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On the Solvability of Transonie Potential Flow Problems 

M. FEISTAtJER and J. NEÔAS 

To Prof. Dr. Herbert Beckert on the occasion of his 65th birthday 

Wir betrachten PotentialstrOmungen im schailnahen Bereich. Die Gleichung für das Gesehwin-
digkeitspotential, die eine wirbeifrele, ideate Strom ung beschreibt, ist nichtlinear, vonzweiter 
Ordnung und vom gernischtcn Typ. Bisher ist die Existenz von Losungen noch nicht bewiesen 
worden, es 4ibt nur eine Reihe von numerischen Methoden zur Berechnung soicher t)ber-
schallstrornu ngen. 

Mit Hilfe des Sekantenverfahrens und einem bequernen Prinzip der optimalen Steuerung 
kotistruieren wir hier cin Funktional i,i, dessen Mini thierungzur Losung des Ausgangsproblems 
äquivalent ist. Da Schocks auftreten, d. h. Sprunge der Geschwindigkeit, der Dichte und des 
Driicks, betrachten wir schwache LOsungen irn Raum IV"2 (Q). Vom physikalischen Standpunkt 
aus 1st die Entropiebedingung entlang des Schocks sehr wichtig. Es gibt verschiedene MOgtich -

keitOn, urn these Bedingung nurnerisch zu berucksichtigen. Wir betrachten hier eine verein-
fuchte Form dieser Bedingung, die von Glowinski, Pironneau uOd andren benutzt wurde und 
schiagen gleichzeitig eine kompliziertere Forniulicrung vor, die sehr naturlich jst.. 

Wir zeigen, daB these Bedingungen die zunächst fehiende Kompaktheit kompensieren und 
konnen so die Existenz der LOsung im folgendenSinn beweisen: Wenn die Mmnimalfolge für. 
das Funktional V der Entropiebedingung genügt und die Geschwindigkeit beschrãnkt ist, wenn 
ferner diese Folge schwach gegen die Funktion u konvergiert, danti liegt starke Konvergenz 
vór, und u 1st eine LOsung des Probleris im t)berschallbereich. 

'Diese Arbeit cnthält ferner einige Resultate bezuglich des Unterschallbereichs und der 
Regularitiit dei Minirnalfolge. 

CTaTbH nocnnUeHa 113y'leI(ulo pa3pe[11HMOCTH 3ajaiii OHO103ByKOBOrO noTeIIIuaJlbHOro 
Te'IeHnn. YpanileHile 6e3rnlxpeuol'o, IlennaHoro, oHoJIO3ByXoBOr0 Te4eHufl HeilHHefino, 
BToporo nopnasa it cMeulanHoro Tuna. CyiuccTByeT png • lIIcJieHIIMx MCTOaOB ocHonaulibix 
Ha NieToAax icoHeq Hbix pa3HocTeü It HOHC'IHbIX aJieMeHToB misl paceva oHoJloanylcoBhlx 
Te'IeIlufl. Ho jo CIIX [lop tie )oKa3aHo CyweCTiloBaHile peweiiitn 3Toft-3aj1.a'Bl. 

3gecb, ISOCI1OJIb3YH Me'roa l-a qaHoBa it yJO6Fiblfl [1PIIIILUIfl onTuMajiblioro yripauneui?n, 
MM HoHCTpyupyeM(l)yllHI.ui011aJL i/i, MHHMMII3aLUIR HOTOpOI'O 3HBHI3aJIeHTHa peweuuio aaatsi. 
Tai KH pa3pIJBIA CHOpOCTH, itatineHIM 11 HJTOTIIOCTII HCTpCMaIOTCH 11 oFcoJioanyHoBblx vee- 
llUHx, Mb! paCCMaTpHUaCM c.'la6blC peIHeHHR 113 flOCTUCTB	 )H3 W' 2(Q). C (ll4ecKoO TOiHH 
3CIlUh1 o'IcHh ua)sulo ycioniie 3FITOflH11 Eta paaphiBe. CyIIccTByloT pa3Hble fllleMbl 113y- 

- qeiiitri aTorO CJ1OBHH ii 'IIICJIC1IIIhIX MeToax. 3geCb MM IICnO.ribayeM npocyio 4opMy 1'jiou1111-
cioro, llupouiio it apyrx II HOMC TOlO nnouisi itoisyto CCTCCTBClIIilO, HO Oonee CJ1OfiHIO 
(1)OpMy3111PoBFY 3T01'0 yCJIOBIIH. 

B CTaTbe noHa3auo, ITO 3T11 yCJIOBIIH HoMneuclipyloT OTC3'TCTIIyI0WyI0 HoMlIaHTHocTb 
HO3BOJIHIOT joHa3aTb CyI.L(CCTBOBaHHC petueuiin B CJICjLYIOU.ICM cMbicjle: Ecjiii MiiiiuMiiaiipyio-
tuan nocJ1eJonaTeJ'bHocTI, (IJyIIHL(uOliala !p BunojiuneT (aiioc'repuopu) yCJIOBhifl 31iTOflU1I 
IT ol'pauta'lenHotI C140OCTl1 II CXOJJ.HTCH c.na60 H YlIHlk11hl u, TO otia cxOaIiTCn H U CUJIbIfO IT U 

HIIJIIICTCR peulellileM :taaa'lu. 
HpoMe TWO B CTaTbC joHa3ailbl HoKoTophie C3YJIhTTbL KacaIou.ulecH jO3ByKOB6lX Te1e-

ii nil it peryJlnpl!OCTM MltIiItMtI3IlpyioI.uef1 floCJleJl,oBaTeJlbuocTH. 

The paper is devoted to the study of the solvability of transonic potential flow problems. The 
velocity potential equation governing irrotational non-viscOus transonic flows is nonlinaer, 
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second order and of mixed type. There exist a series of numerical methods for the solution of 
the transonic flows. However, the existence of the solution has not yet been proved. 

Here, with the use of the secant-modulus method and a convenient optimal control principle, 
weconstruet a functional ip, whose minimization is equivalent to the solution of the problem. 
Since the so-called shocks, represented by jumps in the velocity, density and pressure, occur 
in the flow field, we consider weak solutions from the space W 1 ' 2 (Q). From the physical point 
of view the entropy condition across the shock is very important. There exist various appro-
aches how to embody this condition into the numerical method. Here we consider its simplified 
version by Glowinski, Pironneau etc. and besides, we propose its new natural, more complex 
formulation. 

We show that these conditions introduce the missing compactness into the problem and 
*	allow to prove the existence of the solution in the following sense: If the minimizing sequence 

of the functional ip satisfies (a posteriori) the entropy and bounded velocity conditions and 
• converges weakly to a function n, then it converges strongly to u and u is a solution of the 

transonic flow problem.  
The paper contains also some results concerning subsonic flows and the regularity of the 

•	minimizing sequence.	 - 

Introduction 

• The study of transonic flows is the centre of general attention for many specialists. 
It has a great importance in the design of high speed airerafts and highly efficient 
turbines, compressOrs and other blade machines with large output. 

There exist several mathematical models for the investigation of transonic flows. 
\ry oftdn we meet the model of an irrotational, steady, non-viscous flow,since it is 
represented by relatively simple equations and gives good results for subsonic stream 
fields via velocity potential or stream function formulations (cf. e.g. [10, 12, 31]). 

