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On the Pendent Liquid Drop*)
R. FIx~¥?) o g ' .

Dedicated to Herbert Beckert on the occasion of his sixty fifth birthday. -

Es wird bewiesen, daB einige mit der Geometrie eines hangenden Tropfen verbundenen Werte,
z. B. Duréhmesser und Volumen; gleichmiBig unter allen méglichen symmetrischen Tropfen
von oben’ begrenzt sind. Ausfiihrliche Abschédtzungen; di¢ auch fir dmjcmgo Tropfen gelten,
die sich als statisch nicht stabil erwelsen, werden gegeben. .

JlokasmBaeTcs, 4To HEKOTOPHE BEJNMYMHH,. CBA3AHHBIC C reoMeTpucit Bucauei KA@M, Kak .
mgaMeTp It 00BEM, OrpaHHYeHH CBEPXY PABHOMEPHO OTHOCHTCIILHO BCEBO3MOHCHAIX .CHMMe-
Tpudeckux Kanenb. IIpuBoaATes MofpoOiikle OlEHKH, MMCIOLHE MECTO Taiwe MJIA cTaTH-
UeCKM HEYCTOMUMBHIX Kameib. - ) . S '

The volume, diameter and other geometrical quantities associated with a pendent 'liciuid drop
are shown to be equibounded among all symmetric drops in equilibrium configuration. Explicit
bounds are given, and: they are shown to be valid also for conflgumtlons that are kno“n to
be stat,lcally unstable :

We consider inthis paper a drop of liquid pehdent from a homogeneous horizontal
plane surface /7 and in, equilibrium in a uniform gravity field directed downward
from I7 (see Fig. 1). The liquid will be bounded in part by /7 and in part by a free .
surface S. According to the general theory of capillarity, as initiated by Youxg [24],
LarLack [14], and Gavuss [9], the mean curvaturc H of § satisfies a relation

. 2=l \ N
in terms of the distance (—u) to [T, Here x is the ¢ caplllanty constant’’, »x > O '
4 1is a Lagrange parameter corresponding to the (prescribed) volume of the drop. The ’
surface S is to meet, /7 in a prescribed constant angle y, depending on the materials.

Figure 1: Pendent drop profile and continuatjon

) 1. Simple evpenments (and everyday experience) suggest that; any such drop .
with sufficiently large volume will be physically unstable. Apparently the first at-
tempts to introduce the volume quantitatively as a criterion for instability were due
to. HageN [10] and to TRAUBE [21]; however, thelr formal analyses were based on
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erroneous assumptions (md led to poor predlctlon LoHuNSTEIN [15] mtegrated (1)
_ numerically and determined a family of (,onflguratlons with increasing drop height,
in which the volume achieves a local maximum; he adopted that configuration as
criterion for instability. Lohnstein’s calculations suggcsted also that there is an upper
bound for the diameter 6f the wetted disk on /7, at least among stable configurations.

’

Figure 2. Drop profiles and sinéuléir solution

Jh(,rc is. by now a fairly extensive literature on-the stability question (cf. [2, 15,
17, 19, 23] and the further references there cited), all of which tends to substantiate
Lohnstcm_ s criterion. We remark that all but the last of the cited works develop

“criteria relative to surfaces that. were not yet known to exist. The point is not an

idle ong, as it cannot be expected that a formal solution will continue to exist when
stability fails, and thus the criteria developed could,well have been vacuous. The first

- attempt to obtain a global description of pendent drops-scems due to Bashforth .

and Adams {1], who used the problem to test a new numerical procedure. Lohnstein

was aware of the paper but overlooked the section on pendent drops. In a later note

[16] he remarks ““... entnahm ich kiirzlich das genannte Werk der hiesigen Kénig-
lichen Bibliothek, und da fand ich dann die érwihnte Tabelle, deren rechtzeitige

Benutzung mir viel Arbeit erspart hitte”. KeLviN [14] proposed a geometric inte-

gration procedure; his result in a specific case suggested the existence of formal
solutions of (1) of a sort, that had not been physically observed (see Fig. 2). Modern
computing methods have facilitated the numerical integration of (1), and many
- particular cases in agreement w ith Kelvin’s discovery have sincc been worked out,

see, e.g.,. [5, 11—13, 18| Hipa and NAKANISHI [12] were apparently the first to find

oonflgumtlons with a large number of “‘bulges” v and their calculations suggest that

the maximal “physical” volume (as defmcd in_ § 5) could oscillate to a finite limit as.
Coxcus and Fixy [5] obtained:

the vertical height increases (cf. the discussion in § 7)
A global existence theorem by characterizing ana]vtxcal]y the set of all symmetric
“pendent drop’ solutions. WENTE [22] later proved that every solumon is symmetric,
so all.solutions are included in the family considered.
The family may be obtained by observing that in the bymmetnc case (I) can he
written, after elementary transformation, in the parametric form
%':;iny;, . —Z%,:cqsy;, % :—u——%sir\np | (2)
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.
3

_ for u, radial distance r,and mclmatlon angle y in terms of arc length s, and by studying
the continuation of a (local) solution of (2) with prescrlbed initial valueu(0) = », < 0.
It is remarkable that in the entire range 0 > ug > —00 a solution exists globally
and uniquely, and defines a (sectlonal) curve that extends to infinity without limit
sets or double points. With increasing |uo| the number of bulges increases. mdeflmtely
(Also the value 4y = —oo can be considered, in which case.a singular solution U{r} is
obtained, see [3, 4, 13].) After crossing the r-axis, the curve oscnllates about v = 0,
with peaks of successwely decreasing magnitude. ‘ :

" The formal pendent drop solutions are obtamed by cutting the curves by honzon-
tal-lines; these lines gencrate the plane /7 of support. If /T cuts the surface in more

than one-circle, and if the configuration is to have physical meaning, then the wetted -

surface consists only of the dlSk bounded by ‘the innermost circle, as otherwise the

drop would penetrate /1. . o
The cases u, = —4 and u, = —8 are illastrated in Figure” 2. Since WE\"I‘E (23]
has shown that.instability must occur before the appearance of a second inflection,

it is apparent that the equation for the solution surface is not cognizant of the msta- -

bility, at least asifar as, existence and regularity are concerned.

