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Dedicated to Herbert Beckert on the occasion of his sixty fifth birthday.	
0 

Es wird bewiesen, daB einige mit der Geometric eines hangenden Tropfen verbundenen Werte, 
z. B. Durëhmesser und Volumen gleichmäliig unter alien moglichen symmetrischen Tropfen 
von oben begrenzt sind. Ausfuhrliche Abschätzungen; die auch für diejenige Tropien gelten, 
die sich als statisch nicht stabil ersseisen, werden gegeben. 
,LoKa3uBaeTcn, '[TO HCKOTOhlC l3e11H'HiHbI, clinaaHHue C reoMeTplleti uncaefl iwnmi, iai 

laMerp It 06'b651, orpanuel-ibI dncpxy parlHoMepHo 0TH0CIITCJIbH0 ncen03MoxHhlx duMMe-
Tpn'-IeclHx leaneJib. flpunoaTcn noapoüiiue olfeHKu, HMelo1LHe Mecro Taiose urn cTaTII-
'IecxI HeycTon4lsBblx KaneJib. 
The volume, diameter and other geometrical quantities associated with a pendent liquid drop 
are shown to be equibounded among all symmetric drops in equilibrium configuration. Explicit 
bounds are given, and they are shown to be valid also for configurations that are known to 
be statically' unstable. 

We consider in this paper a drop of liquid pendent from a homogeneous horizontal 
plane surface H and in equilibrium in a uniform gravity field directed downward 
from TI (see Fig. 1). The liquid will be bounded in part by TI and in part by a free 
surface S. According to the general theory of capillárity, as initiated by You [24], 
LAPLACE [14], and GAUSS [9], the mean curvature H of S satisfies a relation 
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in terms of the distance (—u) to' 17. Here x is the "capillarity constant ',, y > 0; 
2 is a Lagrange parameter corresponding to the (prescribed) volume of the drop. The 
surface S is to meet /1 in a prescribed constant angle y, depending on the materials. 
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Figure 1: Pendent drop profile and continuation	 . 

1. Simple experiments (and everyday experience) suggest that any such drop 
with sufficiently large volume will be physically unstable. Apparently the first at-
tempts to introduce the volume quantitativQly as a criterion for instability-were due 
to. HAGEN [10] and to TRAUBE [21]; however, their formal analyses were based on 
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erroneous assumptions and led to poor prediction. Lo1{NsrErs [15] integrated (1) 
numerically and determined a family of configurations with increasing drop height, 
in which the volume achieves, a local maximum; he adopted that configuration as 
criterion for instability. Lohnstein's calculations suggested also that there is an upper 
bound for the diameter 6f the wetted disk on ii, at least among stable configurations. 

Figure 2. Drop profiles and singular solution 

There is, by now a fairly extensive literature on the stability question (cf. [2, 15, 
17, 19, 23] and the further references there cited), all of which tends to substantiate 
Lbhnsteiti's criterion. We remark that all' but the last of the cited works develop 
criteria relative to surfaces that were' not yet known to exist. The poiit is not an 
idle one, as it cannot be expected that a formal solution will continue to exist when 
stability fails, and thus the criteria developed eould,well have been vacuous. The first 
attempt to obtain a global description of pendent drops seems due to Bashforth 
and Adams 1.1], who used the problem to test a new numerical *procedure. Lohnstein 
was aware of the paper but overlooked the section on pendent drops. Tn a later note 
[16] he remarks "... entnahmich kürzlich das genannte IWerk der hiesigen Konig- 
lichen Bibliothek, und da fand ich 'danu die érwähnte Tahelle, deren rechtzeitige 
Benutzung mir viel Arbeit erspart hätte". KELVIN [1411 proposed a geometric inte-
gration procedure; his result in a specific case suggested the existence of formal 
solutions of (1) of a sort that had not been physically observed (see Fig. 2). Modern 
computing methods hive facilitated the numerical integration of (1), and many, 
particular cases in agreement with Kelvin's discovery have since been worked out, 
see, e.g.,,[5, 11-13, 181. HIDA and NAJtAN1sII [12] were apparently the first to find' 
configurations with a large number of "bulges", and their calculations suggest that 
the maximal "physical" volume, (as defined inA 5)'could osci!1te to a finite limit as, 
tFevertical height increases (cf. the discussion in § 7). Coxcus and Fixx 1511 obtained 
a global existence theorem by characterizing anal ytically the set of all symmetric 
Y pendent drop" solutions. WENTE [22] later proved that every solution is symmetric, 
so all.sohitions are included in the family considered. 

