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On the Solvability of Transonic Potential Flow Problems

’ .

M. FEISTAI?ER'and J. NE6A$ .

. ’

To Prof. Dr. Herbert Beckert on the occasion of his 65th birthday .

Wir betrachten Poéentialstré‘)mungen im schallnahen Bereich. Die Gleichung fur das Geschwin-

digkeitspotential, die eine wirbelfreic, ideale Strdmung beschreibt, ist nichtlinear, von zweiter

Ordnung und vom gemischten Typ. Bisher ist'die Existenz von Lésungen noch nicht bewiesen

worden, es gibt nur eine Reihe von numerischen Methoden zur Beréchnung solcher Uber-
: schullsbromungen ’ .

‘Mit Hilfe deés Sel“mtcnverfdhrcns und einem bequemen Prinzip der optimalen Steuerung
“konstruieren wir hier ein Funktional y, dessen Minimierung zur Losung des Ausgangsproblems
dquivalent ist. Da Schocks auftreten, d. h. Spriinge der Geschwindigkeit, der Dichte und des
Drucks, betrachten-wir schwache Losungen im Raum W1%(2). Vom physikalischen Standpunkt
aus ist die Entroplcbedmvung entlang des Schocks sehr wichtig. Es gibt verschiedene! \loghch-
keiten, um diese Bedingung numerisch zu beriicksichtigen. Wir betrachten hier eine verein-
fachte Form dieser Bedmgung, die von Glowinski, Pironneau und anderen benutzt wurde und
schlagen gleichzeitig eine kompliziertere Formulierung vor, die sehr natiirlich ist..

Wir- zeigen, daB diese Bedingungen die zuniichst fehlende Kompaktheit kompensxcrcn und
kénnen so die Existenz der Losung im folgenden ‘Sinn beweisen: Wenn die Minimalfolge fiir,
das Funktional ¢ der Entropiebedingung geniigt und die Geschwindigkeit beschriinkt ist, wenn
ferner ‘diese Folge schwach gegen die Funktion » konvergiert, dann liegt starke Konvergenz
vor, und u ist eine Losung des Problems im Uberschallbereich.

\Diesc Arbeit enthilt ferner einige Rcsultnte beziiglich des Unterschallbereichs und der
Regula.ntd,t der; \Imlma,lfolge

‘
N

CTaTbAl MOCBAIICHA W3YuEHWIO Pa3PEMOCTH sajiasu OI\O103ByKOBOI‘O MOTCHLHANBHOI'O-

TeueHHA. Y papHeHue Ge3BHXPEBOIO, HEBABKOTO, ' OKONO3IBYKOBOLO Teuenus HEJMHEIiHO,
BTOPOrO MOPALKA ¥ CMeHIaHHOro Tina. CyIICCTBYET DS . UHCIEHHHX METOLOB OCHOBAHHHIX
HA MeTOHAX KOHEYHBIX Pa3HOCTell I KOHEUHBIX JJIEMCHTOB IS PACYETA OKOJIO3BYKOBBIX
Teuennit. Ho 7o cux mop He JOKA3aHO CyUeCTBOBAHME PelUeHIts 9TOl -3anayu. \

’ 3;10(‘5 BOCIONL3YA MeTod Hauanoba 1 yA00HHI MPUHUMI ONTMMAJBHOrO YNpPaBIEHIT,
MBI KOHCTPYHPYeM by HKLUHOHAS ¥, MHIIMMHSALNA KOTOPOTO DKBUBATIEHTHA PELICHHIO 3374 M
Tax kaKk pa3pHBhLI CKOPOCTH, JTABIEHHA W TUIOTHOCTI! BCTPCHAITCH B OKONOBBYKOBHIX TEYE-
HHAX, MBI paccMarpusaem cladble pemenusa uz npocrpanctsa Wh3Q2). C gusuyeckoti TOYKH
3peHNA OUCHh BAMHO YCIOBUC DHTPOMMM Ha paspeiBe. CYLICCTHYIOT Pa3HbIE MPHEMBL H3Y-
~YeHUsT DTOPO YCIIOBHMSA B UHCICHHKX METONAX. 31eCh MBI ICMOJIb3YeM npocTylo opmy I'nositk-
ckoro, [TMpoHHO M KPYFUX i KPOME TOrO BBOMMM HOBYIO €CTeCTBEHHYI, HO Gomee caomHylo
(bop\iynupoaxy 3TOI0 YCJIOBHA. . .

B cTatbe noxasano, YTO HTH YCJIOBIA KOMIEHCHPYIOT OTC\TCTnleLuyio KOMIIAKTHOCTB I
NO3BONAIT OKAIATEH CYIIECTROBAHNE PElICHNA B CACilyOWeN cMbicile: Ecin munnmusnpyio-
Was MOCAEe0BATENBbHOCTL (HYHKUMONASIA 3 BHIMOJHACT (anocTepHopu) )"c.xomm 9HTPOMNIH
1 OrpanHdeHHOll CKOPOCTH I CXONMTCA ciiabo K GynKIMI «, TO ona cxonu'rcn K 1t CHIBHO I
ABJIACTCA pelleHreM 3amaun. :

Kpose Toro B cTaTbe NOKA3AIbI uon«ompme pPe3yibTaTh KdCleUUlCCﬂ NO3BYHKOBBIX 'reqe-
HI M perynnpuocm MUHUMHBHPYIOWEH TOCHeNI0BATENbHOCTI.

The paper is devoted to the study of the solva.bnllt,y of transonic potential flow: problems. The
vclocn;y potentml equation governing irrotational non-viscous transonic flows is nonlinaer,
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sccond order and of mixed type. There-cxist a series of numerical methods for the solution of
the transonic flows. However, the existence of the solution has not yet been proved.
Here, with the use of the secant-modulus method and a convenient optimal control principle,

-we construct a functional y, whose minimization is equivalent to the solution of the problem.
Since the so-called shocks, represented by jumps in the velocity, density and pressure, occur
in the flow field, we consider weak solutions from the space W'2(2). From the physical point
“of view the entropy condition across the shock is very important. There exist various appro-
aches how to embody this condition into the numerical method. Here we consider its simplified
_ version by Glowinski, Pironneau etc. .1nd besndcs, we propose its new natural, more complex
formulation.

We show that these condltlons introduce the missing compactness into the problem and
. allow to prove the existence of the solution in the following sense: If the minimizing sequence
of the functional y satisfies (a posteriori) the entropy and bounded velocity conditions and
converges weakly to a function o then it converges strongly to u and u is a solution of the
transonic flow problem.

The paper contains also some results conccmmg subsomc flows and tht, regularity of the
mlmmmng sequence.

Introduction , \

The study of transonic flows is the centre of general attention for many specialists.
It has a great importance in the design of high speed aircrafts and highly efficient
turbines, compressérs-and other blade machines with large output.

There exist several mathematical models for the mvcst1gat10n of transonic flows.
Very oftén we meet the model of an irrotational, steady, non-viscous flow, since it is
represented by relatively simple equations and gives good results for subsonic strcam
fields via velocity potential or strecam function formulations (cf. e. g. [10, 12, 317)..

In contrast to subsonic irrotational non-viscous flows, where the solvablhty of‘

boundary value problems for velocity potential (or stream function) can be proved by
the monotone operator thedry, the mathematical study of transonic flow problems
is very difficult. The potcntlal equation is nonlinear and of mixed type, since it is

elliptic in a subsonic reglon and hvpcrbollo in a supersomc region. The boundary

between these regions is not known in advance and is obtamed togcthcr with the
sought solution. Moreover, passing across this boundary is not continuous in general,
but it is connected with jumps (called shocks or shock waves)in the velocnty, density
and pressure. Hence, the concept of a classical solution has no sense and it is neces-
sary to consider generalized weak solutions. If we introduce a weak formulation simi-
larly as in elliptic .problems, then the corresponding -operator is not monotone and
has no compactness properties which would allow the application of the monotone
and pscudomonotone operator theory or some compactness results for proving the
solvability. Therefore, up to now, there exist no results concerning the exlstence
or uniqueness of the solution to the transonic potential flow problcms