In contrast to subsonic irrotational non-viscous flows, where the solvability of 
boundary value problems for velocity potential (or stream function) can be proved by 
the monotone operator theOry, the mathematical study of transonic flow problems 
is very difficult. The potential equation is nonlinear and of mixed type, since it is 
elliptic in a subsonic region and hyperbolic in a supersonic region. The boundary 
between these regions is not known in advance and is obtained together with the 
sought solution. Moreover, passing across this boundary is not continuous in general, 
but it is connected with jumps (called shocks or shock waves) in the velocity, density 
and pressure. Hence, the concept of a classical solution has no sense and it is neces-
sary to consider generalized weak solutions. If we introduce a weak formulation simi-
larly as in elliptic problems, then the corresponding operator is not monotone and 
has'no cornpactiicss properties which would allow the application of the monotone 
and pseudomonotone operator theory or some compactness results for proving the 
solvability. Therefore, up to now, there exist no results concerning the existence 
or uniqueness of the solution to the transonic potential flow problems. 

In contrast to the lack of theoretical results, we can meet a- lot of numerical 
methods for modelling transonic two- and also three-dimensional stream fields past 
airfoils, cascades of profiles or blades and through channels. Most of these numerical 
approaches are based on finite-difference methods combined with a successive line 
over relaxation (SLOR). They are connected with the names COLE, MURMAN, GARA--
REmAN, KORN. ,JAMESON, KOZEL, PoLAm and others ([6. 16. 20, 21, 23, 241 and the 
bibliographies therein). Some authors use multigrid techniques for improving the 
convergence (see . e.g. [2, 22]). Remarkable results were obtained by GL0wINsKI, 
PIRONNEAU, BRTSTEAIJ, PERIAUX, PEaRlER and POIRIER ([3,4,17-19,32] and 
others) who use the finite clement method, least squares and conjugate gradients. 
Other finite element techniques can be found e.g. in [5, 71.
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Numerical results of GLOWLNSKI, P1RONNEAU etc. show that the solutions of the 
discrete potential transonic flow problems possess nonuniqueness of the solution and 
that the nonphysical solutions with expansion shocks occur. These solutions are 
usually very attractive for iterative processes (cf. e.g. [18, 32]). Similar experiene 
with the nonphysical solutions was obtained by FEESTAUER and ORUL1K [8, 30]. In 
order to avoid the solutions with nonphysical shocks, we must assume that the velo-
city .decreases across the shock (entropy condition). This condition is embodied into 
the numerical methods by various ways. In [16, 20, 21, 23, 24] the 'upwind discreti-
zation 'used in the supersonic region causes an artificial viscosity which depresses the 
nonphysical shocks. In recent papers [2, 5, 7] 'an artificial viscosity is introduced by 
upwinding the density. In [3, 4, 17-19, 321 the entiopy condition is considered as 
a constraint in an optimal control problem and is handled via penalization, regulari-
zation, or other optimalization techniques. 

Here, in this paper, we try to answer the fundamental question concerning the 
solvability of the transonic flow problems, formulated for the vlocity potential. 
With the use of the secant modulus methods known also as Katehanov's method, 
popular in elasticity, we construct a suitable functional-whose minimization is equi-
valent to the solution of the boundary value problem considered. Since this functional 
is nonconvex, without any compactness properties,. it is ' impossible to apply some 
known convex analysis results for proving the convergence of a minimizing sequence 
to a solition. However, if we assume a posteriori that the elements of this sequence 
satisfy a convenient entropy condition and some regularity assumptions, then we build 
the missing compactness into the problem and prove the convergence of this 
sequence to the solution of the transonic flow problem. 

This process is constructive. It can be discretized by the finite element method and 
used as a• basis of it new method for the numerical simulation of the transonic flows. 
This will be the subject-matter of fortheomming papers. 

1. Fundamental concepts and equations 

Let us consider an irrotational, steady, adiabatic and isentropic flow of a nonviscous, 
compressible fluid in a bounded domain Q II,, (n = 2 or n = 3). We assume that 
the boundary c9Q of Q is Lipschitz-continuous and Q is 'simply connected. it means 
that every two piecewise' differentiable curves connecting in Q arbitrary points x, 
y E Q are mutually transformable in Q by a homotopy. The closure of Q is denoted 
by D. 

The flow considered is described by the following equations: 

div (cv) = 0,	 (1.1) 

. 

	

avi	I 13'p 

	

V -	- - ,	= I .....n,	 .	( 1.2) 

7) = v(o) = c,	 S	 (1.3) 

rot V = 0 1	 (1.4) 

considered in Q. We use the notation: "v - velocity vector with the components 
v, in Cartesian coordinates x 1 .....x,, introduced in It,,, - density, p - 

pressure. c > 0, x> I are given constants. We assume thatv p, are functions 
(dependent on x = (x 1 ....., x,,) E Q) continuously differentiable in Q. In following 

20*
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• considerations we shall also admit discontinuities of thesc.c1 uantities. Let us remark 
that (1.1) is the continuity equation, (1.2) are the Euler equations of motion, (1.3) is 
the condition of the adiabatic, isentropic process and (1.4) represents the condition of 
the irrotational flow.	 S 

Let us introduce the local speed of sound a by the relation 

a2==p'  

and the so-called pressure function	 .	. 

•	f	d	 .	..	.	 .	(1.6) 

We denote by Q0, Po, a0 the values of the density, pressure and speed of sound, re-
spectively, corresponding to the velocity v = 0. it is easy to see that 

grad	=	grad p.	 .	 (1.7)

From this, the relation 
'	av	 . 

axi
-	 .	 (1.8) 

- and (1.4) the identity grad 
(
J, + 

2 
I Vi) ' 0 follows; which•implies	.. 

S	

(1.9) 

If 'we use (1.3), (1.5), (1.6) and (1.9), we derive the relation between thedensity and 
• velocity 'ofthe form	

S 

=.	

( - 
2a	 .	.'	.	 ..	( 1.10) 

On the basis of (1.4) and the assumptions concerning the domain Q vecan intro-
duce the velocity pOtential U: Q - R such that grad u = Vu = v. By substituting 

• into (1.1) we get tlie equation for the potential u: 
"
	kivum1 

a	
S	

(1.11) ,	a, 

From (1.10) we see that the density is defined for 

if
•	2a0° 

•	'"l l2	 in	Q,	Q,	.	 (1.j3) •	,	—x+1	.	 S 

then Ivi	a in S? 1 and we say that the /low is subsonic in S?1 . On the other hand, if 
•	 2a02	.	 .	 .. 

1v12>	in Q2 Q,	 S	 •	 ( 1.14)
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then lvi > a in Q2 and the flow is stpersonic in 122 . The equation (1.11) is elliptic or 
hyperbolic in the subsonic or supersonic region, respectively. 

It is known, that in a purely subsonic flow, where the equation (1.11) is elliptic, the 
velocity potential is continuously differentiable. However, if we consider a transonic 
flow, then the domain 12 can be divided into a subsonic 1-egion Q, and ,a supersonic 
region 

92. 
The boundary between 

Q 
and 

Q2 
contains usually shocks with jumps in 

v,.p. 2 . It means that the velocity potential . 0 is no more continuously differentiable 
in Q.  

Across the shock we consider Prandtl's conditions 

-	au	 . (a) --- at	at 

au-	 aw 
(b) o(VuI2)	= o (1Vu i)	 .	 . 

On 

where - or + denotes the quhtities in front of the shockor behind the shock; 
respectively. By a/at and a/ín we denote the derivative with respect to the tangential 
and normal directions to the shock, respectively. Very important is the entropy con-
dition across the shock: -	 -	. 

Iv	> vlI  

(the velocity must decrease). In this paper we shall consider the entropy condition 
formulated with the use of the velocity *potential in the form 

• fo(lVui 2 ) iui 2 Vu- VhdxMfhdx	 V	 - 

Q	 .	Q	 .	., .	
S	 (1.17) 

VhE2(Q), h 0  

(natural form) and also	 ..	 . 

