are of a differential order in /.greater than 0 and less 
than p±2q.

.	)	 . / 
S
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The proof of (1.12) makes use of (1.6), (1.8). For the proof of (1.13) replace p in 
(1.12) by p + 2qand apply the iterated trace operator tr q with the help of (1.1): 

trq dP+2D1/ = dPAD,/ + ..., 

(-) 
tr (gdP+2-2f)= 2q(m + p + q) tr' (dP+2-2f)  

= 2q(m +'p .+ q)- dPAf + .... 
Here ....indicates terms which do not contribute to the expressions (1.13). The co-
efficient of dPAf becomes 

l(l±mp+2q)+q(m+p+q)=(i±q)(l+m+p+q)St I 
§ 2. Derivation of the necessary conditions  

Proposition - 2; 1: Define two-point .scalar fields 1k = f, (x, y) recursively with 
respect to k = 0, 1, 2, ... by 

11._I	II	7-i	II 
/0	,	Ik+1 .- -'-'1-k/k .	 - 

Then	 - 
-	(eu)" J ul' = 2" IaI'f.	 (2.2) 

The proof is done by mathematical induction with . respect to k and by means of 
(1.10)1	--	 - 

Coi-clusion: 4 ka l = 0 if and only if 4' = 0.	-	- -	 - 

Examples:	-	 - -	-	 - 
/1 1 = 1(1+ m +- z),	-	 -	-	 (2.3) 

f2' = 1(1 — 1) [(1 + m-+ ) (1 + m - 1 + ) + V,i] +	lady. - (2.4) 

Proposition 2.2: -There exist the limits	 - 

- - f := limf'/l for k > 1	-	 (2.5) 
1-o 

and with these there holds	 -	 - 
-	Jk(10gJ ul) = 2r'f.	 -	- - -	 (2.6) 

Proof: Mathematical induction with respect to k shows that the sequence of 
•	functions which is recursively defined by	- - 

f1 := m ± ,	4^1 := Df	 -	 (2.7) 

fulfills both (2.5) and (2.6) I -	 - 

Conclusion: uI"log a = 0 if and only if 4 = 0.	 - 

-Proposition 2.3: Ii the coincidence limit	-	 - 
-	. -.	--	- -

	(2.8) 

4	 k!(k - 1)! (71).
	 (2.9) 

16 Analysis Bd. 4, Heft 3 (1985)
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Proof: By passing to the coincidence limits the differential recursions (2.1) shrink 
to the algebraic recursions	 - 

/o'1,	/L+l=(l—k)(l+m—k)/k,	 I 

f m,	fk+1= —k(m - 
and these are solved just by (2.8), (2.9) I 

For k -^> 1 one can also write	-

(2.10) 

/	
(_l)k (k - 1)! m(m - 1) ... (m - k + 1).	 (2.11) 

As a direct conclusion we get the 
Theorem 2.1: 1/ l'Ca 1 = 0 then the power exponent I is an integer with 0 1 k - 1 

or 1 + 'm is an integer with 0 1 + m k - 1. If zl c log a = 0 then the dimension n 
is even and 2 ^ n :!^: 2k. 

Proposition 2.4: In the coincidence limit 
-dPL1ft1	(a - k) (t	 Ll k) -d9A/t ± (1 - k) (-d") f' + ... 
for p,q0, s:=l+q, t:=l+m±p+q, (2.12) 

where ... indicates terms which are of a differential order in /' greater than 0 and less 
than p + 2q. For p + 2q 3 and for p + 2q = 4, Ric = 0 these residual terms 
vanish. 

Proof: Proposition 1.4 is applied to the present situation; 1 is to be replaced by 
1 - k. For p + 2q = 4 the individual terms are to be inspected. Especially, one 
obtains inductively d/'	0 for all k, 1 I 

Proposition 2.5: Define numbers cia' = c,(p, q) by 

1kc' :=[(k - r)!]2 (k-r)  () (1— r ± 1)f_1 ..	 (2.13) 

(Take the coincidence limit of f1 on the right-hand side.) Then for 1	p + 2q	3 
and for p-f-2q=4, Ric =0 

•	 _dPJft	c(p, q) -dP1 q11.	 (2.14) 

PrOof: By ignoring the residual terms ... the system (2.12) becomes an algebraic 
recursion system for the coincidence limits. This is reduced by the ansatz (2.14) to 
the recursion system for the Ck '	 - 

4^1	(s	k) (1	k) c' + (1 - k) 1k 1 ,	Co' = 0, 

• and the latter is solved just by (2.13) I 

•	Conclusion: If Akal =0 then
-Ric  c I (0,1)R=0, c'(2, O) =0,

(2.15) 
'c'(1, 1)dR =0, ck'(3,0)dRic =0. 