In contrast to the lack of theoretical results, we:can meet a-lot of numcrical

methods for modelling transonic two- and also three-dimensional strecam fields past

airfoils, cascades of profnleq or blades and through channels. Most of these numerical
approaches arc based on finite-difference methods combined with a successive line

over relaxation (SLOR). They are connected with the names CoLk, MURMAN, GARA- -

BEDIAN, KoRN, JaMEsoN, KozeL, PoLASEx and others ([6, 16, 20, 21, 23, 24] and the
bibliographies therein). Some authors use multigrid techniques for improving the
convergence (see c.g. [2,22]). Remarkable results were obtained by GLOWINSKI,
PiroxNEAU, BRrISTEAU, PERIAUX, PERRIER and PoIr1ER ([3, 4, 17—19, 32] and
others) who use the finite clement method, least squares and conjugate gradients.
Other finite element technigues can be found e.g. in [5, 7].
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' Numerical results of GLOWINSKI, PIRONNEAU etc. show that the solutions of the
discrete potential transonic flow problems possess nonuniqueness of the solution and
~ that the nonphysical solutions with expansion shocks occur. -These solutions are

usually very attractive for iterative processes (cf. e.g. [18, 32]). Similar experience
with the nonphysical solutions was obtained by FEISTAUER and OrSuLiK (8, 30]. In
‘order to avoid the solutions with nonphysical shocks, we must assume that the velo- -
city decreases across the shock (entropy condition). This condition is embodied into
the numerical methods by various ways. In [16, 20, 21, 23, 24] the upwind discreti-
zation 'used in the supersonic region causes an artificial viscosity which depresses the
nonphysical shocks. In recent papers [2, 5, 7] an artificial viscosity is introduced by
upwinding the density. In [3, 4, 17—19, 32] the entropy condition is considered as -
a constraint in an optimal control problem and is handled via penalization, regulari- -
zation, or other optimalization techniques. - . v

Here, in this paper, we try to answer the fundamental question concerning the
solvability of the transonic flow problems, formulated for the velocity potential.
With the use of the secant modulus methods known also as Katchanov’s method,
popular in elasticity, we construct a suitable functional whose minimization is cqui-
valent to the solution of the boundary value problem considered. Since this functional
" is nonconvex, without any compactness properties,. it is.impossible to apply some
known convex analysis results for proving the convergence of a minimizing sequence
to a solution. However, if we assume a posteriori that the elements of this sequence °
satisfy a convenient entropy condition and some regularity assumptions, then we build
the missing compactness into the problem and prove the convergence of this
sequence to the solution of the transonic flow problem.

This_process is constructive. It can be discretized by the finite element method and
used as a basis of & new method for the numerical simulation of the transonic flows..
This will be the subject-matter of forthcomming papers. '

.

1. Fundamental conce‘pts and equations
Lo :

Let us consider an irrotational, steady, adiabatic and isentropic flow of a non-viscous,
compressible fluid in a bounded domain Q<< R, (n =2 or n=3). We assume. that
the boundary 82 of Q is Lipschitz-continuous and £ is simply connected. 1t means
that every two piecewise' differeritiable curves connecting in 2 arbitrary points z,
y € 2 are mutually transformable in £ by a homotopy. The closure of 2 is denoted
by Q. ‘ .

The flow considered is described by the following equations:

div (ov) = 0, ' . (1.1)

RN 'F ‘ 1 éfp ) o ' o
Y e— = ———, L= 1,..,m, ' 1.2
p = pe) = c*, : : ' . (1.3)
. rotv=0, - (1
‘considered in 2. We use the notation: "\{' — velocity vector with the components
v, ..., v, in Cartesian coordinates z,, ..., z, introduced in R,, o — density, p —
"pressure. ¢ > 0, # > | are given constants. We assume that\v;; p, ¢ are functions
(dependent on a = (z,, ..., %,) € £2) continuously differentiable in 2. In following

20*
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'

considerations we shall also admit discontinuities of t,hesc -quantities. Let us remark

(  that (1.1) is the continuity equation, (1.2) are the Euler equatzons of motion, (1.3) is
> the condition of the adiabatic, isentropic process and (1. 4) represents the conduwn of
the irrotational flow.

Let us introduce the local speed of sound a by the relatnon
by ‘ S (1.5)-
and the so-called pressure function
e . . : . . o
p _$(9)=f”_(”dr. : L L (1.6)
. T .. . °

Qo

We denote by gy, 2y, o the values of the density, pressure and specd of sound re-
- spectively, corresponding to the velocity v = 0. It is easy to see that

grad <7: — grad p. . A :(1.’7)
0 : . :
Frqm this, the relation

! e v . ) o
| ) tgvi%—_—\?grad]v[ — vVvXroty _ | , ‘ : ‘(1.8)

_and (1.4) the identity grad (5’ -+ é IVP) == 0 follows, which-implies . N

; i - . o . S

PG vE=0. : - 1

If we use (1.3),4 (L.5), (1.6) and (1.9), we derive the relation between the density and-
. velocity of the form :

: z—1 x—1, ) - . , :
2 = 0o (1 ~ S IVI?) .. : . - (1.10)
’ c 0 : . . . . ,

- On the basis of (1.4) and the asbumptioris concerning the domain 2 we can intro-
duce the velocity potential »: 2 — R, such that grad u=Vu=v. By substltutmg
into (1 1) we get the equation for the potentml u: .

0 ou C ' .
2 = 0. O ' 1
| :>1 s [ (IVul?) 394]’ 0 (1.11)
. From (1.10) we see that the density is defined for ‘
v ! ' T A . .
Vs 22 (112)
; . x — 1 ) ' .
If 1 : .
‘ i 2 2a 2 M ) D
~|v\|~ < - +°-1 in <9, . N ' , (1.13) -
then |v| < a in Ql and we say that the flow is subsonic in £,. On the other hand, if - «
2 ) A‘ . - . N ) . .
VR > 2a°1 “in Q,=Q, . (1.14)
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AN

then |v| > @ in ©, and the flow s supersonic in Q,. The equation (1.11) is elliptic or
hyperbolic in the subsonic or supersonic region, respectlvely

It is known, that in a purely subsonic flow, where the equation (1.11) is elliptic, the
velocity potent,lal is continuously differentiable. However, if we consider a transonic
flow, then the domain Q can be divided into a subsonic region 2, and a supersonic

" region £,. The boundary between 2, and 2, contains usually shocks with jumps in.

v,.p, 0. It means that the vclocxty potentlal u is no more contmuously differentiable
in Q. . :
Across the shock we consider Pr(mdtl s condztwns

|- o
(a) | =& . -
. g ‘ 115y
(ORI aqvay 227,

where — or —i—-denotes the quantities in front of the shockjor behind the shock;
respectively. By 8/t and 8/on we denote the derivative with respect to the tangentlal
and normal directions to the shock, respectlvely Very 1mportant is the entropy con-

’ dztwn across the shock

-~

vI= > v | R . (1)

(thc velocity must decrease) In this paper .we shall consider the entropy condltlon
formulated with the use of the velocity potential in the form

- [ (V) [Vuf? Vu - Vhde < M [ hda ’
e o 2 Ca (1.17)
VheDR), hz0 - . C0

" (natural form) and also

—fVu~Vhdx§Mfkdx } -
@ A : o (1.18)
VheDR), =0 I :

(simplified form) We denote by D(RQ) the set of all functlons from C’°°(Q) with com-
pact supports in 2. M € R, is a convenient constant. The condition (1.18) was used -
e.g. in (3, 18, 32]. Its advantage is linearity. ' '

‘Let us remark that in a real flow the transition across the shock is connected with

" the increase of the entropy and with the rise of the vorticity. It means that our model

of the irrotational, isentropic flows can be applied, if we confine ourselves to stream
fields with the Mach number M = |vj/a < 1.6, ‘where the so-called weak shocks
occur only. Then the changes'in the entropy and the producmon of the vorticity on.

" thé shocks are negligible.

This is important for the depcndencc of the density on the velocity. In the follow-

"ing we shall assume that this dependencc is given by a function o with the following . .

properties:.

o and o’ are continuous in [0, +oo) ‘ ,' . (‘1.19)‘

1

21\ . ) R E
“o(s) = oo |1 — 2 26) 7 for sé [0, s*]- . : (1.20)
= - 2a ). -

.

’
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with s* € ( 23_021 "2?21)'(3*. is close .t,o " ?21)' and
.0<%§d@§%<+w, T ' (1.21)
e+l S, . 2
0’'(s) =0 (fundamental condition) ’ . kl.23)

for all s € [0, 4 00). poo, 0o and ¢, are constants.,
The exnstence of such o is evident. It can be obtained e¢:.g. by extending
1 2
[0 - ( 1 “to [0, +oo) by a positive constant Ooo =p (2 ( s* + o I))
7y % —
and then, by a sultabl_e smoothlng in the interval |s*, 2" i s* is close enough
2a,? - ' x*— '

to 01, then for [v|2 € [0, s*] the corresponding Mach number varies from 0
% —

to a value M > > 1.6. Hence, the modification of the function ¢ in a - neighbourhood

2
of the pomt i and the extension of e to [0 +0o0) is not sngmflca-nt for the .

validity of our mode] from ‘the physical pomb of view.
In the following, some considerations will ‘be restricted to t,he stream fields with
the velocity satisfying the condition

. Bag? .
/12 < . 1.2
MPEa < (1.24)
If % = 1.4 (the flow of the air), then (1. 24) reprcbents the restriction to flow flelds
with M € [0, 2.23).