•	—fvu.Vhdx:!E^Mfhdx	 • 

Q	 •.I	 (1.18) 
'hE2(Q), h>0	 S 

(simplified form). We denote :by 2(Q) the set of all functions from C°°() with com- 
pact supports in 12. M E H is convenient constant. The condition (1.18) was u sed 
e.g. in [3, 18, 321. Its advantage is linearity. 

Let us remark that in a real flow the transition across the shock is connected with 
the increase of the entropy and with the rise of the vorticity. It means that our model 
of the irrotational, isent .ropic flows can be applied, if we confine ourselves to stream 
fields with the Mach number M = v ita < 1.6, where the so-called weak shocks 
occur only. Then the changesin the entropy and the production of the vorticity on• 
the shocks are negligible. 

This is important for the dependence of the density on the velocity. In the follow-
ing we shall assume that this dependence is given by a function e with the following 
properties:.	 :	 • 

0 and ' are continuous in [0, +co), .	 (1.19) 

= O0 (1 -	 for s 	[0, s*].	 (1.20)' 
2 2a	.	,	 -:
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/ 2a02	2a02 \	 2a02 'with s	
x+ 

E I	,	I (s is close to —) and	 S 

	

\1	—1/	. 

0 <OLOW Oo < +0O,	
/	 (1.21) 

• o'(s) (1 + 8)1	 S	 •.	 (1.22) 
0 (fundamental condition)	 (1.23)

for all s E [0, +00). em, 0 and co are constants. 
'['he existence of such g is evident, it can be obtained eg. by extending 

	

[
o ±. (80 + 2ao2] to [0, + 00) by a positive constant	

= (-i- 
(s* + 2a02.))

2	x—i ,	 I	2a21and then, by a suitable smoothing in the interval s,	I. If s is close enough
2a2  to	

° ' 
then for 1 v 1 2 E [0, 8*1 the corresponding Mach number varies from 0 

to a value K	1.6. Hence, the modification of the function o in a neighbourhood' 
of the point 2a02 

and the extension of Q to [0, +00) is not significant for the 
validity of our model from the physical point of view. 

In the following, some considerations will be restricted to the stream fields with 
the velocity satisfying the condition 

	

8	
6a02  

+	 ,	 (1.24)x1 
If x = 1.4 (theflow of the air). then (1:24) represents the restriction to flow fields - 
with M E (0, 2.23). 

2. Formulation of the boundary value problem 

Since t9Q is Lipschitz-continuous, we can define the (n - 1)-dimensional Lebesgue 
measure 12_ on aQ. Let aQ = 1, P, u S u Ut, where ri and S are open sets in Q 
and z_(Ul) = 0. We shall consider the velocity potential equation 

=0 ' in Q	•-	 (2.1). j X [Qovu i^!
) Xj	S 

(with the function that has the properties (1.19)—(1.23)) and the boundary condi- 
tiOfl3	 •	•	 S	 • 

u=0 on J','	 (2.2)
au

 9(IVu I 2) -. = g on Su 1 ' .	 ,	 (2.3) 

If g = 0 on5S and g < 0 on 1', then we get the situation corresponding to the flow 
in a channel whose impermeable walls form the set S and are parallel in a neigh-- 

bourhood of the outlet ['i , which is normal to S. J' denotes the inlet. Usually, we 
assume that 1u 1 (F1 ) > 0. Sometimes we also admit the possibility _ 1 (F1 ) = 0 and 

	

then we consider the boundary condition

Ulu 
(IVu12)	= g on 'EQ. ,	 -	 (2.4)
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In this case we assume that 

fgds=O.	
.	

(2.5) 

- Further, if the shocks occur in the stream field, then we assume that the conditions 
(1.15, a—b) are satisfied. (The entropy condition will be considered later.) 

In order to introduce a weak formulation of this boundary value problem, we 
define the space 

V = {v E W12(Q) : v= 0 ' on I' in the sense of traces),	 (2.6)

if z_(l') > 0 and the conditions (2.2) and (2.3) are considered, and 

V = v E W 12 (Q): f  dx = 0 ,	 (2.7) 
1	 J 

if [') = 0 and we use the condition (2.4). W2 1 (Q) is the well-known Sobolev 
space. (For the definitions of all spaces used, see e.g. the books of NEAS [27, 28]). We 
assume, thalg E L(f'2 uS) (org E L(Q)). In both cases (2.6) and (27), the space V 
can be equipped with the norm 

ItI = (f 1 Vu 1 2 dxy12.	 (2.8) 

We say that  is a weak solution of the velocity potential problem, if . 

(a) uEV, 

(b) 1 (IVuI2) VU . Vv dx =f gv ds Vv E V.	 .,	 (2.9) 

(We can put c:g. g = 0 on F1 in the case of the boundary conditions (2.2), (2.3).) 
By the use of Green's theorem it is possible to show that both the problem (2.1) to 

(2.3), (1.15, a—b) and the problem (2.1), (2.4), (1.15, a— b) are formally equivalent 
to (2.9, a—b). The details are contained in [30]. 

Let us put 

R(s) =f o(t) dt for s E [0, +)	 .	.	(2.10) 

• and define the functional Ji: V 	 S	 • 

P(ü) = .1. f R ( I Vu2 ) dx for u E J .	 •	(2.11) 

Let u E j': By w = w(u) we denote the solution of the linear problem 

(a) wEV, 

(b) I ( I Vu I 2 ) Vw . Vv dx =f gv ds V v E V	 . (2.12) 

and define the functional : V ->.It by the relation 

- .	-	p(u)(u)._(w(u))_fguds±fgW(U)ds, u  V.	.	(2.13) 
aSQ	 DD
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It is evident that a fixed point u of the mapping u - w(u) is a solution of the problem 
(2.9, a—b): The fundamental idea how to find this solution u is based on a convenient 
optimal control principle. Here, we shall minimize the functional on the &pae V. It. 
means that we seek u E V such that 

(u) = min).	 (2.14). 
tEV 

If we find this u, then we have to verif whether the condition (1.12) (or better (1.24)) 
and the entropy condition considered, i.e. (1.17) or (1.18) are satisfied, in order to 
be sure that u is a physical solution. 

From the numerical point of view, it will be probably suitable to minimize the 
functional p in the set of all u E . V satisfying the finite velocity condition (i.e. (1.12) 
or (1.24)) and the entropy condition ((1.17) or (1.18)). 

Remark 2.15: Studying the channel flow with the supersonic inlet 1'2; it is neces-
sary to consider both the Neumann condition o	 g and the Dirichiet con-

On 
dition u I "	u2 (with given g and u2 ) at the inlet "2• Then it is convenient to extend 
the functional ip by the identification term 

1(u) =f Iu.;—u2I 2ds ,	 .	 (2.16) 

added to the right-hand side in (2.13). For simplicity, we shall not deal with this case 
in the following.  

Remark 2.17: The reason for the choice of the functional ip as thecost function in 
our optimal control problem will be cleared up in the following section (see Remark 
3.27).	 .	.	 . 

3. Secant modulus method -	 - 

This method, known als as Katchanov's method, is described in a series of pipers 
(e.g. [141), among others also in books [28] and [29]. It plays a fundamental role in 
our considerations. We shall explicate it in its abstract version according to the cited 
references.	 .	. 

Let V be a Hilbert space with the norm ii and 0: V —> R be a functional 
that has the Gteaux differential D0(u, .) at every u E V. For each u E V let us con-
sider a form B(u, v, w), bilinear and symmetric -in v, w 'E V, with the following pro-
perties (u, v, wE V): 

IB(u, v, zu)j !E^ c	lv ii iIuiI,	 . 