1/4 'Ca 1 = 0 and Ric = 0 then 

c'(0,2) lRiemJ 2 = 0,	' cfr'(4, 0) (Riem) 2 = 0.	 (2.16)
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Let us classify - for given n, k, p, q - the values of 1 with / 1 0: 
(i) q k — 1 and 1 is an integer with 0 '1 k - q	1. 

(ii) q	1 and 1 is a positive integer with k - q 'l	k — 1. 
(iii) lp +q k— 1 and l+misanintegèr with 0l,+mf-,k—p—q— 1. 
(iv) 1 p + q k and 1 + iii is a positive integer with k --- p - q 1 + m 

:!E^k-1.	 - 

Proposition 2.6: There holds	 - 

e'(p, q) = Oin the cases (i), (iii), 
ck '(p,q) > 0 in the case (ii), 

IC Is — r\I t—r \ - c'(p,q)	 i 1, q ) p + q — i) n the ca-se (iv). 

If n is odd or 1 < 0 then the prcpor1ionali1ij7actor is non-zero here. 

Proof: (i): By assumption s ==l q < k and thus(	r)=0 for 1 r k.


(iii): By assumption t -1 + m + p + q < k and thus (') = 0 for 1 r k. 
(ii): By assumption £ < k and because of (1 - r + 1) / 0 for r> 1 the summa-
tion in (2.13) stops at r = 1 and each of the remaining summands is positive as a pro-
duct of five positive factors. (iv): By assumption CIC' can- be Jransformed into 

•	/k\ I k — 1 \1 / 1 \ / 1 + m CIC =k!(k-1)!I	I	I	 I I II - 
- \q/ \p+q-1/ \k—q/\k—p—q 

•	 k/sr\/ t—r 

q	p+q_i.  

If 1 is half-integer or negative then
(J+ 0. The other factors in front of the 

sum are non-zero I 	. 
Proposition, 2.7: Define numbers cIC = ck(p, q) by 

ck = [(k— 1)!]2!, (
	

i)2 (

	) (	:) 

(_1)r 
(r -	

(2.17) 

with £ := in- + p + q. Then for 1 p + 2q 3 and /orp + 2q = 4 1 Ric 0 

- -dvJ/	c, q)	 -	 (2.18)

Proof: Pass to the limit 1 - 0 in Proposition 2.5 according to (2.5). The recursion 

system for the CIC = ck(p, q) reads ck,,	(q — k) (t'—'k) Ck — k/k , c 1 = 1, and is 
solved just by (2.17) I 

Conclusion: 1/ 11k log c = 0 then	 0	 - 

ck(O, 1)1? = 0,	Ck(2, 0)'-Ric = 0,
•  

Ck(l, 1)dR =0,,	ck	
(2.19)

(3,0)dRic =0.	- 

If uk log o-=0 and .Ric = 0 then	 .	. 

Cfr(O, 2) JRiemJ 2 = 0,	Ck(4, 0) (Rieni) 2 = 0.	 (2.20) 

16*
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• Proposition 2.8: If  3 and  + 1 k m + p + q then ck (p, q) + 0. 
Proof: By assumption Ck = ck (p, q) can be transformed into 

ck = (_ 1)k_1 [(k— 1)!]2E ( I i)2 (. .!_ 1) (i) (r	i)• 
•	'Here all summands are positive I	 - 

§ 3. Results fort ± m = k -. 1. Elementary solutionsof the Laplace equation 

Let us remind the notion of an elementary solution following [9, 11]. We denote by 
N a neighbourhood of the diagonal in M x M in which Synge's function a = a(x, y) 
is defined and

	

= {(x, y) € Ni a(x, y)	0). 