2. Formulation of the boundary value problem
Since 3.0 is LlpSC]llt? continuous, we cén define the (n — 1)-dimensional Lebesgue i
measure #, , ‘on 9Q. Let aQ = 1, u Iy u SuI, where I'; and S are open sets in 02
and #n-1(I) == 0. We shall consider the wvelocity potential equation

M]—oﬁnsz S @2.1).
oz

i

o

z ai[ o(vur?)

i=1

(with the functlon 0 that has the properties (1. 19)—(1 2&)) and the boundarJ condz-
tions

u=0 on I, - ' (22)
g([Vulz} ;_317:. =g on Sul),,. » ’ ' (2 3)

If g =0o0n.S and g < 0 on I}, then we get the situation correspondmg to the flow
in a channel whose 1mpermeable walls form the set S and are parallel in a neigh-
bourhood of the outlet I';, which is normal to S. I, denotes the inlet. Usually, we
assume that u,_,(I}) > 0. Sometimes we also admit, the poss1b1hty (1) = 0 and
then we consider the boundary condition

(V) 2 — g on- 0. _— @.4)

- /
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In this case Wwe assume th'at
fgds=0. ' : (2.5)
22 o ) - '

Further, if the shocks occur in the stream field, then we assume that the conditions
(1.15, a—b) are satisfied. (The cntropy condition will be considered later.)

In order to introduce a weak formulation of this boundary value problem, we
define the space B

V = {b € Wi (2):v =0, on I, in the sense of traces}, (2.6)

if wasy (1Y) > 0 and the conditions (2.2) and (2.3) are considered, and

V= {v € WrxQ): [vde = O}, , o | (2~7;)
. R .

if ua_y(I}) = 0 and we use the condition (2.4). W,'(f2) is the well-known Sobolev ‘
space. (For the definitions of all spaces used, see e.g. the-books of NE¢as [27, 28]). We
assume, that g € L®(Ipu S) (org € L*(22)). In both cases (2.6) and (2.7), the space V
can be equipped with the norm , .

ol = ( f 19w ey | . @8
Q : . '

We say that u is a weak solution of the velocity potential problem, if ~ .

(@ weV, DT -
b  Jo(VuP) Vu-Vode = [guds\VweV. . @9

' 2 on

(We can put e:g. ¢ = 0 on I'; in the case of the boundary conditions (2.2), (2.3).)

By the use of Green’s theorem it is possible to show that both the problem (2.1) to
(2.3), (1:15, a—b) and the problem (2.1), (2.4), (1.15, a—b) are formally equivalent
to (2.9, a—Db). The details arc contained in [30]. o ' ‘

Let us put .

. , _ ' N ‘ 4 .
R(s) = [o(t)dt for s€[0,+o0) CI (2.10)

0

and define the functional @ : V- R;:

B 1 :
D(u) = E‘[R([Vuﬁ) dx for uweV. ' (2.11).
. Q ' .
Let w € V. By w = w(u) we denote the solution of the linear problem
(a) weV, E .
» ?) Vo = 7 . L (2.12)
(b) f9(|Vu|)Vw’Vvdx—_fgvds\/vEI

2 0 | .
and define the functional y: ¥ —'R, by the relation

p(u) = P(u) — Dww)) — [ guds + [gwu)ds, uweV. . ‘ (2.13)
’ ) 29 20

~

\
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It is evident that a fixed point u of the mappmg u — w(u) is a solution of the problem

(2.9, a—Db). The fundamental idea how to find this solution « is based on a convenient

ptlmal control principle. Here, we shall minimize the /unctzoml v on the space V. It.

_means that we seck u € V such that . . .
p(w) = min p(&). - . (2.14).
Togey. . .

If we find thls u, then we have to verify whether the condition (1.12) (or better (1.24))"

and the entropy condition considered, i.e. (1. 17) or (1 18) are satisfied, in order to
be sure that u is a physical solution.
From the numerical point of view, it will be probabl) suitable to minimize the
functlonal pintheset of all w €.V satlsfymv the finite velocity condition (i.e. (l 12)
or (1.24)) and the entropy condition ((1.17) or (1. 18)).

Rein a-rk 2.15: Studymg the channel flow w 1th the supersonic inlet I, it is neces-
) ou
_ %ary to consider both thc Ncumann condition 05 I', = g and the Dirichlet con-

dition u | I'y.= u, (with glven g and ) at the inlet I,. Then it is convenient to extend
the functlonal 2 by the identification term

:jmfww& N ¢ 3 1)

Ty

L

‘addcd to the rwht hand side in (2. 13) For snmpllclty, we shall not deal with this case
in the fol]o“mg _ /

Remark 2.17: The reason for thc choice of the functlonal w as the'cost functlon in
our optimal control problem will be cleared up in the followmg section (see Remark
'3.27).

3. Sccani modulus method'

This method, known also as I\'Ltchanov s method is described in a series of papers
(e.g. [14]), among others also in books [28] and [29]. It playq a fundamental role in
our considerations. We shall e‘(pllcatc it in its abstract version according to the cited
references.

Let V be a Hllbert space w1th the norm ]] |and @V — R, be a functional
. that has the Gateaux differential D®(u, -) at every u € V. For each u € V let us con-
-+ sider a form B(u, v, w), bilinear and symmetric-in v, w € -V, with the following pro
perties (u, v, w € V): .

'

B, v, w)| < o ol e ' o (3.1)
B, v, v) =, 2, ¢ >0, ‘ (3.2)
DO(u, v) == B(u, u,v), - ' i , o (3.3)
% B(u, v, Vv) — % B(u, u, u) — D(v) + d(u) = 0. o . - (3. 4)

“

Let us consider a continuous linear functional /.defmed on V (ie. f € K* V* = dual
to V). If w € V, then we denote by w = w(u) the solution of the equatlon

,

B(uwv)—(fv)\/véV ' ) _ . (3-5)‘
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(The symbol (f, v) for / € V*, v € V denotes the duality between V and V*). From
the Lax- Mllgram lemma the existence and umquenes: of such w follow.

Theorem 3.6: Let @ and B have the above properties. Then
) 1 - C : : L .o . "L
5 @l = w2 < p(w) = ) — Dw(w) — (f, u = ww). (3.7)-

for every wev.

Proof: Let us put

n(v‘) = P(u) — {f,v) + % B(u,v,v) — -i— B(u, u. u)- C - (3.8)
.av\nd-(-‘ L ) /';
_ - Clu) = D(u) — (f, u). ; ; - ' . .(3.9) -
Then, from (3.4) for v := w = w(u) we-get ‘ ‘

Cw) S Cw) + B(w) — D) + 5 B, w,w).— + B, u, v)
,‘ = Q)(u:') —{f, w) + i B(u, w, w) — % B(u; u, u) = n(w). _{3.10)

I‘urther if we use the last relatlon the equatlon (3.5) (wnbh Viz= % Orv:i= w) and the
" properties of B, then . :

'

n(w)—tﬁ —(/w)—i—(/u)—-(fu) uww)—éB(uuu)

&

C(u)+B(uwu) (uww)+;B(uww)—%B(uuu)

\

"= Clu) — % Bu,u —w,u —w) < Cu) — % ¢ llu — wif2. (3:11)

Hence, C(w) = a(w) £ C(u) — %q Jlu — wl*, which immediately gives the zisseg‘tion
" of the theorem (B ‘ . !

Theorem 3.12: If ® and B, have the ahove 7)roperties and moreover, if ..

D®(u +-h, k) — DB(u, h) = ¢4 B2\ u, b € V- L (3.13) -
with a constant c;. > 0 (independent of u, h), then there exists a unique crmcal point u
“of the /unctzonal C, C(u) = d(u) — (f, u) I f we de/me a sequence {u,}%; by the iterative
process “uq €'V (is arbztrarJ) and u,.y = wlu,) for n =07, then u, —~u in V, if -
n — 0o, and u zs a unique minimum point of C. '
BAY
Proof:-The assumptions ]ayed ond 1mply that the functlonal Cis coercive, weakly
lower semi-continuous, strictly convex and bounded from below. Hence there
exists exactly one critical point u of C. (See e.g. [15] or [33].) Moreover,.u is its mini-
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mum point. Now‘, we have D®(u, k) = {f, h) for all h € V and
‘ e [ — ull2 < DO(uy, uy — u) — DB, uy — %)
. ‘=.B(uy; Uy, u, — u) — {f, u, — u)
= B(tty, Uy, Uy — %) — By, Unyy, Uy — ) .
= B(un, 4y — Unsy, Uy — %) = ¢ ”un — U [t — -
This yields the estimate ’ '
e — S - | (3.14)

1 L. : .
From (3.7) we see that 0 < 5 ¢ g — Unnll? < C(uz) — C(tyyy). Since Cis bounded

from below, necessarily C(u,) — C(u,.,) — 0 for n — 400 and hence, v, — %psy — 0.