B(u, v, v)	c, JJV112, c2 > 0,	 (3.2) 
D0(u, v) = B(u, u, v),	.	.	 . .	 (3.3) 

	

- --B(u,u,u)— 0(v)± 0(u) >0.	. -	. (3.4) 

Let us consider a continuous linear functional / defined on V (i.e. / E T', V* 	dual 
to V). If u E V, then we denote by w = w(u) the solution of the equation 

-	B(u, w, v) = f, v) V v E V.	 .	 (3.5)
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(The symbol f, v) for / E V, v E V denotes the duality between V and V*) . From 
the Lax-Milgram lemma the existence and uniqueness of such w follow. 

Theorem 3.6: Let and B have the above properties. Then 

C2 Ju	w(u)11 2 ^ (u) := (u) — (w(u)) — /, u	?V(u)).	(3.7).

for very U E V. 

Proof: Let us put 

and	

-r(v) = (u) — (/ v) +	B(u v v) —	B(u u u)	 / (3.8) 

0(u)	(u) — q, u).	;	 (3.9) 
Then, from (3.4) for v := w = w(u) we -get	. 

0(w)	0(w) + (u)	' (w) ±	B(u. w, w), —	u. u)  

	

= (u) — (f, w) + -- B(u, w, w) - . B(u, u, u) = i(w).	(3.10) 

Further, if we use the last relation, the equation (3.5) (with v := u or v := u) and the 
properties of B, then 

=	—K/ w) + (/, u)— (I, u ±	B(u, w, w) - -- B(u, u, u) (u)  

= 0(u) + .B(u, w, u) - B(u, w, w) +	B(u, w, w) - .- B(u, u, ) 

0(u) -	B(u, u - w, it —,w)	0(u) - -- c2 ft - w 2 .	(3i1) 

Hence, 0(w) ;5; 7t(w) 5 0(u) - -} C22	J u - wI 2 , which immediately gives the assertion 
of the. theorem I. 

Theorem 3.12: If fb and B, have the. above properties andmoreôver,i/ 

•	Dø(u +h, h) - D(u, h) Zt c 3 1 1h,11 2 V u, h E V	 (3.13) -. 

with a constant C3 . > 0 (independent 'of u, h), then'therc exists a unique critical poi?lt it 
of the functional 0, C() = (u) - (/, u). I/we define a sequence (u}_0 by the iterative 
process "v0 E . V (is arbitrary) and u,1 = w(u) for n 0", then u,, u in V, if 
n ±cc, and it is a unique minimum point of C. 

• Proof:-The assumptions layed on0 imply that th functional C is coercive, weakly 
lower semi-continuous, strictl y convex and bounded from below. Henc, there 
exists exactly one critical point it of C. (See e.g. [15] or [33].) Moreover,.0 is its mini-
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• mum point. Now, we have Db(u, ii) = Kf h) for all h E V and 

c3 ju.. - u 11 2	IYP(u h , u — u) — Dcl)(u, u, — u) 
=Au, u, u — u) - (/, u — 
= B(u,,, u, u — u) — B(u, u +1 , u — u) 
= B(u I u — u 1 , u - u)	c 1 11U. — u +1 11 H un 	ujl. 

This yields the estimate	 .	 . 

I[U — U	Hun 	.	 (3.14) 

From (3.7) we see that 0 <	c2 11u,, 	u +1 2	C(u) — C(u +1 ). Since Cisbounded

from below, necessarily C(u8 ) - C(u 11 ) — 0 for n - -'oo and hence, u — u +1 -^ 0. 
'From this and (3.14) we get u,, - u, if n -	I 

Remark 3.15: If the functionals 0 and B have the properties -(3.1)—(3.4) (the 
condition (3.13) need not be satisfied in general) and C is bounded from below, then, • 
in virtue of (3.7), for uI 1 = w(u), u0 E V, we have ?p(u,1 ) = C(u) — C(u, 1 ) —0 0 
and u,, — u +1 —i- 0. if n --> +°9. 

Example :3.16 (application to the potential compressible flow): Let us consider the 
functional 0 defined by (2.10) and (2.11), where the functioji satisfies (1.19)—(1.23). 
We put  

f, v) =f gv (Is, V E V;	 .	 (3.17) 
OD 

and define the form B by the relation 
B(u, v, w) =f o(1 Vu 1 2 ) Vv . Vw dx, . V u, v, w E V.	 (3.18). 

It is easy to see that B is bilinear and symmetric with respect to v and w and that the 
conditions (3.1)—(3.3) are satisfied (concerning (3.3). — see Lemma 3.21). Let us 
verify (3.4). This condition can be written in the form 

f [( I 1Vu2) .(Vvt 2 - VuJ 2 )	R ( I Vv I 2 ) ± R(IVu12)] dx	0	 (3.19j 

• for arbitrary u, v E V. It will do to show that 

o() ( — ) - 1(fl) + R() ^ 0, V a,fi E [0, +oo). •	 (3.20) 

In view of the relation R'(s) = o(s) in [0, --oo), (3.20) is satisfied if and only if the 
function B is concave. However, this is true, since R"(s) = '(s) 0 in [0, +co) 
(cf. (1.23)). It is evident that the equation (2.9, b) can be written ii the form B(u, u, v) 
=f,v) for all vE V. 

In the following we shall deal with some properties of 0, C and B from the above 
example and of the corresponding functional V defined by (2.13). 

Lemma 3.21: 1. The functional C(u) = O(u) — (f, u) is bounded on every bounded - 
set in V. 

•	2. IIw(u)II :5 c2hI/ lIve,	- V U E V.	 . 

3. (u)	-- eI1u11 2 ,	V U E V. 

4.IC(w(u))I	c4 = const, - V u E V.	 •	-
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5. The functional C-is coercive (i.e. ,C(u)	+00, if u E V and 1 jull - +00), Lip-
schitz-continuou8 and bounded from below. 

6. The mapping "u E V - w(u) E V" is continuous. 
7. The functional ip is coercive, continuous and y(u)	0 for all u E V. 
8. (1) and C have the Gdteaux differentials 

D(u, v) = f (l Vu 1 2 ) Vu . Vv dx = B(u, u. v), 
0	 0 

and  
-	DC(u,v)= f0(lVu2)Vu.vvdx—fgvds 

= B(u, u, v) - (/, v),	u, v E V.	 - - 
Proof:-!. We have	 -. 

-. - - 
IC(u)l'= 1 0 (u) '- q, u)I < f R(Vu 2) dx + lVllv . 11u ll .	- - 

From (1.21) and (2.10) , we have 	JR(s)J ^-00s in [0, ±°°) and thus, IC(u) 

-- oo 11u11 2 + ll/llv . 11 u ll .	 -	- 

2. This assertion is an immediate consequence of (3.2) and (3.5): - 

C2 Iw(u)lJ ^ B(u; w(u), w(u)) = (f w(u))	ll/Ilv 11w(u)II. 

3. Similarly as in the assertion 1 Ave have	-. 

(u)=	.R(JVu2) dx	-- ollu ll2.	 - 

4. This is a consequence of assertion I and 2.	 - - 
5. We have  

C(u) =	(u) - (f, u) 	llull2	llfllv . Ilu ll	+00, 

if lliu ll---> +00. This and assertion 1 imply the boundedness from below of C From 
the definition of 0 and C and -the properties of it follows that both J5 an C are 
Lipschitz-continuous. 

6. The continuity of w(u) is a consequence of results contained in [27: Ch. 3, § 6]. 
H u — u in 1, then (l Vu 1 2 ) —> o(l Vu l 2 ) in measure (in Q). Moreover, the functions 
e(l Vu l 2 ) are uniformly bounded in Q. The functions w(u) or w(u) are the solutions 
of the problems (3.5), where we put u := u or u := u,, respectively. I.e.'. 