Definition 3.1: Let n 3. A two-point function u	u(x, y) which is defined

and C in a set N and satisfies 

Ju	0 'in	 (3.1) 
lim..Ial m u ='const. == 0	 0	 (3.2) 

•! 

is called an elementary solution of the Laplace equation 
For even n 4 such an elementary solution has the form' 

u==o rnU-!--Ulogkil	'	 (3.3) 

with C funétions '1€ = U(x, y), U = U(x, y). The rare situations in which the log-
arithmic part U log jal is missing are especially interesting. 

• '

	

	Definition3.2; Let n 4 be even and let the two-point function U = U(x, y)

be defined and C° in ,a set N. An elementary solution of the Laplace equation of 
the form	 '•	'	' 

U = u(x, y) = o mU(x, y). in N	 (3.4)


is called logarit5hm/ree. 

For a lorentzian metric g there exists an interpretation in othererms: The Laplace 
equation then admits a logarithm-free elementary solution if and only if Huygens' 

•	principle in the sense of [9, 5, 12] is valid. 

Theoreni 3.1: Let 
4k IaIm_1 --L. 0	•	 (3.5)


and for even n additionally k m. Then 

U := 
4k-i lal 111	 '	 •	 •	 (3.6) 

is an elementary solution of the Laplace equation and for even n it is logarithm-free. 

Pr'oof: The Propositions 2.1 and 2.3 in fact realize the wanted formulas (3.4) and 
(3.2):	 - 

4kj lal m = (2e)' Jaj_m/i, 

/ —$fl--1 =	 1)kl(k_ 1)?2('	
)

LI
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Theorem3.2:Leg n 4be even and	 0 

4 m1(log l ofl = 0.	 0S	

(3.7) 

Then.	 .	S. 

•	u:=LIm(1ogja)	 (3:8)0 

is a logarithm-free elemenlarj. solution of the Laplace equation.	
S 

Proof: The Propositions 2.2 and 2.3 in fact realize the wanted formulas .(3.4) 
and (3.2): 

•	4m(log al) = 2rna:rnfm ,	fm	(-1)m 'm!(m - 1)! • 
Proposition 3.1: From the assumption of Theorem 3.1 there follows 

(n - k - 1) R = 0 for k 1,	Ric = 0 for k ,^ 2.	 (3.9)!

From the assumptioi of Theorem 3.1 and Rc = 0 there follows 

	

(Riem)2 = 0 for k 4.	 (3.10) 

Proof: Foil :!E^ p + q k we have the case (iv) of Proposition 2.6 with a non-
zero proportionality factor Especially we get	• 

Ic	 S 

ck'(O,1)'—'2Z(s—r)=k(k--n+1) for k	1, 

ck!(2, 0) —	r)	
t	(k + 1) for k	2 

•	
.

()	()=
_ (k + 3) for k4,0	

0 

• and we apply now the conclusion following Proppsition 2.5 I 

•	Theorem 3.3: If zl!(alc_m_1 0 and if g is lorentzian and 4 k in for even n 
or 4	k == ii - 1 for odd n respectively then (M, g) is flat. 

The proof is composed by the Propositions 3.1 and 1.2.1 . .- 

Proposition 3.2: From the assumption of Theorem 3.2 there follows 

Ric	0,	.0(Riem)2 =, 0,	jRiemj2 = 0.	 (3.11) 
Proof: For m q and p + q 1 we have the situation of Proposition 2.8. For 

the special case n = 4, p = 0, q = 2 we calculate directly c 2 (0, 2) =- 1. The assertion 
follows now from the conclusion to Proposition 2.7 I	

0	

0 

Theorem 3.4: If J m+1log a = 0 and if g is definite or lorentzian and n .4 is 
even then (M, g) is flat.	•	 .	 0	 • 

•	The proof is composed by the Propositions3.2 and 1.2 I 

•	Let us now specialize k = 1. This is only for the sake of completeness - the well- 
•	known simply harmonic manifolds will emerge [11]. A simply harmonic manifold 

(M, g) is characterized by	•	
0	 •	 • 

u=0 for any n2,. Aa-m=0 for n3, 1loga=0 for n=2.
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Theorem 3.5: If jda' = 0 with l'== 0 then 1 = —m and (M g) is a simply har-
monic manifold of a dimension n 3. If J log a = 0 I/len (M, g) is a simply harmonic 
manifold of dimension n = 2. 