,.Brom thxs and (3.14) we get u, > u, if n - 400 I

Rema,rk 3.15: If the functionals @ and B have the propcrtles (3.1)—(3.4) (the
condition (3.13) need not be satisfied in general) and C' is bounded from below, then -
in virtue of (3.7), for u,,, = w(u,), uy € V, we have p(u,) = Cu,) — Cltnyy) = 0
and u, — u,,”——»O if n - +o00.

Example 3.16 (application lo the potentwl compressible ﬂow Let us consider the
functional @ defined by (2.10) and (2.11), where the function p satisfies (1.19)—(1.23).
We put . .
vy = [guds, weV, - o (3.1/)

952

_ and dcfme the form B by the relation

B(u, v, w) fg IVu|?) Vo - Vw dz, NV uv we V. - (3.18).

It is easy to sce that B is bilinear and éymmemc with respect to v-and w and that the
conditions (3.1)—(3.3) are satisfied (concerning (3.3). — see Lemma 3.21). Let us
verify (3.4). This condition can be written in: the form

[ To(1Vul?) (IVo]2 — (Vuf?) — R([¥o[?) + R(IVu}?)] dz = 0 (3.19]
2 . . -

- for arbitrary u, v € V. It will do to show that

o(x) (B — «) — R(f) + R(e) 20, V &, B€[0, +00). - : (3.20)

In view of the relation R’'(s) = o(s) in [0, +-00), (3.20) is satisfied if and only if the
function R is concave. However, this is true, since R''(s) = g( ) =0 in [0, +o0)
(cf. (1.23)). It is evident that the equatlon (2.9, b) can be written in the form B(u, u, 1,)
={f,v)forallve V. '

In the following we shall deal with some properties of @, C and B from the above
example and of the corresponding fun(,tlonal 1/) defined by (2.13).

Lemma 3.21: 1. The functional C( ) — {f, w) ts bounded on every bounded -
setinV. o
2. o) < ¢ Mifllve, VueV.:

3.qb(u)g-;-gmnau2, vueV. o

5.4.'|C(w(u))| <c,=const, WV uecl.
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- 5. The /unctzonal C -5 coercive (t.e. C’(u) - 4oo, tf u €V and [ju]| - +oo) Lap-

schitz-continuous and bounded from below.
6 The mapping “u € V — w(u) € V"' is continuous.
- The functional y is coercive, continuous and w(u) = 0 forall u € V.
8 @ and C have the Gdteaux dzf/erentzal.s -

qu(u,v fg | V|2 )Vu Vodr = Bu, u, v)
‘ and ’ R ) o

DC(u, v) = [ e(Vul?) Vu - Vo dz — [ gvds
Y : Y]

;B(u,u,v)—(/,v), u,vEA V. v
Proof: 1. We ha.ve.

QICI(u)I = |P(u) —{f, w)| = —l [ B(Vup?) dzl + Wllvelll.

From (1.21) and (2 10), we ha,ve PocS = |R(s)] =008 In [0 +oo) and thus |C(u)
1
= 5 oo el + lfilyell -

2. This assertion is an immediate consequence of (3.2) and (3.5): ‘
L ()P = B(u w(u), w(w)) = (, w(u)> = !l/llv* o) -

3. Slmllarly as in the asscrtlon 1 we have

‘P(u = —f (IVul?) d ; 5 Qoollull*.
4 This is a consequence of assertion 1 and 2 i
. We have }
. { .
. Clu) = Pu) —(fw) =+ Qeo”ullz = Wil Il +°°

1

if |lu|l — +oo This and assertlon 1 imply the boundedness from below of C. From
the definition of @ and C and-the properties of p it follows that both & an& C are
Lipschitz-continuous.
6." The continuity of w(u) is a consequence of results contained in [27: Ch. 3, § 6].
If w,.— w in V, then o(|Vu,|?) — n(|Vu| in measure (in 2). Moreover, the functxons
o(|Vu,|?) are uniformly bounded in Q. The functions w(u) or w(u,) are the solutlons
of the problcms (3.5), where we put u := u or u := u,, respectively. Le.,

f g([Vu|2) Vw(u) - Vode = {f,v) -V veEV
9 . :
and ‘ i ) . T
f (| Vu,)?) u,) - Vo dz = (f, v) VoveET.
2

Now, by the dlrect appllcatlon of [27:Ch. 3,§ 6] we get the convergence w(u,) — w(u)
in V.
-7. This assertlon follows from the assertlons 4—6 and (3. 7)
8. This assertion is based on a simple calculation. VVe leave it to the reader 8

i
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4

‘Theorem 3.22: Under the assumption and notation from Example 3.16 it holds :
1. There exists a mzmmzzmg sequence of the junctzomt y. )

2 Every minimizing sequence {uq};% of y s bounded, ||u,l — w(u,,)” -0, if
n’ -+ 00, and {u,}5. 18 generic, i.e. :

o B(un, u,, v) = (f, v+ (Fp,v) \/ veV, (3.23)
where F, € V* and [|Fyliye = 0 for n — 4-oco.

. Proof: 1 As an example of the minimizing sequence to y we can use the sequence.

{un} S5 defined by the iterative process un., = w(u,) with an arbitrary %, € V. In

Remark 3.15 we have already shown that w(u,,) — O if » — +oo. It means that
(u,,, - inf p(u) = O since y = 0. .

uey
2. Letu, € V,
lim o,uiu,,) = inf w(u) = 0. ’ -(3.24)
n—r+co
. Then -there exmts ny such that '
\ f . - ' [} BN
1 A ; : .
"o G llun — wwl? = p(ua) = 1 AR (3-‘25)
Since the sequence { (un)}; % is bounded (cf. Lemma 3.21), the sequence {u,}; 2% has

the same property From (3.24) and (3.25) \\esee that |lu, — w(u,)|| = 0 for n.— +-oo.
Further, in v10w of (3.5), -

.‘B( Uy, wW(Uy,), )— {,v) - V.oE V. o . . (3.26) .
Let us define F, € V* by the relation ‘ » .
(Fp, ) = Bta, un — w(ta), ), ve V..

By this and (3.1), |(F;, 0)| < cyllun — w(w,)ll o]l and hence, [Fyllve < ¢y llun — w(2a)l
— 0, if n - +oco. Now it is evident that (3.23) holds B

Remark 3.27: Now it is already clear why we have chosen in Section 2 the func-
tional y as the cost function of our optimal control problem. The main results are
. following: :

1o pu)=0forallue V. : :
2. inf p(u) = 0. - : : : -
uev .
3. If we find a minimum point « € 'V of Y, then wis a solutlon of the t,ransomc

flow problem (2.9, a—b). :

© In other optimal control methods mentioned in Introductlon we meet a somewhat
* ‘different situation: if we minimize the cost function considered (e.g. [lu — w(w)||?), -
then the minimum point need not be a solution of the transonic flow problem unless
" we get the zero value of the cost function at this point..

Remark 3.28: Ln Theorem 3.12 we have shwon that the bound&ry valué problem
(2.9, a—Db) (which is cqulva.lent to finding a critical point of the functional C(u)
= @(u) — {f, u)) has a unique solution under the condition (3.13). This condition is
valid, if

o(s) + 289’(8) =2x>0 Vs€[o, +o0) (3.29)
with some «. Really, if we denote ’

g(t) = o(I€ + tn]*) (¢ + tn) - ‘ | B
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3.

~foré,ne R,and t € [0 1), then in view of (3 29) and the condition o= 0 (under the
notation £ = & + t), we have . :

L GO = o€ + ) Il + 20°(1E + ) [(E + tn) -

i.j=1
i¥j

= 9(]5!2) iz 4 20’ (1€]?) (é; En® + Z g E,Wh) L
-wwmmv+%unpwmw g@w—amjgam?"
. . Loy
. Hence, .
ww+maw+m—ew|ﬂn—gn—mm
'—fg(t)dt>alnlz ' o S (3.30)

Sin.ce ' :
DP(u, h) = [ o|Vuf?) Vu - Vh dz, ’
g S

we prove (3.13) .(with ¢; = &) by putting ¢ = Vu(z), n = Vh(z) (for almost every

x € 02) and by integrating the mcquallty (3.30) over Q. (Let us notice that if the con-
dition ¢” = 0 were satlsfled then g'(t) = o(l§ + ¢yl nl2 = 0/7]%.)