- f(lVul 2)Vw(u) . Vdx=(/,v)	V v E V	-.	- 

and	 S	 • 

f (l Vu 1 2 ) VW(u) . Vv dx = (f, v)	v v E V.	-	 -	- - - 

Now, by the direct application of [27: Ch. 3, § 6] we get the convergence w(u)	w(u) 
in V.	 - 

- 7. This assertion follows from the assertions 4-6 and (3.7). 
8. This assertion is based on a simple calculation. We lève it to the reader . I
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Theorem  3:22: Under the assumption and notation from Example 3.16 it holds: 
1. There exists a minimizing sequence of the functional  
2. Every minimizing sequence {u}	of V is bounded, ju,, - w(u)ll - 0, if 

it	--oo, and {u}°_ 0 is generic, i.e. 

B(u, u,,, v)	 , v + (F v)	V v E V,	 (:3.23) 

where F E V and UFllv.	for n -> co. 
Proof: A. As an example of°the minimizing sequence to ip we can use the sequence. 

(u,,); defined by the iterative process u,, 1 = w(u) with an arbitrary u0 E V. In 
Remark 3.15 we have already shown that (u) - 0, if n - +00. It means that 

(u,, —> inf (u) = 0, since V > 0. 
UEV 

2. Let u,, E V,	.	 . 

	

urn pu) = inf(u) = 0.	 .	 (3.24) 
uEV 

Then there exists no such that 

	

C2 lIu - w(un )11 2 ^ (u)	1	V n	h0 .	 (3:25) 
2. 

Since the sequence {w(u)}°0 is hounded (cf. Lemma 3.21), the sequenc {u}; has 
the samepropérty. From (3.24) and . (3.25) we see that Iiu - w(u,)l1	0 for n— +-oo.

Further, in view of (3.5), 

B(u, w(u), v) = (f, v)	V. V E V.	 .	 (3.26)

Let us define F,, € V* by the relation 

(In, v) = B(u, u - w(u,,), v),	V € V. 

By this and (3.1), (F,, v)I	c111u - w(u,,)I M l and hence, 11Fjv.	c 1 Iu,, - w(u,,)IJ
- 0, if n --> ±00. Now it is evident that (3.23) holds I 

Remark 3.27: Now it is already clear why we have chosen in Section 2 the func-
tional V as the cost function of our optimal control problem. The main results are 
following.. 

l.(u):^> OforalluE V. 
2. inf(u)=0. 

uEV 
3. If we find a minimum point u E'V of ip, then it u is a solution of the transonic 

flow problem (2.9, a—b). 
In other optimal control methods mentioned in 'Introduction we meet a somewhat 
different situation: if we minimize the cost function considered (e.g. 1 ju - w(u.)II), 
then the minimum point need not be a solution of the transonic flow problem, unless 
we get the zero value of the cost function at this point.. 

Remark 3.28: In Theorem 3.12 we have shwon that the boundary value problem 
(2.9. a — b)' (which is equivalent to finding a critical point of the functional C(u) 
= (u) - (f, u)) has a unique solution under the condition (3.13). This condition is 
valid if

c(s) +'2se'(s)	a >0	Vs E [0, +00)	 (3.29)

with some a. Really, if we denote
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for , E R. and I E [0 1 1], then in view of (3.29) and the condition ' ^5 0 (under the 
notation = + I?)), we have 

g'(t) = e(I -+- tI 2) 177 1 2	2 '(I-4- 1711 2) [( ..f. t)	]2 

(I) Ij2 + 2e'(I 2 )	+ 
j =1	 i.j=1 

= e(I 2) 1I 2 + 2(II 2) 1I2 7712 — 
E (-i —	 II 

I	 J 
Hence, 

[(I + ?712) ( + — e(II 2 ) = g(1)	g(0) 

-	=fg'(t) di >	 (3.30)

Since
D(u,'h) =f o(jVuJ) Vu . Vh dx, 

we prove (3.13) (with c3 = a) b y putting = Vu(x, 71 = Vh(x)(for almost every 
x E Q) and by integrating the inequality (3.30) over Q. (Let us notice that if the con-
dition " > 0 were satisfied, then g'(t)	(k + 1171 2 ) 1,112  

However, from the construction of the function' and its extension on the interval 
[0, ± oc) it follows that (3.29) is satisfied for S E [0, s] with a fixed s	E (o, 

2a02 
•	 2a2	 x1 (s** can be chosen arbitrarily close to	° ). It means that the condition (3.13) 
• is satisfied on the subset of the space V, formed by the velocity potentials correspond- 

ing to strictly subsonic flow fields.. If we are interested in the subsonic flow only, we 
can apply the secant modulus method directly in the following way. We- choose the 
constant s E (o, .2a02 and consider the function é: [0, +oo) – R1 , which is 

\ ?+1/ 
giveii by the relation (s)= eo (i - 2a2'  in the kinterval. [0;s**] and satis- 

fies the conditions (1.19), (1.2!)—(1.23) and (3.29). As an easy exercise the following 
subSbnic theorem can be proved.  

T Ii core m 3.31: Let o: =,  , where 6 is defined above. Then there exists a unique mini-
mum point u of the functional C(u) = (u) — (/,'u). This 'u is the unique solution of 
the problem (2.9, a—h) and the secant modulus method converges to it. If I Vu I 2 ^ 
in Q, then u is the velocity potential of a physically admissible irrotational, subsonic, 
isentropic flow.	 . 

The Proof is an immediate application of Theorem 3.12 I 

Let us remark that the solution u from the preceding theorem which does not 
satisfy the condition IVu 2 s has no sense from the physical point of view. Simi-
lar access to the study of subsonic flows was applied by FEISTAUER in [9-13] with 
the use of the stream function. 

Now let us go back to the transonic flow problem, when the density Q has the pro-
perties (1.19) —(1.23). Let us prove the second subsonic theorem useful in applications.
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Theorem 3.32: Let. {u,,}	be a minimizing sequence of the functional C or ip such 
that

	

s** < 2a02	in Q for all n = 0, 1, ...	 (3.33) 

Then u,, - u in V and u is the unique solution of the problem (2.9, a—h) in the set 
= {v E V : 1VV12	s' in Q} of strictly subsonic velocity potentials. 

Proof: First, let us assume that {u,,}, is a minimizing sequence of V. In view 
of Theorem 3.22, (u}; is.bounded. Hence, we can assume that u,, u (weakly), if 
n -* + 00 . By (3.23), 

S	

B(u,,, u,,, u,,	u) - B(u, u, u,, - u) 

= (f' u,, - u) ±(F,,, it,, - u) - B(u, u, u,,. - u) —*0	 (3.34) 

for n - ± 00, since M F,,( v • -* 0, {u,, - u},°0 is i bounded sequence and the mapping 
"v E V—* B('u, u, v)" is a continuous linearfunctional on V. Further, if We realize 
that the set S is closed and convex, which implies that is weakly closed, we con-
clude that u E S. 

The function Q satisfies the condition 

Q(s) ± 2 e'()	a > 0	V s  [0, s**].	 (3.35) 

This implies the existence of such c3 .> 0 that 

C3 11 u. - u112 
[n(Vu,, 2 ) Vu,, —.o(l Vu I 2 ) Vu] V(u,, - u) dx 

-	 =B(u,,,u,,,u,, —u)—B(u,u,u,, —u).	 (3.36) 

5Now, by using (3:34), we see that u,, -* it (strongly) in V, if n - + 00. From this. 
— (3.7) and (u,,) *0, if n -> too, we see that w('u,,) -> u. Since w (u ) is continuous 

.(see Lemma 3.21), we have u = w (u) , which means that u is a solution of the problem 
(2.9, a—b). 