The proof follows immediately from 

zla' = 2a 11(1 + m +,u),	zl log a = 2a'(m +,u)' I 

Let us now specialize k = 2. 
Proposition 3.3: If 42aI-m = 0 and m(m ._ 1) + 0 then 

(n- 3)R = 0,	Ric = 0,	 (3.12) 
(Riem) 2 = 0,	n(n - 1) IRiem1 2 = 2R2 .	 (3.13) 

Proof: While (3.12) is a specialization of (3.9), we derive (3.13) more directly 
from (with a non-zero proportionality factor) 

0 = d4frm -e- m[6(d2 u)2 + 5d4 u] - 3 jd24u U 

Theorem 3.6: If A 2a1m = 0 and n ^i- 5 and if g is definite or lorentzian then 
(M, g) is flat. 

The proof is composed by the Propositions 3.3 and 1.2. (For definite g the result 
is already known [3, 7]), I 

§ 4. Results for other situations 

We will omit the proofs in 'the following as long as they run along the same lines as 
in § 3. 

Proposition4. 1:IfJ ko k_ m_2 = O and k 2 and for even n additionally k m ± 1 
then

-Ric =0.	 (4.1) 
If Aam2 .= 0 and R = 0 and k ° 4 and ' or even n additionally k m + 1 then 

'(Riem)2 = 0. S	 (4.2) 
Theorem 4.1: If Jkam2 0 and if g is lorentzian and R = 0 and k ^ 4 and 

for even n additionally k m + 1 then (M, g) is flat. 
Proposition 4.2: If zlkoic_m_3 = 0 and Ric = 0 and k 4 and for even n addi-

tionally k	m + 2 then (4.2) holds true. 
Proposition 4.3: If Akakjn4 = 0 and Ric = 0 and k 4 and for even n addi-

tionally k	m 4- 3 then (4.2) holds true.	
S 

Proposition 4.4: If £lkak_1 = 0 and k 2 then R = 0. If Aka1 = 0 and k 2 
and Ric = 0 then IRiemJ 2 = 0. 

Theorem 4.2: If z1a"' = 0 and n = 2 and k 2 then (M, g) is flat. 
Proposition 4.5: If zl kak2 = 0 and k 3 and Rio = 0 then IRieMI2 = 0. 
Proposition 4.6: If 4 2a m = 0 and n 3 then 

Ric = 0,	(Riem)2 = 0,	 (4.3) 

3(n - 4) j Riem,1 2 = (5n2 - 2n - 12) IRicl 2 .	 (4.4)
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Proof: Whjl (4.3) follows from 

c2 tm (2,O) =m(m+ 1),	c2(4,0) =3m(rn+ 1), 

we derive (4.4) more directly from (with a non-zero proportionality factor) 

0 d4f m n[2(d2 ) 2 + d4,u] - 2gd2Ju. 

(For definite g the results (4.4) and Ric = 0 are already known [s]) ! 

Theorem . 4.3: If A 2a" = 0 and n 3 and if g is lorentzian then (M,g)is flat. 

Proof: From the Propositions 4.6 and 1.2 there follows that (M, g) is of. constant 
curvature. Then (4.4) gives B = 0 I	- 

Proposition 4.7: If 4¼ = 0 then 

B	0,	IR.iern 2 = IRicI 2 .	 (4.5) 

The proof follows from 4¼ = 241u and (1.8). (Again, for definite g the result is 
known [3]) I 

Theorem 4.4: If zl 2a = 0 and if g is definite and n 5 or Ric = .O then (M, g) 
is flat. If 42(7 = 0 and if g is definite and n = 6 then (M, g) is conformally flat. 

	

Proof: From (4.5) there follows (n —2) l Wey11 2 = (n - 6) I RiCl2 for n	3 and

definiteness arguments yield the assertion I 

Proposition 4.8: If 4¼ = 0 then 

RiemI 2 - Rid 2 + GLIB = 0.	 (4.6)


The proof follows from 4¼ = 24 2 u and (1'.8) I 

Theorem 4.5: If 4¼ = 0 and if g, is definite and 

F:=-6n(n— 1)AR— (n— 3)112 0	 (4.7)


then (M,g) satisfies F=O and is 
of constant curvature for n = 31 
flat for n=4 and /or n=5,' 
conformally flat for n = 6. 