However from thc construction of the functlon 0 and its extension on the mterval

. 2
[0, —Loo) it follows that (3.29) is satisfied fors € [0, s**] with a fixed s** ¢ (O :—ol
2 2
(s*"‘ can be chosen arbitrarily close to i). It means that the condition (3.13)

=+ 1
is satisfied on the subset of the space V, formed by the velocxty potentlals correspond
ing to strictly subsonic flow fields. If we arc interested in the subsonic 'flow only, we
can apply the secant modulus method dlrectly in_the followmg way. We choose the

2
constant s** € (0. hy i 1) and con51der the functlon é: [ +o0) — R,, whnch is
' —1 ,T .
given by the relatlon 8(s) = o (l - R‘LT s) "in the interval. [O ‘s**] and satis-
0

fies the conditions (1 19), (1 21)—(1.23) and (3.29). As an casy exercise the followmg
subsonic theorem can be proved .

Theorem 3.31: Let 0:= g, where g is defined above. Then there exists a umque mini-
mum point u of the junctwnal Clu)y = D(u) — {f, u) This u s the unique solution of
- the problem (2 9, a—b) and the secant modulus method converges to it. If |Vu|? < s**
~in L, then w is the velocity potential of a ph _/szcall Yy admaissible zrrolatzonal subsonic,
isentropic flow. . .

The Proof is an immediate (Lpplica,tion of Theorem 3.12 8

\

Let us remark that the solution u from the precedmg theorem whlch does not,
satisfy the condition |Vu|? < s** has no sensc from the physical point of view. Simi-
lar access to the study of subsonic flows was applied by FEISTAUER in [9—13] “mh
the use of the stream function.

Now let us go back to the transonic flow problem, when the dcnsxty o has the pro-
perties (1. 19)—(1 23). Let us prove the second subsonic theorem useful in applications.
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\

Theorem 3.32: Let {u,};%, be a mzmmzzmg sequence of the functional C ory such
that

- o 942 .
V. |2 < g¥* 0 ; . = ’ 3.3:
| Iu‘,,| ‘._8 < ] n Q2 for all.n‘ 0,1,... (3.33)
Then w, >u tn V dnd u s the unique solution of the probieni (2.9, a—b) in the set
E={we V. |V S in D) of strictly subsomc velocity polentials.

Proof: First, let us assume that {u,,},,f;) is a minimizing sequence of . In view

of Theorem 3.22, {u,}; % is.bounded. Hence, we can assume that u, -~ u (weakly), if
n — +oo. By (3.23), ‘

’ B(u,,_,' U, Uy — %) — Blu, 1, u, — u) .

=, un —w) +(Fa, g — u) — Blu, uuy —w) >0 - (3.34)

for n - +-oo, since, ||[Fyllye — 0, {u, _ u}; %% is a bounded sequence and the mapping

“v €V — B(u,u, v)”’ is a continuous linear functional on V. Further, if we realize

that the set & is closed and convex, Whl(‘h implies that .© is weakly closed we con-

clude that u € &.
The function g satisfies the condition

ofs) + 250°(8) = x>0  \V s€[0, %] O (3.35)
This implies the existence of such ¢3.> 0 that '

‘cg |y — ull? :

= f lo(1Vu,[?) Vun"—.@uvm?) Vu] - V(u, — u) dz

= Blty, tn, g — u) — Bty eyt — u). - | (3.36)

‘Now, -by using (3.34) we sce that u, — (st,rongly) in V, if n - 4-00. From thm
(3.7) and w(u,) — 0, if n —> 400, we see that w(u,) — u. Since w(u).is continuous
-(sec Lemma 3.21), we have u = w(u), which means that « is a solution of the problem
(2.9, a—Db).

If {u,},2% is a minimizing sequence of the functional C, then we can use the known

results from the convex analysis (cf. e.g. [15] or [33]). Again, we can assume that

Cu, — w (weakly), if » — - 00. By (3.35),
DC(u, w — v) — DC(v, u—v) Z ¢ [u — o2,  “w,v€E," (3.37)

with ¢; > 0 independent of «, v. This implies that C is weakly lower semicontinuous
in @ and thus,

C(u) = inf C(n) = mf C( n).= lim C(u,).

neG nsV n— 400

- If we use the mean value theorem, and the relation DC(u, u, — ) = 0, then we get

N 0 § ?8 ”un - u”2

= f [DC(u + t(u, — u), uy — ui — DC(u, u, — w)] dt
0 .

= C(u,) — C(u) - 0,
if n - 400 and thus, u, — u (strongly)..

- 7
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o Fmally 1f Uy, Uy € @ are two subsonic solutions of the problem (2.9, a—b), then
on the basis of the relation DC(u, k) = B(u, u, h) — {f, k) and (3.37) we get the ine-
quality = ' :

3 ”ul — Ul? = Bluy, uy, uy — ) — By, Uy, u; — ) = 0.

Hence, u; = u, 1

4. Differantials of u,(u) and the exnstence of a solution to the transonm f]o“ problem -
undu‘ a posteriori estimates on a minimizing sequence

'l‘heorem 4.1: The mamnnq “u € I/ — u,( yE VY, de/med by (3.5), has the derivative

d ; : .
(u h) = I w(u + th))- o ’ B (4.2)
‘) . .
at ever Y poznt u € V and in every dzrectzon h e Vn Wre(Q). The mapping “h — Dw
X (u, k)’ is linear for each uw € V and um/ormly bounded with respect to w € V. For
every h € V. n Wh(Q) “u — Dw(u, k) zs continuous mam)mg of V into V. Hence,
Dw(w, -) is the Gdteaux differential o/ w(u .

7 'Proof: For u€ V and h€e Vn W"°°(.Q) we - denote wy = u + th, w, = wu,),
‘wy = (w, — wo)/t and w = wp == w(u). It holds - .

[B(ut: wy, ) - B("o Wy, ’U)]

= —fuouw e(IVugl?)] Voo,

. . . " . . \
4+ o([Vuel?) (Vio, — Vuy)} - Vo da, veEVT. i L (4.3)
If we use the mean value theorem, then '

fg(jVuP).Vw, - Vo dz

.

— —-2 f (f qu,,|2 (Vu,,.-. Vh) dT) (le . va) (lx'. (4.4)

~From this, for ¢ — 0, we get ~

fg(]Vu]“’) VDw(u, k) - Vo dr .’ o -
N 2 ) . ‘ .
= —2 [ o'(IVuf?) (Vu.vk) (Vo : Vo) dz, ve V. Co . (45)

2

In view of the assumption b € ¥V n W1.=(Q) and the propeltles of o, the rlght hand
side in (4.5) (considered as a function of » € V) defines a continuous linear functional
F(u,w, k) on V. Hence, (4.5) which can be written in the form .

" B(w, Dw(u, k), v) = (F(d,w,h),v), wveV, - " (4.6)

)

has a unique solution Dw(u k) € V. From the continuous dcpendence of w on u, the
continuity of ' with respect to u, w, b and the rcsulte from [27 Ch. 3, § 6] all remain-
ing assertions of Theorcm 4.1 follow ] b

v . - u
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Remark 4.7: Similarly, supposing that p'’ is continuous in [0, +00) and that the
estimate fo'’(s) (1 + s)| = ¢; = const holds in [0, +o0), we can prove the existence
of the second differential Dw(u, }z k) foru € V and h,keVn W‘°°(Q) and the
relation (w = w(u))

fg (IVu[?) VD%w(u, b, k) - Vv dz
‘ =If2fg (IVu? ) (V- VE) (VDw(u k) - v@) dx
2
af g';(|Vu-|—2)\(Vu . VA) (Va - Vk) (Voo - Vo) dz
Q T '
_'2'f 0" (IVul?) (Vh - Vk) (Vo' Vo) dz . S )
S g , g _
2 f g'([wrz) (V- wz)..(v,l)w('u, k) - Vo) do P o @9
Lemma 4.9: The functional y s dz//;arentzable in the spa(;;: V with respect to an Y |

direction he V n Wt °°(Q) The differential Dy(u, k) has the form
: Dy)(u, h) = fk(|Vu[~) yu- Vhdzr .

’
2

— f gh ds — fg(in(u)["’) Vw(u) - VDw(u, k) dz
g .

+ f gDw(u, k) ds u€ Vo heVaWwre(Q). C . (4.10)

29
The Proof follows from ‘the definition (2. 13) 'of p and from Lemma 3. 218

The followmg theorem is dcvoted to the umquenesb of the solutlon to the problem
(2.9, a—Db). '

Theorem 4.11: Let the condilion . : ' . .

fg[])w u, u — v) — Dw(v, u — v)] dé = 0 R (4.1:.2):
20 :

hold for all w, v € V satisfying (1.24), i.e

-|Vu|2, |Vo|? =6 < °_. S (4.13)
" x--1 \ c

Then the problem (2 9, a—Db) has'at most one solution in the class of velocity potenttals

© u € V-satisfying (4.13)..