The family may be obtained by observing that in the symmetric case (1') can be 
written, after elementary transformation,, in the parametric form 

du , dr	 d	 1 =stnzp, , -a-- = cos,	-a-- =	 (2)
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for u, radial distance r, and inclination angle v, in terms of arc length s, and by studying 
the continuation of a (local) solution of (2) with prescribed initial valueu(0) = u0 <0. 
It is remarkable that in the entire range 0> u0 > - - oo a solution exists globally 
and uniquely, and defines a (sectional) curve that extends to infinity without limit 
sets or double points. With increasing luol the number of bulges increases indefinitely. 
(Also the value u0 = — oo can be considered, in which case.a singular solution U(r) is 
obtained, see [3, 4, 13].) After crossing the r-axis, the curve oscillates about u = 0, 
with peaks of successively decreasing magnitude.	 •; - 

The formal pendent drop solutions are obtained by cutting the curves by horizon-
tal-lines; these lines generate the plane Ii of support. if ii cuts the- surface inmore 
than one-circle, and if the configuration is to have physical meaning, then the wetted 
surface consists only of the disk bounded by the innermost circle, as otherwise the 
drop would penetrate H.	 o 

The cases u, = —4 and u0 = - 8 are illñstrated iri Figure2. Since WENTE [23] 
has shown that instability must occur before the appearance of a second inflection, 
it is apparent that the equation for the solution surface is not cognizant of theinsta-
bility, at lOast as far, as, existence and regularit' are concerned. 

To each section, there corresponds a finite number u1 ) of points at which the 
section is vertical. The value 2r = 2 max .{r}- was defined in [5] to be the diameter 
of the drop, and it was shown there that there is an equi-bound for the diameters 
oN!l possible drops. 

Denoteby r the coordinate of the first point at which the solution curve crosses 
the- rl axis. it is shown in [5] that r plays the role of a dividing point, separating 
the portion of the curve with the bulges from the portion that oscillates about the 
r-axis.	 . 

Denote by rp the coordinate of the first peak. For any physical drop the diameter 
d of the wetted surface on H satisfies d	2 max {r, r}. . 
• Let V denote the volume of a (physical) drop, defined as the volume of that com-
ponent cut off by Ii, which meets the u-axis..	 •	. 

We intend to prove that all /our quantities, r, r, r, V are equibounded among all 

possible drops, without.regard to stability considerations. Specifically, we shall prove: . 

Theorem 1: r < 6, where Ô	2.473 is the unique positive root of 

— 3312r - 3314 = Q.	 .	 •	(3) 

Theorem 2: r <it, wherey	2.888 is the unique root r> 6 of 

	

(i_ . -)!n- + r2	— -- (n--)___- 	0. (4) 

Theorem 3: Set r =1/2	 hen	 •• 

•	 4±T	•	 -	 S 

•	l \	 .	•	.	-	
•	 (5) 

•	•	(l+x)lnhl'+—l—1 

	

\•	t/ 
and thus r < 5.333.	 S 

Theorern-4': . V	i 1/rp2, and thus V < 126.4.	 5 

2. Theorem 1 was already proved in [5]; we include here a proof that has been 
shortened in some ways. Our discussion depends on the general results of [5], (a) that
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•	
- the solutions exist and have the appearance indicated in Figures 1, 2, and (b) that 

every drop has the properties	 - - 
(i) all outer vertical points (curvature vectors directed toward the u-axis) lie 

between the hyperbolae ru = —1 and ru =-2; the inner vertical points 
satisfy —1 < ru <0; 

(ii) at-r,, the sectional curve is-locally a graph u(r), and 0 < u' (r) < oo. 
- - Proof of Theorem 1: For any drop, the 'maximum diameter Occurs at an outer 

vertical (b; ub) and is preceded by a segment u(r) of the curve, joining (b, ub) to a point (a, un), which is either an inner vertical or the initial point (0, u0 ). On the inter- - val a <r < b we have from (2)	 - 
• (r sin 'A'= --ru.• 	(6) 

	

- Since bu < —1 <au,, 0, the curve segment meets the hyperbola ru = - 1 at a	- - •	point (c, u). Since sin	= 1 if a == 0, we have from (6) 