If {u,,}, is a minimizing sequence of the functional C, then we can use the known 
results from the convex analysis (cf. e.g. [15] or [33]). Again, we can assume that 
u,,	it (weakly), if n -* -Fo0. By (3.35), 

-	DC(u, u - v)— DC(v, u— v) > c3 IJU - v11 2 ,	'u, v E ,	(3.37) 

With c3 > 0 independent of u, v. This implies that C is weakly lower semicontinuous 
in S and thus,	 . 

= inf C(n)	inf C(n). = lim C(u,,). 
nEG	nEV	fl-± 

If we use the mean value theorem, and the relation DC(u, u,, - u) = 0, then we get 

ollun_ull2 

/ u ± t(u,, - u), u,, - u ) - DC(u, u - u)] dl 

if n +00 and thus, u -> u (strongly).
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• Fially, if u 1 , u2 € S are two subsonic solutions -of the problem (2.9, a—b), then 
on the basis of the relation DC(u, h) = B(u, u, h) - f. h) and (3.37) we get the ine-
quality 

•	 c3 11U 1 — U2 112 < B(u 1 , U 1 , u 1 — u2 )	B(u0, U2 , U 1 — 2'2) = 0. 
Hence, u1 = u2 I 

4. Bifferantials of vi(u) and the existence of a solution to the trahsonic flow problem 
under a posteriori estimates on  minimizing sequence 

Theorem 4.1: The mapping "u € J —* w(u) € V", defined by (3.5), has the derivative 

Dw(, h) =	w(u + th)1 1=0	 (4.2) dt 

at every point u E V and in every direction h E V n W' (Q). The mapping "h — Dw 
X (u, h)" is linear /or each u € V and uniformly bounded with respect to u E V. For 
every h € V n W'(Q) "u —* Dw(u, h)" is- continuous mapping of V into V: Hence, 
Dw(w, •) is the Gdteaux differential of w(u). 

	

- Proof: For u € V and h € V n LV'°(Q) we- denote U1 = u + th, w 1	w(u1),
= (w — w0 )/t and w = w0 = w(u). It holds 

0 =	[B(u, w1 , v) — B(u0, w0 , v)]	 .	. 

=	
ffe(lu12) — ( jVu0 1 2 )j Vw1	

.	 . 

	

± .( I Vuoi 2 ) ( Vu 1 --- Vw0 )} Vv dx,	v € V.	-	,.	(4.3)
If we use the mean value theorem, then 

fo(jVul 2 )Vw1 . Vvdx	. . . 

= _2f ( o'(jVu1 , J 2) ( Vu1 . Vh) dt) (Vw 1 . Vv) dx.	 (4.4)

From this, for t — 0, we get 

f (jVuj 2 ) VDv(u, h) Vv dx .	 .	.	. 

—2 f• . .	. =	
e'(lVu12) (Vu . Vh) ( 7w Vv) dx, v € V.	 .	(4.5) 

In view of the assumption h € V n W'-(Q) and the properties of Q , the right-hand 
side in (4.) (considered as a function of v € V) defines a continuous linear functional 
F(u, w, h) on V. Hence, (4.5) which can be written in the form 

B(u, Dw(u, h), v) = (F(ü, w, h), v),	v E V,	--	 ,	(4.6) 
has a unique solution Dw(u, h) € V. From the continuous dependence of w on u, the 
continuity of F with respect to u, w, h and the results from [27: Ch. 3, §. 6] all remain-
ing assertions of Theorem 4.1 follow I	.	 - . •

'a 

0
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F	
I 

Remark 4.7: Similarly, supposing that Q'.' continuous in [0, +oo) and that the 
estimate "(s) (1 + ) I < c5 = const holds in [0, +oo). we can prove the existence 
of the second differential D2w(u, h, k) for u E V and h, k E V n W"°°(Q) and the 
relation (w = w(u)) 

I ( I Vu I 2 ) VD2w(u, h,k) . Vv dx	 . .	 -. 

—2 f Q 1 (I V I 2) ( Vu . Vk) (VDw(u, h) . Vv) dx 

—4 f "( I Vu I 2 ) ( Vu . Vh) (Vu . Vk) (Vw . Vv) dx 

_2f o "( I Vu I 2 ) ( Vh . Vk) (Vw . Vv) dx 

—2f o'(I Vu2 ) ( Vu . Vh).(V.Dw(u, k) . Vv) dx I	 (4.8) 

Lemma 4.9: T?ie functional ip . is differentiable in the space V with respect to any 
directionh E V n W'(Q). The dif/erential D?p(u, h) has the form 

Dip(u, h) =f (I Vu I 2) Vu . Vh dx 

-f qh (is _f Q(lVw(u)12) VW(U) . VDw(u, h) dx 

	

+ f gDw(u, h) ds,	it .E V, h E V n W'°°(Q)..	 (4.10) 
SQ. 

The Proof follows from the definition (2.13) 'of ' V and from Lemma 3l I 

- The following theorem is devoted to the uniqeness of the solution to the problem 
•	(2.9, a—b). 

Theorem 4.11: Let the condition  

f g{i)w(u, u - v) - J)w(v, u - v)j ds	0	 (4.12). 

hold for all u, v E .V satisfying(-1.24), i.e. 

IVuj 2 , IVvI 2	s i < 
6a2	 (4.13) 

-	.F	 S. 

Then. the problem (2.9, ac—b) ha.sat most one solution in the class of velocity pàteztials 
u E V . satisfying (4.13). 

Proof: Let u, v be two such solutions. Then p(u) = (v) = inf	) - 0 and thus,
fEV • in view of Lemma 4.9,	 .	 - 

0=Dy(u,u—.v)	 . 

-	
e(IVwl2) Vu . V(u - v) dx ._-f g(u - v) ds	 .	. 

— f e(I 17w (u)1 2 ) Vw(u) . VDw(u,u - v) dx + f gDw(u, u - v) ds 
0	 . .	 .	50 

F	 -
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and
ODp(),u_v)f(jvvI2)vv.v(u_v)dx_fg(u_v)cis 

-f (jVw(v)) Vw(v) . VDw(v, u — v) dx ±f gDw(v, u — v)ds. (4.15) 
D	 OD 

The functions u, v as the solutions of the problem (2.9, a 7 b)satisfy the relations 
(a) f.(IVui2)vu.v(u_v)dx=fg(u_v) cis, . 

OD 

(b) fo(IVvp2)VV. V(u — v) dx=fg(u	v) cis.	 0 

If we subtract (4.15) from (4.14) and take into accouiit (4.5), (4.12), (4.16, a—b) and 
the fact that u = w(u), v = w(v), we get	 . 

0 = f g[Dw(u, u — v) — Dw(v, u — v)] cis 

o(JVu 2 ) Vu . VDw(u, u — v)] dx -	 .\ 

H-.f (lVvI2) VV• VD5(v, u.— v)] dx	 . 

2f '(J Vu ! 2 ) IVuI 2 (Vu . V(u — v)) dx 

-	— 2f o'(1Vv12) J.VV12 (Vv . V(u — v)) dx.	 (4.17) 

Now, let us multiply (4.17) by 2/2 <.0 and add the difference (4.16, a)—(4.16, b): 

0	{L(IVul2) + 2'(I VuJ 2) IVuI 2] Vu 

- [(I Vv 1 2 ) + )-'(IYv i 2 ) IVvI 2] Vv}. V(u — v) dx 

[h(Vu 2)Vu — h(jVv1 2) Vv] . V(u - v) dx,	 (4.18)

where h(s) = a(s) + 2s ' (s); We have  
h(s) + 2sh'(s) = a(s) + (32 + 2) so'(s) -F 22s2o"(s) 

= o() + 2s'(s) — 2[-3sn'(s) — 22e"(s)J 
After some calculation we find out that —3s'(s) - 2S2011(S)^ o 1 s for 's E [0, s] 
with a>0. For O :!E^	 2a 

s^s**<	°2 we have n(s)'+2so'(s)>a>0 and -	.x+1 
thus, h(s) + 2sh'(s) ^ a . Ifs	s and 2 is close to —o,.thcn h(s) + 2sh'(s)	> 0.
Hence, we see that there exist 2 <0 and > 0 such that 

h(s) + 2sh'(s)	> 0	V 5 E [0, s i] .	-	 (4.19)
Now we proceed similarly, as in Remark 3.28. Fort E [0, 11, , E it,1, 12, I1 2 ^ 

and = - we put'  
g(t) —.	h(I + t)1j2) ( '+ t' -  
= [o(I ± t i11 2 ) + 1'(I + t 2 )	+ t'q] ( + h1) .1i. 