Proof: Let %, v be two such solutions. Then ip(u) = p(v) = inf p(§) =.0 and thus,
in view of Lemma 4.9, o 34 ‘ :

£ 0 = Dy(u,u — o)
——fgle])Vu V(u—v)d:z-—fgu—v)ds

\ - f o(IVw(u)] ) Vw(u) VDw( ,u —v)dr + f gDzo U, U — ) ds

B M -
-
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and . :
" 0= Dy, u—v) = fgle])Vv V(u—b dx——fg(u—v)d.s
an .
- f@(]Vw(v)| )Vu,(z) VDu(v, u — v) dx - fg])w (v, u — v) ds. (4.15)

‘o.o

The functlons u, v as the solutions of the problem (2.9, a—Db)satisfy the relatlons

(a) fo ([Vu]z) Vu - V(u — v)de = [ g(u — v)ds, _
7 “ "(4.16)
(b) f@IVvI Vo - Viu — o) dx_fgu—z,)ds o
60 N :
If we subtract (4.15) from (4.14).and take into account (4.5), (4.12), (4.186, a-—~b) and
the fact that u — w(x), v = w(v), we get - ' ' )
0 = [ g[Dw(n, w — v) — Dw(v, u — v)] ds
Exe o . . . »
O — [ e(Vup) Vu, VDuw(u, u — v)]dz .
2 /s - \
+.f of IV'1)|2 Vo - VDu(v, u.— v)] da
<2 f (]Vu[ ) [Vul? (Vu . V(u — ) dx '
T —?f ]VL] |Vv]2(Vv V(u—v)d:r - D ,'(4.17)-

\ow let us multlply (4.17) by A2 <0 and add the difference (4 16, a) (4 16, b):
0= f {fo(|Vul? ) + J0'(IVuf?) IVul2] Vu

— [o(IVol?) + % 40"(1Y0]%) |Vo|?] Vo}-- V(u — v) dr o
__f[h (1Vul?) Vu — h(|V0]?) Vo] - V(u — v) dx, S (418

. where h(s) = p(s) + ).sg’(s).' We have | . » .
h(s) + 2sh'(s) = o(s) + (32 + 2) so'(s) -+ 2is%""(s) -
- o(s) + 25¢(s) — 2[~3s0'(s) — 26%"(s)].

After some calculatlon we find out that —3so( s) — 2320”( 8) = ays for s € [0, s,]

2 2
w1th o > 0. For 0 < s S st < j_o T we have n(S) 280'(8) =« >0 and O
o .

thus h(s) + 2sh’(s) 2 «. If s = s**and / is close to — do, thcn h(s) + 2sk’ (a) =& > 0
Hence, we see that there cust 4 < 0andf > 0such tha.t

h(s) + 2sk'(s) Z B> 0 Vs€0, s8] . - (4.19)

Now we procecd snmllarly as in Remark 3.28. Fort € [0 1], & & € Ry, &2, |§|2 < &
candy =& — & we put .

git) = k(1§ 4+ tni®) (E+ tn) -y ' .
= [o(1§ + t11) + 20"(1§ + t*) 1€ + 2] (& + ty) <9y

\

21 Auvalysis Bd. 4, Heft 4 (1985)
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.t
«

Then, in ‘view,of._(4.19) and thé evident inequélity h Z po, we have .
g =R + tnl?) Ini® + 2R(IE + nl®) [(§ + tn) ~ P = B nl?,
By = min (B, 0) >0 '

and

g(1) — g(0) = [g'(t)dt = By Inf*. : (4.20)

. o .. : .

Finally, if we déhote'¢ = Vo(x), € = Vu(z) (for almost every z € ), then by (4.20)
we easily find out that o _ ‘ o o

[ (h(1Vul?) Va — h(|V0[2).V0] - Via— v) dz

2B [V — )P dz = Byl — ol - NGRS

2 ' . : S

In virtue of the inequality (4.18), [lu —svll.2 =0 _which yields u =0l
Theorem 4.11 indicates that the behdviqu’f of the term f gDw(u, h) ds will probably

. .. . Fe) .
play an important role in the study of the transonic flow problem and it will be
necessary,to control this term in a suitable way. Let us consider a minimizing sequence
{ua} ;% of the functional ¢. Then : : : -

‘lim - sup |Dy(uy, h)| =0. : A T
0 [l o0y S R :

\

From this, Lemma 4.9, and the relation

f‘é(l_Vu,,P) Vau, - Vhdx — f‘gk ds =0 for > “+ o0
2 : . e2 .

(which follows from Theorem 3:22), we can see that if h€ Vn Wi=(Q) and.
||h1|Vn}V1~°9(‘{))‘ <1, then: | -
0'= lim’ Dy(u,, h)

. N
n— 400

n—r+o0 Q 22

=-lim [— 'g(IVw(u',,)lz") Vw(};,,) - VDw(uy, k) dz + ..'ng(u,,, ?'z) ds].
[ - J

, \4.22)

Since u, — w(u,,)v--} 0 for\ n —> + oo (again' by Theorem 3.22), ‘w(u,) can be approxi-
mated by w, for large n. This, (4.5) (where we put u = v = u,) and (4.22) imply that
the term [ gDw(uy, k) ds can be approximated by .

) o :

=2 [ o' (|Vul?) |Veal? Yty - Vhdz.

Therefore, in the following we shall use the condition (1.17) to ‘control the term’
[ gDw(u, k) ds. Tt is possible to show that this condition has a relation to upwinding
90 L : . ‘ -
the density (used e.g. in [2, 5, 7). v e
Now e shall prove the theorem on the solvability of the transonic flow problem:
The entropy condition (1.17) plays the fundamental rolé in the proof because of 1ts
compactification properties. . : )

N
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Theorem 3.22 for k, = u — Uy,

o ;-
Theorem 4.23 (Ist fundamental): Let {u,}}< be a minimizing sequence of the func-

tional y, satisfying a posteriori the condition (4.13) and the entropy condition (1.17)

with some M € R,. Let u, — u (weakly) in V, if n — +oc. Then 4, — u (strongly) in
V,if n— +oco and u is a solution of the problem (2.9, a—b), satisfying the condition
(4.13). ‘ L

Proof: Let us consider a sequence {G}53% of functionals.defined on V:
(Guy B) = [ (VU [?) |Vuy[2 Vu, - Vhdz, - .hE V.. L (4.24)
R ' 4 T : \
Without loss of generality we can assume that' G,. —~ G (wéakly), if n — +oo. Let us

.. denote the restriction of (G,, k) or (G, k) to Wo""’(Q) by G (k) or-G(h), rcspect,iv'ély,:

and put ,_ ) o .
' Hyh) = M [ hdz — G,(k),  H(h) = M [ hdz — Gin).. - (4.25)
: Q S . T Q

From the condition (1.17) it follows that H,(k) = 0, H(h) =0 for b = 0. If we. use,
the result of MuraT [26], we get- H, - H in (Wol?(2))* for cach p > 2. Hence,

G, — G in (W?(2))*. S :
Now, let h €'V n Wi(Q2). Following Aemox, DoucLis and NIRENBERG [1], we
can write - ‘ : '
b=kl + k2, (4.26) -

“where A\ — 0 and A2 € Wl3(Q). (4.26) is an orthogonal décomposition of the space
© W1Q) into harmonic functions and functions with zero traces. By MEvERs [25]; -

there exists p, > 2 such that the mapping “‘h — ¥’ (i = 1, 2) is continuous from
‘¢ . : . . R . . "__l ’ .
Wim(Q) into Wi(Q). Further, since .the imbedding W'=(0Q) = W' »”'(60) is
compact, we can assert that the set A = {A' : ||hllynwiico@, < 1} is compact in Win(9).
From this and the weak convergence of G, to G) it follows that '

~

- lim sup NG, — G B =0, - N - 4.27)

n—>+00 ”"”vnwnco(a)sL ' . ‘ ..

(For proving this, Wwe can use a finite e-network in t;hc set U.) Moreovevr, from ¢, — G
in (Hfolfpx(()))"‘ and the properties of the mapping “‘h — A2’ it follows that also.

lim  sup G, — G )| =0. ' S .

rr—»i:?o ."h”Vnwl.OO(.Q)Sl :
This, (4.26) and (4.27) imply G, — G in [V n Wie(Q)*. fazl -
" Similarly as in the proof‘of Theorem4.11, we put A(s) = o(s) + 2Asp’(s)in |0, —+° 1}
) ' : x

and choose 4 close to — o0 so0 that the condition (4.19) is valid. Then, by (4.24) and

[ (1Y, [2) Vu, - Vb, da
g e ¢
\ . : . .
= é(lvunlz) Vu, - th dzx.+ f Q,(Ivunlz) 1Vu,,|2 Vun * Vhr! dx .
2 : e : -

i

2!