- rsin ip - a = feud	 -	 - (7) 

and since u <0 on the segment, there foJlws sin ,> 0 and therefore u ' > J. Inte-
grating by,parts and setting r = c, we thus find from (7)	 - - 

c sin ?pc > --.(a + c)	- c	 .,'.	-	(8) 

since aua > —1, cu = —1. ThOs, sin ?Pc ' > --. Further, at (c , 'u ) the slope of the 
solution curve cannot èxceed' that of the hyperbola; we conclude that c	31/4, 

We now repeat the procedure, starting the integration at-c, to obtain	- 

b > c sin +	(b - c) + 
f 

Q 2u () do. (9) 

In the interval of integration, we have —2:!z^ ru	1. By (6), r(sin p),. = —ru

sin ; thus 'there is no inflection on the interval,'and u' (r) > u'(c). We conclude 

from (9)-1 since sin lPc> -- c <31/4, that	 -	- 

•	

-	 b3 - 33I2b	33/4 < o•	 (10) 
The unique positive root of (3) is easily seen to. exceed any value satisfying (10), and 
the stated bound for r, follows I •	 .	 - 

3. We proceed to prove Theorem 2. By (ii) above, there must be a segment 
u(r) <0 ofthe solution curve, joining an inner vertical (or initial) point (a, u ) with 
he crossing point (r,0). We have from (6), if a	r :^-, r, 

-	r sin (r) - a sin (a) = — foudo.	 (11) -, - 

Setting a	a-in (11), we obtain sin (r)> ar'	0. \Another use'of (11) iow yields 
du -- -	= tan tp> sin tp> ar ' .' sin (a)	 (12)
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fr-om which	 -	 S 

—u(r) > (a sin )()) In -.	-	''	 (13) 

We place (13) into (11) and repeat the above procedure to obtain 

	

du	I	r	1	r'	r2—a2	- 
•	 •(14) 

as1n'(a) dr	2	r	2	a	• 4' 

an integration of which yields 

- I	a2\	r	r2 - A2 	/	r,, \2	u(a)	 - Ii - - In 	+	-.- lain - < -	'.	(lo) 
:	2/	a	'	4	2 \	a/	a sin (a)	- 

The success of the prcedure'depends on a'judicious choice fo a We observe first 

that an integration by parts , in (11) yields a sin V. >	a'u(a), sinceau0 > — 1 by 
(i) and sin ip0 = 1 if a_-_ 0. Thus (15) can be written	,	 S 

](r a)(1	In—	 In 
r,,2—a2 _--(aln-!-)2_4<0	(16) 

a	 a	a 4  

Tlere holds Fr > 0 when T > -a and (16) thus determines a least upper bound 

'for rn: One finds --	0 according as a	a0	1.4428;' here a0 is the unique 
positive solution of	a	•,.	,	 . S. 

	

2) JF4 __ Ct 2	2
(17) 

If T <'a0 , there isnothingto prove. Ifa < No <Tn ;'We set a = a0in(16)toobtain 
r < 2.806. If a0 < a, we recall fror (i) that au0 > — 1, sin Va =	thus, (15) can 
now be written	 S	 - 

((T a) (1 - ç)ln- + r - a - -_ (a In	- . <0	(18) 

And (17) takes theform	 S	 S. 

() 

J/2—a +ç[
e_ ']—+--=o	 (19) 

which has the unique positive solution 'a 0	1.157 < a. Thud, in the equation 
•O(; a) = 0 we will have r,, increasin g in a. Since a	ô (Theorem 1), ,we obtain from 
(18) the stated estimate I	 S	 5 

4. Proof of Theorem 3: We consider the segment of the solution curve joining 
(rn , 0) to (rn , up ). On that segment we have u> 0, sin p > 0. Writi'g v = sin y, we 
have from (6)	 .	,	S	 •	 S 

—u —vr 1	 .	-	.	 '	: ( 9) 
and thus Vr < —vr', from which	• .	.	. - 

TV< TnVn	 •	 S	 •	 ( 21)• 

qa the segment.	S	 -.	 .	 •	
-	 :
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We now integrate (20) in u along the segment, from 0 to up, obtaining 

sin 
du f	 p - (1 - cos p )	u2	 S 

from which 

Up <J/ J/1 - eos vp =	
sin

<1I2v.	 (22) 
-	 V1SlT Cos fl 

Thus b' (6) 

(rv)r = 1U > —rufl >	 (23) 
from which' 

-	v(r)>	(iH J{ rn) -	 (24) r.	2

Thus, v(r) remains positive at least until the value 2r, , with 

2	 .,	 (25)rn)

We now observe u'(r) > v(r) and integrate the inequality resulting from (24) from 
r to r. We obtain . 