21 Auaiysis Bd. 4, Heft 4 (1985)	 0
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Then, in view, of. (4.19) and the evident inequality h	we have 

g'(t) =. h( ± 1121 2 ) I1 2 + 2h'(I + t, I 2 ) [	± t)	]2 ^ 

= min 	) > 0 
and

g(l) - g(0) =fg'(t)dt	 (4.20) 

Fiiially, if we ddtiote'	Vv(x), =.Vu(x) (for almost every x E Q), then by (4.20) 
we easily find out that	 . 

f [h(lVuI 2 ) Vu - h(IVvI2).VvI . V— v)dx 

>
	f V(- v)1 2 dx	lu - v11 2 .	.	 (4.21) 

In virtue of the inequality (4.18), IIu _6v11 2 =0 which yields u = v I 

Theorem 4.11 indicates that the behaviour of the term  gDw(u, h) ds will probably 

play an important role in the study of the transonic , flow problem and it will be 
necessary,to control this term in a suitable way. Let us consider a minimizing sequence 
{u,}	of' the functional. Then  

.	liin - sup IDv(u, h)l = 0.
 

'n—+oo IIhIIvflW,.()i  

From this, Lemma 4.9, an4 the relation  

	

Vu,- Vhdx — fghds ,- 0 for	+00	 . . . 

(which follows from Theorem 3-.22), we can see that if. h € V n W'(-Q) and, 

- IlhIlvnwi.(s?)	thdn	 . 

0= lim'D(u,L ,h)	 .  
n—+00  

= -Jim [-f ( I Vw (u ) 1 2 ) Vw(u) . VDw(u, h) dx+ f gDw(u, h) d.s 
tj  

S	 .	

'(4.22) 

Since u,, — w(u) . — 0 for n — +oo (again by Theorem 3.22), 'w(u) can be approxi- 
mated by u for large n. This, (4.5) (where we put u = v = u) and (4.22) imply that 

•	the term f gDw(u, h) ds can be approximated by 

•	 '	 _2f o'(iVul2) I VU. l2 Vu- hdx. 

Therefore, in the following we shall use the condition (1.17) to 'control, the term' 

f qDw(u h) de,. It is possible to show that this condition has a relation to upwinding 

the density (used e.g. in [2, 5, 7]).  
Now we shall prove the theorem on the solvability of the tranonic flow problem 

The entropy condition (1.17) plays the fundamental role in the proof because of its 

S	

compactification properties.	 S	 •	 .	S
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r	- Theorem 4.23 (1st fundamental): Let fu n Ill be a minimizing sequence of the func-
tional tp, satisfying a posteriori the condition (4.13) and the entropy condition (1.17) 
with some M E R. 1 . Let u,, — u (weakly) in V, if n	+oo Then ii,, - u (strongly) in 
V, if n —> +00 and u is a solution of the problem (2.9,a—b), satisfying the condition 
(4.13). 

Proof: Let us consider a sequence {G,j	of functionals-defined on V: 

(G., h) = f e '( 1 Vu.	 VU,,J 2 VU,, VhdX,	.h E V.	 (4.24) 
Q 

Without loss of generality we can assume that'G,,. G (wakly). if n	–)-00. Let us
denote the restriction of (G,,, h) or (G, h) to W0 12 (Q) by:G,,(h) orG(h), respectively, 
and put	 -. 

H(h)=Mfhdx_G,,(h),	H(h)=Mfhdx—G(h).	 (4.25) 

	

Q	.,	 0 

From the 6ondition (1.17) it follows thatH,,(h) ^! 0, 11(h) > 0 for h	0. If we use
the result of MtJRAT [26], we get H,, —* H in (W01 P(Q))* for each p > 2. Hence, 
On — 0 in (W01.P(Q))*. 

Now, let h E ' V n LV(Q). Following AGMON, DoudLls and NIRENERG [1], we 
•	can write

h h1 + h2, . - (4.26) 
where Ah' = 0 and h2 E W0 1 ' 2(Q). (4.26) is an orthogonal decomposition of the space 
W1 ' 2 (Q) into harmonic functions and functions with zero traces. By MEYERS [25]; 
there exists Pi > 2 such that the mapping "h — hi " (i = 1, 2)is continuous from 
W' P'(Q) into W' .P.(Q). Further, s Wince the , imbedding	'(a92) c W ' P"(Q) is 
compact, we can assert that the set 91 = {h' : IIhHvnw l .00 ( Q )	1 ) is compact in W'4"(Q).
From this and the weak convergence of 0,, to 0 it follows that 

Jim	up	J(G,, - 0, h = 0	-	 -	 '(4.27) 
n++oo Jhj .	.."	.	.	 - 

(For proving this, we can use a finite e-network in the set L) Moreover, from G - 0 

	

• in ( W0 1 P(Q))* and the properties of. the mapping "h	h2 " it follOws that also 

•	 lirn	sup	(G,, - 0; h2)I = 0. 
1 -++OO 11 h Il VflW l.c,Q(Q) 1	 . 

•	This, (4.26) and (4.27) imply 'U	0 in [V n W'(Q)]*. •	Similarly as in the proof 'of Theorem 4.11, we put h(s) = a(s) + 2s'(s) in [o Ia.'
 

and choose close to — 00 so that the condition (4.19) is valid. Then, by (4.24) and 
Theorem 3.22 foy h,, = u — i,,,	.	'	.	• 

h(7u,, 2 ) Vu,, . Vh,,dx	' . •	•	 '	
0	 •	 S 

Vu,, 2 ) Vu,, Vh,, dx + )f (I Vu,,I ) 1 VU.12 Vu,, Vh dx 
•	

=f gh,, ds ± (Fh,,) +1 2(0,,, h).	 •' ,	 •	 (4.28) 

21*
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From h	0 (weakly) and the properties of F and G we get that the expression in
(4.28) tends to zero, if n --* +oo. if we subtract the expression 

fh(!V 2)Vu . Vhdx	0, if 'it	+co) 

from (4.28) and use (4.21), where v:= u, and u - v:= It,,, then,-we get 

IIh 11 2 	f gh,, ds ±(F,,, h,,) +	h,,) -f h(IVu2) VU• Vh,, dx	0. 
OD 

-	-.	.	.....	 (4.29) 

This yields It,, 0 (if n +oc). It means that.u,, -^.0 (strongly) and, in view of 
Thorem 3.22 and the continuity of the n1appinw(u), we have u = w(u). Hence, 
u is a solution of the problem (2.9,.a—b) I 

In the fol1owig theorem we shall show that also the entropy condition (1.18), 
used e.g. in [3, 17, 18, 32], has similar compactification properties as (1.17). 

Theorem 4.30 (2nd fundamental): Let us assume thzt o satisfies the conditions 
(.i.19)—(1.23) and	 . 

-	< F°°	s E [0, +c)')	 (4.31) 

with constants a, c > 0 and let us consider the boundary coidition (2.4). Let {u,,};_° 
he ,a minimizing sequence o/.the junctional p, satisfying a posteriori the condition (1.18), 

- and let u,,	u (weakly) in V, if n -^ -j-oo. Then u,, --- u (strongly) in V, it is a .solu-
tion of the problem (2.9, a—b) and IIu,,I II I . p (Q) II u I IV 1, P . (Q)	with some P2 > 2. and 
. >0. 