J
[ hnds + (Fo, by + 2C, B, N )

v
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, ®
“From h, — 0 (weakly) and the properties of F, and G, we get that the expression in
(4.28) tends to zero, if n — +oo. If we subtract the expression
[ W Vul?) Vu - Vhyde (=0, if n=> +oo) .
2 . ‘ . .

' from (4.28) and use (4.21), where v := u, and ¥ — v:= h,, then we get

By Wl < [ gha ds 4+ (B, b + KGi, ha) — [ h(Va?) V- Vhy dz > 0.
29 - . . :

2

.o - . o - L= . . ‘ ) (429)v'

ThlS yields &, —>O (if » — +o00). It means that. Un —> U (strongly) and in view of
Theorem 3.22 and the continuity of the mappmg w( ), we-have u = w( ).-Hence,
Cwuisa solutlon of .the problem (2.9,.a— b)

In the fol]owmg theorem we shall show that also the entropy condition (1. 18),
used e.g. in [3, 17 18, J‘)J has similar compacuflcatlon properties as (1. 1/)

- Theorem 4,.30 2nd fundamental): Let us assume that o satisfies the conditions
(1.19)—(1.23) and IR
lo(s) — i Vs S ¢ < -Foo, s € [0, +oo)) : @3

. with constants «, ¢ > 0 and let us consider the boundary condition (2.4). Let {u,};5

© be .a minvmizing sequence o/ the functional y, satisfying a posteriori the condition (1.18),

- and let u, — w (weakly) in V, if n — -|-co. Then u, > u (strongly) in V, u ts a solu-
twn of the pyobzem (2 9, a-—b) and |jw,l| wipsay el 1o, g = € with some p, > 2 and
> 0. " :

Proof: By Theorem 3.22,

[ olVu?) V- Vode = [ gods 45 (Foin), vET,
o R . o9

where F, — 0 in V*. From this we get

af Vu,,'{‘Vé; dx = f(c\ — 0(|Vu,[?) Vu, Vo de B o BRI
Q e . - v
+ [gvds +.(F,,0),  weV. ' (4.32)
. Let w,! € V be a solution of the problem \ .
.« f Vu,!- - Vode = f (v — o(|Vu,l| ) Vu, - Vo dx. -
A+ [ ds YuveEV (4.33)
e , o :

and u,2 € V be a_solufion of the problem

& [Vut Vode =(Fpv) W veEV. : (4.34)

2-

1) This condmon is satisfied e.g., if we ext(,nd o to [0, —:—- oo] in such a way that o(8) = const
for hrge s (cf. Section 1).
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Then Uy = Up! + 1,2 Tt is evident that ,% — 01 ‘in V (since-F, — 0 in V*). Hence,
Uy, 1 s . .

"Now: by [25] ‘

g SE=const V=015 . C(4.35)
with some P, >2and é > 0. Smcc u,t = u; also ]|u||w, gy = < é. If we define G, and
G € V¥ by the relations : : A

(G, by = [ Vu, - Vhdi, heV - -(4.36)
and ‘ ' - X ' . : K
(G, by = f Vu - Vh'dx,. heV, . " T (4.37)

respectlvely then ¢, —~ G. In the followi mg we shall procecd sumlarlv as in the proof
of Theorem 4.23: First, if we realize that all w, satisfy the condition (1.18), then we
.see that in view of [26], ¢, — ( in (W 'F’(Q))* for all p > 2: Further, let every
h€Vn Wir(Q) be decomposed in the form (4.26). Using again ‘Vlcye,rq results
from [)5] and considering p, from the proof of Theorem 4.23 such that 2 <P < P,

’

1
then in view of the comp(wt lmboddlng of w' e (09) into W S ,(8.(.)),.\\'63 find
-out that the set A == (k!: ”h”mwll’:m) 1} is compact in W' (Q). Now,. by the
same arguments as in the proof of Theorem 4.23, we conclude that G, — G in
[V WipQ ]*
"~ Let. h,, = u,! — u.- Hence,'h, NN > 0 (weakly). If we .usc (4.32), (4.33),-(4.36), (4.37),
then’ ' ‘ . ’

= & [ [Vho[? dz-
. Q

-

= o [ V- Vhydz =~ « [ Vu- Vh, dz + (Fy, by
.9 R S

= (G, — G, h,) + (F,, k) >0
andsthus, u,' — win V. Hence, «, — u and u is a.solution of the problem (2.9, a—b) 0.
L ’

\

5. R-egularityp.f the minimizing sequence
- In the ]ight of Theorems 4.23 and 4.30 we come to a,natural question “How regular
the minimizing sequence of the functional y can be found?” In this section we shall
assume that 02 is smooth and consider the Neumann condition (2.4) on Q. - -

Theorem 5.1: " Let the conditions (1.19)—(1.23) and (4.31) be satisfied and let -
{u, },,_O be a minimizing sequence of.the functional . Then, for the (Iecmny)osztwn %y,

o= wu,! + u,? from the proof of J’hemem 4.30, it holds ’

=4
|8
-~

© el >0 (in V), - (5

W
W
=~

.”unllzw‘-p(f)) g C(p) < +C© \/77'< +OO, A’"’ = O) I: ) . (

and {ae,1} 235 28 ulso a mmwuzmg sequence. s
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\

. Proof:The assertion (5.2) has been already proved in Theorem 4.30. With respect
‘to (4.33), the regularlty of 002 and (4.35), we get (5. .3) on the basis of W1-P(2) — esti:

' mates of the solutlon‘to (4.33) cf [1]) '
-It remains to show that {u,! },,,10 is also a minimizing sequence of y. In v1rtue of

the relation p(u) = C(u) — C(w(u)) and the Lipschitz- -continuity of C, it is sufflcxent '

to prove that w(u,) — w(uy') =0 in-V, if # - +o00. Let us put w, = w(ty), wy' s

= w(u,'). With respect to (3.5) and (3.18) we have ‘

IB('M',,,’LU,,—‘U/,,, )
_f qul)(Vw,,—Vw,,) Vo de

—f[n |Vu,,1|2)—g(|Vu,,l ]v%,l -Vods, veV. o (5.4)
Q- B .

'r

If we putv:= w,, — w,!, use (3.2) and apply the Cauchy mequallty to the rlght hand
side, then ' . :

¢z lwn — w12

- o 1/2 . N
< { f [e(1V ') — o(IV2n ) (Voo dx}« lwn — walll. (5.5)
Hencc it will do to prove that R . _
[ To(1Vu, 1), —e(IVunI )J2 |V, ‘I2dx—>0 _ (5.6) -

2

\

if n = +oo. ' :
. We can assume that Vu,,z(x) -0 almost every\\ here in Q Using agam [25], we get, .
_ps > 2 such that . - l

" lhw(u )II,,lp.‘g,<e CVuev. A ‘_ (5.7)

\0\\ let us choose an arbitrary & > 0. Let M = 2 be a measurable sct. By the -
Hélder inequality and (5.7) we get . S K . <
. ‘. o . . , l_l l - p‘_2 )
(j |Vaw,!|? dx)l/? < p,.(sm)? m( [ v, lfm dx)v- < c*pa (M) 2P (5.8)
m Q .

(VVe denote by n thc n-dimensional Lebesque measure in R .) We choose . = Qo
. 2ps .

S

wlth ,u,,(ﬂ)}) (4 i
virtue of Jegorov S theorem Vy2(x) =0 uniformly in 2 — M. If § > O let ny be
such that [Vu,%(x)| < 6 i in 2 — M for all'n = n,. Since g is Lipschitz-continuous in
[0, +o0) and u,; = u,' + ‘u,2, we get (by using the Holder inequality)

)p’_ (oo is the constant; from (1 21)) in such a way that in

o ' : ) . 1/2
[('Q - 932): { f [Q(lvunllz) - Q(I.Vun[2)]2 van1|2 dx} i
: Q-M . '
‘ 1/2
é const - { f (]Vu 2|2 + ?[vunll Ivunzl) ]Vw l|2 dx}
\ —-m

~ < const - { f (62 + 26 |Vu,|)? |anll2 dx}

2im



Now, 1f we use Lemma 3.21, (0.3) and (5.7), we see that there exists a constant c**
‘such that S .

~

for » g'n'o, which corllcludes‘ the proof §

- . N - \

.
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.
1

< const - 42 ( [ 1vw,|? dx)m .
: g .

. : ps=2 ' Lo
2ps EN 7
+ 6 (f IVuHIIF.pTz dx) > (f AR dx)p ’
. a

< const - (62 llwalll + 6Hun‘ll

w 3’-—2(0)

”,’“)nln:wl.ﬂ;‘g)) ..