Once thd height u(2r) is attained, we find frofn (6) ( rV )r = —ru < - ru(r) and 
•	thus, for ..r < r < ri,. 

rv < ).rv().r) -. u(..r),	
2 

It follows that the value r, at which v = in p = 0, must satisfy 

r 2 <
2)r v(.r)	.	 S 

-f- (r,,) 2 .	.	 ( 27) u(i.r) 

In (27) we estimate the denominatoI from (26), and the numerator by placing (26) into 
(6) and integrating from r,, to ,r,,. Usin g (25), we are led to the stated inequality . (5) • 

5. Pro'df of Theorem 4: The volunfe of any physical drop cainot exceed the 
volume V of the drop obtained by taking the supporting plane 11 through (r,,, up). 
We have, in terms of arc length s measured from the vertex, 

S9  
1.	do	 fd = -ir2u -- 2-n j .ou	= -r 2u -f-- 2i/ -- ( sin v) ds = 'nr2u 

- by the governing equations (2), since sin ip = 0 at s= 0, s. According to (22), up 
< ]/. and the theorem 'follows I	 .
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6. The estimates we have given are in nondimensional form. To obtain the corre-
sponding dimensional results for 'a given physical configuration, we need only multiply 
each spatial coordinate that appears in any relation by F__ Thus, for a water drop 
hanging from a glass plate in vacuo in, the earth's gravitational field, for which 
situation one has y . 0, ,c 29, we find r <0.46 cm, r,,'< 0.54 cm, r <0.99 cm, 
V <0.81 cm 3. These values, although they are within the range of reality, are cer-
tainly not sharp. The results do provide, however, general qualitative information 
that could not be obtained from the methods that were previously available. We 
remark that as w —* 0, r and r become the first positive zeros of the Bessel functions 
J0 (r) and J, (r); thus r	2,405,-ri	3.832. In the dimensional case just considered, 

0.447, r	0.712. 
Figures 3 and 4 show results of computer calculations, of r and of V, with increas-

ing Ju, J. The appears to be either continued oscillation about, or very slow eonver-
gence toward, the'values for the singular solution U(r) (see § 7). . 
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Figure 3. Initial null-point for drop profile and singular solution 
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Figure 4. Maximal volume for pendent drop and singular drop 

, 7. Minor extension 's of the estimates given abov, in conjunction with estimates 
nlready available in [5], suffice to show that from any family of pendent drop solu-
tions, with u0 — — co, there is a subsequence that converges uniformly in compacta, 
to a limit curve that is again a solution of (2) and has the general appearance of 

22 Analysis Bd. 4, Heft 4 (1985)	 , 
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the "singular solution" shown in Figure 2. The existence of such solution as a graph 
U(r) was proved in [3]. It can be shown (cf. [5]) that any limit curve obtained by 
the above procedure is asymptotically close to U(r) for small r, ir the sense that, both 
curves are asymptotic to the hyperbola ru =. —1; however, it is not yet known 
whether the limit curve is uniquely determined, nor is-it known,under what circuni-
stances it can be represented as a graph, nor has the uniqueness of U(r) been proved. 
For partial results and conjectures relating to these questions, see [3-5, 7]. 

8. The bound we have shown for the volume has an interesting heuristic conse-
quence.. Imagine a drop of liquid, situated above and resting on a horizontal homoge-
neous plane 11 in a vertical gravity field. It is known (cf. [6]) that a unique such drop 
exists for any V. Let us choose V larger than the bound given by Theorem 4. We 
now rotate Ii about an axis through a diameter of the wetted disk, supposing that 
the adhesion forces suffice to keep the wetted surface unchanged. It can be shown 
[8] that the contact angle distribution can no longer be constant when ii is tilted, 
nevertheless it seems reasonabld to suppose that, at least for small angles of tilt, a 
formal solution of the physical equations should continue to exist. If the plane could 
be rotated through an angle i, we would obtain a pendent drop configuration, which 
by Wente's theorem [22] must be symmetric and governed by the system (2). But 
by Theorem 4, no such solution exists. Thus, at some angle q of tilt, the solution 
must develop an instability, of a sort that prevents its fdrther continuation (the 
configuration studied in the present paper could be continued in u0 regardless of the 
instability). Some computational evidence of such non-eontinuabiliy was encoun- 
tered by Milinazzo (see the Appendix-in [8]). 
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