Proof: For n 3 the condition (4.6) can be transformed into 

n(n-1)(n— 2)1Weyfl 2 + n(n— 1) (6—n) IRidI 2 +(n — 2)F =0. 

Hence from F 0 there follows by definiteness arguments Wejl = 0, (n - 6) Ric 
=0,F=0 I	 - 

Proposition 4.9: If zV' log or = 0 then 

mR=0 for 2km+ 1 ,	Ric =0 for k:E^:m+2, 

mdR=0 for 2^-,km-l-2,	d Ric =0 for k mH-3. 

If 4k log a 0 and Ric = 0 then	
S 

IRiemI 2 =0 for 3k m+2,	(Riem)2=0 for k^-,m+4. 

Theorem4.G: If 4" log a =0 and 3 k 'm + 2 and if g is definite then (M, g) 
is flat. If 4" log a = 0 and 2 k m + 1 and if g is lorentzian then (M, g) is flat.
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Theorem 4.7:I/A2 log o=O and n=2 then (M,g)isflat. 
Proof: We evaluate (with non-zero proportionality factors) 

0=d4/22(d2i)2+d4u—gd2A1u, 
o =d5f2 4(5d2,ud3,u + d5u) - 5gd34u. 

with the help of (1.9). The resulting equation systeh 
9z1.R+7.R2 =0,	MAR +5Rd.R=O .	0 

has R = 0 as the unique solution I 

§ 5. Non-flat manifolds for which a power of the radius is k-harmonic 

A simply harmonic manifold with one 
o
f the additional properties 

n3, 
g is definite or lorentzian,• 
g is conformally flat 

is known to be flat [11]. -Otherwise, for each dimension n 4 and each signature of g 
different from the definite or the lorentzian one there exist non-flat simply harmonic 
manifolds [11]. These provide exniples for our problems. 

Theorem 5. 1: A simply harmonic manifold (M, g) fulfills for any positive integer k 
4 kak_1 0 ,	z10k7m:1=0.  

A simply harmonic manifold (M, g) of eveq. dimension n = 2m + 2 Jul/ills 
zl m±l log r=0. '	-	 '	 (5.2) 

Proof: From t = 0 there follows 

	

= 2'o' '(k!)2 (1) (1,-i- m)	 S 

4k log a = 2kk(_l)k-1 k!(k - 1)! ()• 

and this gives the assertion I 
Theorem 5.2: To any dimension n 3 and any signature of g different from the 

dc/mite one there exist non-flat manifolds (M, g) which satisfy 

4 2a-0	 /	 -	 .	
0	

(5.3) 

Proof: The metrics of the form 

g = 2dx1 dx2 + g11 (x') dx dx1	(i, = 3, 4, ..., n) 

are generalizations of the plane gravitational waves and have the following proper-
ties:  

zla depends only on x1 and not on the Xt,	 5 

zlf(x1 ) = 0 for any smooth function /,	 0 

	

•	sign (go) 	sign (gij)). 
These observations - which are essentially due to [8] - yield the assertion I
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- Proposition 5.1: A 3-dimensional manifold of constant curvature K satisfies. 
A 2cr = —8K. ".	I

The proof follows from the formulas 

	

= —1 + (2Ka) 1 12 cot (2Ka)112 	 (5.4) 

	

= 2A = 4a/"(a) + 4( + m + 1)f'(a).	 (5.5) 

(For definiteg the result is known [2, 3] and with . its help in [3] higher-dimensional 
non-flat manifolds satisfying zl 2a =. 0 are, constructed) U - 

Theorem  5.3: The condition A 21/2 = 0 characterizes 3-dimensional manifolds of 
constant. curvature.	 - 

Proof: From 4212 = 0 there follows n = 3 by Thorem 2.1 and Ric =. 0 by 
Proposition 3.3. Conversely, a calculation based on (5:4) and (2.4) shows that for 
a 3-dimensional manifold of constant curvature there holds f21!2 = 0. (Again, the 
result is, 'already known for definite g [2, 3, 7]) U	 -	- 
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