Q- s o). I O

Tf we cﬁo_ose 8> 0 such that c**(6% 4 6) < ¢/2, th;n in view of (5.8) and (5.95,

‘

S ; |
{ [ o(I7%,12) = o(1V%,[2)]2 [Vas,2[2 dx}l oy
2 . ) - .

Ackno.wle_d'gement .

v

,

We are grateful to Prof. Dr. J. PoLA$EK from the Technical University in Prague,
who brought us to this difficult but interesting problem and expressed always his

. ‘interest in the results of our work. Further, we thank very much to Dr. K. KozEL
from the Technical Umversnty in Prague for the survey on the numerical simulation

of transonic flows by the finite-difference method. We are also obliged to Dr. J.
MaxpEL from the. Charles University in Prague for interesting and inspiring dis-
cussions on nonconvex variational problems and minimization techniques.

REFERENCES

[1] Acmox, S., Doucuis, A., and L. NIRENBERG:. Estimates near the-boundary for solutions
of elliptic partial differential equations satisfying general boundary conditions I, II. Comm.
Pure Appl. Math. 12 (1959), 623 —727 and 17 (1964), 35—92:

[2] ARLINGER, B.: Axisymmetric trinsonic flow computations using a multlgnd method.
Lecture Notes in Physics 141 (1981), 55—60. )

{3] BrisTeavu, M. O,, GLO\VI\SKI R., PERIAUY, J., PERRIER, P., and O. PIRONNEAU: On the
numerical solutlon of nonlincar problems in fluid dynamics by least squares and finite.
- element methods. (I) Least square formulations and conjugate ‘gradient solution of the
‘continuous problems. Comp. Meth, Appl. Mech. Eng. 17/18 (1979), 619—657.

- [4) BristeAu, M. O., GLowIxskI, R., PmmU\, J., PERRIER, P., POIRIER, G., and 0. Prron-

NEAU: Apphcahon of optimal control and fmnte element methods to the calculation of:
‘transonic flows and incompressible viscous flows. In: Num. Meth. in Appl. Fluid Dyna
mics (Ed.: B. Hunt). London: Academic Press 1980, 203—312.

[5) Crarror, J.J,, Guiv-Roux, J., and J. LaMiNiE: Finite element calculation of steady ~
transonic flow in. nozzles usmg primary variables. Lect.ureNotes in Physics 141 (1981),
107 —112.-

" 16).CoLg, J.D., and E. M. MurMaN: Calculation of pl(me steady transonic flows Amer..

Inst. for Aeronautics and Astronautics (AIAA) Journal 9 (1971), 199—206. .
: ! v c .



328 M. FeisTaver and J. NECAS

~

{7] Decoxixck, H., and C. Hirscu: Transonic flow calculations with higher finite clements.
Lecture Notes in Physics 141 (1981), 138—143.

[8] FEISTAUER, M.: Minimization of nonconvex functional and 1ts application to the numerical
solution of transonic flows by the finite element method. In: Proc. conf. Num. Meth. in
Cont. Mech. Zilina (CSSR): Dum techniky CSVTS (Czech. Soc. Scl Techn.) 110 (1‘)78),
69—75 (in Czech).

~ [9] FEISTAUER, M.: Mathematical study of three-dimensional axially symmetric stream fields
of an ideal fluid. In: Methoden und Verfahren der math. Phys., Bd. 21 (Eds: B. Broso\vskl
and E. Martensen). Frankfurt/a. M. —Bern: P. D. Lang-Verlag 1981,45—61.

[10] Fe1sTAUER, M.: Numerical solution ‘of non- viscous axially symmetric channel flows. In:
Methoden und Verfahren der math. Phys,, Bd. 24 (kds: E. Meister; K. Nickel and J.

~ PoldSek). Frankfurt/a. M, —Bern: P. D. Lang-Verlag 1982, 65—178.

[11] FEISTAUER, M.: On irrotational flows through cascades of proflles in a layer of v'mabl(,
thickness. Apl. mat. 29 (1984), 423 —458.

[12] FeisTAUER, M., and M. Huxgk: Solution of an axially symmt,tnc flo“ by the finite

. . clement method. Strojnicky &as. 34 (1983), 607 —621 (in Czech).

[13] FEISTAUER, M. ., and J. RfMANEK: Solutlon of -subsonic axially symmctnc stream fields.
Apl. mat. 20 (1975), 266—279.

[14] Fucix, S., KrarocuviL, A., and J. NECas: Katanov- Galerkm method. Comment. Math.,
Univ. C.\rolmae 14°(1973), 651 —659.

[15] Fucik, S., NECas, J., and V. SouCek: Einfihrung in die Varntlonsrechmmg (Teubner-
Texte zur Mathematik: Bd. 11). Leipzig: BSB B. G. Teubner Verlagsgesellschaft 1977.
[16] GaraBEDIAN, P. R., and D. G. Kory: Analysis of transonic airfoils. Comm. Pure Appl

Math. 24 (1971), 841 —851.

“ [17] GLowivskr, R.: Lectures on Numeri¢al Methods for Nonlinear Varmtlonnl Pr.oblems

Berlin — Heidelberg — New . York: Springer-Verlag 1981.

[18] Growixskl, R., and O. Prroxxeav: On the computation of transonic flows. In Proc.
Japan-France Semmar Funct. Anal. Num. ‘\mll (Ed.: H. Fujita). Tokyo and Kyoto 1978,
143 —173. '

"[19} Growinskl, R., Lions, J. L., and R. Tréyoriéres: Numerical Analysis of Variational
_ Incquahtlcs (Studios in Math. and its'Appl.: Vol. 8). Amsterdam: North-Holland 1981.
[20] Jameson, A.; Iterative solutions of transonic flows over airfoils and wings, including

"~ flows at Mdchl Comm.- Pure App! Math. 27 (1974), 283 —309.
{21] JamEson, A.: Numerical computation of transonic flows with shock waves. In: Symposmm
Transonicum TI (Eds: K. Oswalitsch and D. Rues). Berlin—Heidclberg— New Ymk
. Springer Verlag 1975.,
{22] JamEesoN, A.: Acceleration of - tr: msomc potent,nal flow calculations on arbntr 1ty meshes
_ by the multiple grid method. Amer. Inst. for Aeronautics and Astronautics (ATAA)
Paper 79-1458' (1979). : ’ .

23] Kozrr, K., PoLASEK, J., and \I Vaviixcovi: Numerical solution of transomc flow
through a cascdde with slender profiles. Lecture \otcs in Physics 90 (1979).'333 to -
338. -

[24] KozeLn, K., PoLiSEK, J., and M. .VAVRINCOVA: Numerical solubmn nf transonic shear
flows past thin bodies. Lecture Notes in Physics 170 (1982), 303 —307.. :

[25] MEYERS, N. G.: An LP-estimate for the gradient of solutions of second order elliptic
divergence equations. Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 189 —206.

{26] MuraT, F.: L’injection” du cone positif de H=! dans W /¢ est. compacte, pour tont q <
J. Math. Pures Appl. (9) 60 (1981), 309— 322.

[27] NECas, J.: Les mobhodcs directes en théorie des équations elliptiques. Prague: Acadcmm
1967.

[28] NEdéas, J.: Introductlon to the Theory of \onlmear Elliptic Equations (Teubner- T(‘\t(‘
zur Mathematik: Vol. 52). Lelleg BSB B. G. Teubner Verlagsgesellschaft 1983.

[29] NECas, J., and [."HravAZCek : Mathematical Theory of Elastic and Elasto-Plastic Bodics:

- An Introduction. Amsterdam —Oxford —Néw York: Elsevier 1981. .

[30] OrSuLik; V.: Transonic irrotational flow of ah ideal comprcssnblc fluid (Thesis). Prague:
Fac. of Math. and Phys., Charles Univ. 1978 (in Czech).

-[31] PeRr1avux, J.: Three- dimensional analysis of compressible flows wlth the finite element
method. Int. J. Num. Meth. Eng. 9 (1975), 739—763.



Transonic Potential Flow Problems 329

. [3"] PowRIER, G.! Txmtement numeériques -en Llements finis de l.x condition d’entropie des
équations transsoniques (Thesis). Paris - VI: 1’Université Pierre et Marie Curie 1981.

'{33] BaitusEPr, M. M.: BapHauuouHbIii METOX 11 METOl MOHOTOHHBIX ONEPATOPOB B TCOPHI
HemtHelinex ypasHeunii. Mocksa: Man-so Hayka 1972.

Manuskripteingang: 09. 07. 1984

_ VERFASSER

Prof. Dr. MILOSLAV Fmsmum and Prof Dr. JiNpRicH NE(,AS
' Dcpartment of Applied Mathematics,
Faculty of Mathematics and Physics, Charles Umvorsnty . Lo
CSSR 11800 Praha 1, Malostranské n. 25 Co ’