Proof: By Theorem 3.22,	 .. 

f00Vu,,2) Vu,, . Vv dx	f qv ds - (F,,.I), v € V,
o 

where F,, - 0 in V". From this we get	 .. 

CV f Vu,, Vv dx = f (a - 9(jVu,,12)) Vu,,. Vv dx	 - 
0	 0

qv ds -i-. (F,,. v),	v E V. '	 (4.32) 

Let u,,' E V be a solution of the problem	- 

a f Vu,, 1 . Vv dx = f (a - 	Vu,, 2 ) Vu,, Vv (lx 

•	+f gv ds	V v E J'	 (4.33) 
OQ 

and u,, 2 E V be asolution of the problem 

afVu,,2. Vvdx=(F,,,v)	V v  V.	 (4.34) 

1.) This condition is satisfied e.g., if we extend o to [0. -F- oo] in such a way that a(s) = const 
for large s (cf. Section 1).
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Then u =u,, 1	7t,, 2 . It is evident that u,, 2 - 0-in V (Since-F,, — 0 in V*). Hence, 
un-.--,-u..	 - 

Now, by [25] 

-	IUnl1yi,p,	= const	V n = 0, 1 .:.	 (4.35) 

with home P2 > 2 and b > 0. Sinceu,, 1	u, also II U)wIp, Q) 15-̂ 6. If we define 0,, and
U E V by the relations 

(0,,. h)	f Vu,,. Vhdx.'	h 	V	 -(4.36) 

and	 . 
(G : , h) 	f Vu . Vhdx,.	h E

.
 F,	 (4.37) 

0  

respectively, then U,, -- U. In the following we shall proceed similarly as in the proof 
of Thedrem 4.23: First, if we realize that all u,, satisfy the condition (1.18): then we 
see that in view of [26], 0,, —* C in .(W01.P(Q))* for all p > 2: Further, let ever y' 
h E V nW'-P (Q) be decomposed in the form (4.26). Using again Meyers' results 
from [251 and considering ' p, from the proof of Theorem 4.23 such that 2 < p < p2, 

then in view of the compact imbedding of W ' '(aQ) into IV ' Th '(8Q), we find 
out that the Set W = {h' :IhIl VnW'1'50)	I [is compact in W'P(Q) . Now, - b y the
same arguments as in the proof of Theorem 4.23, we conclude that U,, - U in 
[Vn Wl.P(Q)]*. 

Let.h,, = u,,- — u.- H, ence, ' h, -- 0 (weakl y ). if we use (4.32), (4.33),•(4.36), (4.37), 
then	 - 

-.	 C.. HhnJI 2 =af l Vh,,1 2 dx	 . 

•	:	= CV  Vu,,.. Vh,, dx a  Vu . Vh dx + (F,,, h,,)	 . 

and,thus. u,, 1 --*?t in V. Hence, u,, — u äiid u is a.solution of the problem (2.9, a—b) I 

5. Regularity of the minimizing sequence	. 

- In the light of Theorems 4.23 and 4.30 we come to anatural question "How regular 
the minimizing sequence of the functional p can be found?" in this section we shall 
assume that Q is smooth- and consider the Neumann condition (2.4) on Q. 

Theorem 5.1 Let the conditions (1.19)—(1.23) and (4.31) he satisfied and let 
{u,,}; be a m?imizing sequence of the functional V. Then, for the decomposition. u, 

- = u, + u,, 2 from the proof of Theorem 4.30, it holds  

11u,, 2 11 —* 0	(in V),	 ..	 (5.2) 

IUn'I!u".P Q	c(p) < +00	Vp< +00, n = 0, 1, ...	 - (5.3) 

and{u,,' }	is also a minimizing sequence.	•

ri
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Proof: The assertion (5.2) has been already proved in Theorem 4.30. With respect 
to (4.33), the regularity of t9 Q and (4.35),.we get (5.3) on the basis of W1P(Q) — esti 
mates of thd solution to (4.33) (cf. [1]). 

It remains to show that {u,, 1} is also a minimizing sequence of ip. In virtue of 
the relation y(u) = C(u) — C(w(u)) and the Lipschitz -continuityof C, it is sufficient 
to prove that w(u,,) - w(v,) ->0 in- V, if n —. +00. Let us put w,, = w(u,,), w,,' 
= w(u,,'). With respect to (3.5) and (3.18) we have 

B(u,,, W. — wa ', v)	 . .-

=f o(PVu,, 2 ) (Vw,, — Vw,,) . Vv dx 

=f [o(l Vu ,, 1 1 2•) — o(IVu,,I°)] Vw,,'. Vv dx,	v E V.	 (5.4) 

If we put V := Wn — w,,', use (3.2) and apply the Cauchy. inequality to the right.-hand 
side, then	 - 

C2 11w,, — Wflhl	.	 .	 . 

1/2 

{i [(IVu,,'I2) — o(JVu,,12)]° Vw,,'I° dx} . lw,, — w,,'I I .	 (5.5) 

Hence, it will do to prove that 

I [o(I Vu ,, 1 1 2) —. (lVul2)]2 IVW.112 dx — 0,	 (5.6) 

ifn+oo.	 .	.	-	.,.	0	 -	 0 

We can assume , that Vu,, 2(x) 0 almost everywhere in Q. Using again [25], we get 
733 > 2 such that'-	 .,. . 

- jw(u), > < e.	V u E V.	 (5.7) 

Now, let us choose an arbitrary e > 0. Let Tl Q be a measurable set. By the 
- Holder inequality and.(5.7) we get.	. 

(f IVw'l° dx)112 :!E^ It" (9)1) 2 Ps( f IVw,, h I P' dx\P.	c*fz,,(9))2P.	(5.8) 

/ 
(We denote by it,, the n-dimensional Lebesque measure in R,,.) We choose	Q 

With ,,(93l) <()	(o .i the constant from (1.21)) in such a way that in 

virtue of Jegorov's theorem, V'i,, 2(x) —. 0 uniformly in Q — 931. If ö > 0, let no be 
such that Vu,, 2(x)j < 6 in Q — 931 for alln n0 . Since e is Lipschitz-continuous in 
[0, H-nc) and u, = u,,' ± u,,°, we get (by using the HOlder inequà1iy) 

0	 .	

. 

I(Q — 931) := - f [( I Vu ,
1 1 2 ) — (lytnI2)]2 Iwn 1 I 2 dx1	 .	

0 

0	

o	 — 

.	

(	 .	 .	
11/2 

const . . f ( I Vu,, 2 1 2 .+ 2Vu,, lVu,, 2 1) 2 JVW,,'1 2 dx

(	.	 )i/2 
0	 const .	f (2 ± 25 !Vu 1 l)2 Ivw,,' 2 dx 

-	 0	 5 

0	
S
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;5 const .{62 (f.)vwI2dx)1/2  

	

•	 p,-2	 I 
2p,	0 

+ o(f Vu'	dx) -. (i }Vw'J P ' dx) 

const f62 IIw,II + ô IIu 'II	 jjw'ft	. 
W 

Now, if we use Lemma 3.21, (5.3) and (5.7), we see that there exists a constant c 
such that	 - 

I(Q - 9)) ;;^; c**(52 + 6).	 .	(5.9) 

s If we choose 6 > 0 such that c**(62 ± 6) < e/2, then in view of (5.8) and (5.9), 

S	 .	 1/2 

	

[(IVu112)	e(IVun12)12 JVW,112 dx}	< 

for it	n0 , which concludes the proof I 
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