To each section, there corresponds a finite number {r;, u,} of points at which the
section is vertical. The value 2r, = 2 max {r;}- was defined in [5] to be the diameter
of the drop, and it was _shown there that there is an equl bound for the dlameters
‘of "all possible drops.

Denote by 7, the coordinate of the first pomt at whlch the solution curve crosses
the r-axis. It is shown in [5] that », plays the role of a'dividing point, separating
_ the portlon of the curve with the bulges from the portion that oscxllates about the
r-axis. A

Denote by r, the coordmate of the first peak. For any physical drop the diameter
d of the wetted surface on /T satisfies' d < 2 max {r,, 7).

Let V donote the volume of a (phy sxcal) drop, defined as the volume of that com-
ponent cut off by /7, which meets the u-axis. _—

We intend to prove that all four quantities, vy, 74, 7, V are eqmbounded among “all
posszble drops, without.regard to stability considerations. Specifically, we shall prove:

Theorem 1: 7, < 6, where 6 ~ 2.473 is the unique .po‘sztne root of
Pl 3U = Q. o o S (3)
‘'Theorem 2: To < u, where p = 2.888 is the unique root r > 6 of .

o2 P S B r\¢ 1. : ' o

Theorem 3: Set v = ? ]/7 7y The7z
4

rpt < 0
(l+r)ll1(1'+—)—— 1
. T
" and thus r, < 5.333.
'lhcorom 4 |4 S n}/—7 2, and thus V < 1264

~

Theorcm 1 \vas already proved -in [5]; we include here a proof that has been

short(,ned in some ways. Our discussion dcpends on the general rcsults of [5]), (a) that °

.
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S

. the dolutions exist and have thc appcarance mdlcated in Figures l, 2, and (b) that .
every drop has the properties’

(i) all outer vertical points (curvature vectors dlrected toward the u-axis) lie
between the hyperbolae ru = —1 and ru = - —2; the’ inner vertical points
satisfy —1 < ru < 0; -~

(ii) at'7, the sectional curve is- ]ocally a graph u(r), and O<u (r ) < .

Proof of Theorem 1: For any drop, the maximum dlametcr occurs at an outer
" vertical (b, uy) and is preceded by a segment u(r) of the curve, joining (b, u,) to a

. point (a, ug), Which is either an inner vertical or the ll’lltldl point (0, uo) On the intér- -
val a < 7 < b we have from 2) -

(rsiny), = —ru. ’ o , ' (6)
Since bu, < —1 <'au, < 0, the curve segment meets the hyperbola ru = —1 at a
pomt (c, u,). Smce sin Yo = lifa :i: 0, we have from (6)
. ,

o
"r:mu;—a——fgudg . S ‘ “(7)

\

and since u < 0 on the scgmcnt there follows sin p > 0 and therefore u’ > 0 Inte-
grating by/parts and setting r = ¢, we thuq fmd from (7) -

'

1 1 - : o

. laregst ‘ S . 8

celn/wc>2(a ”c)_'2 c. . ', . (8)

1 ' -

since au, > —1, cu, = —1 Jhus sin y, > —. Further at (c u) the slope of the
solutior curve cannot ‘exceed that of the hyperbola we conclude that ¢ < 3U4.
We now repeat the proccdure startmg the mtegratlon at ¢, to obtain /

b > csin % b —c) + / 2y’ (o) do. E o (9

In the interval of mtegratlon we have —2 < ™ S —1. By (6 ), r(sin p), = —ru’

— sm y; thus there is no inflection on the interval,’and u'(r) > u'(c). We conclude

1 .
from (9) since sin y, > —2-, c < 314, that ‘ : o .

b3 — 392 _ 334 < 0. . ' (10)

Py

The unique positive root of (3)is easxly seen to.exceed any value satlsfymg (10), and
the stated bound for 7, follows 8

- 3. VVe proceed to prove Theorem 2. By (ii) above, there must; be a segment i

u(r) < 0 of .the solution curve, joining an inner vertical (or mmal) point (a, u,) with
the crossing pomt (70,0). We have from (6), 1f a < i S TS Ty, ‘ .

7 sin p(r) — asin p(a) = 'ff,gudg. : 4 (1)
Setting « = a-in (11); we thaiﬁ sin p(r) > ar-1 = 0. Another usc-of (ll)'rfow yields
du V ' ’ '

- —— = tan ¥ >siny > art .siri (o) ' (12)
. dr N ' , : .
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v ’ : . -

from which , p

—u(r) > (« sin y(&)) {n pl o | . (13)

" We place (13) into (11) and repeat the above procedure td obtain

N

]

or A | 7 1 reo Pt - e v
— st 4 =~ 14) -
« sinp(x) dr 1 2" T 2‘“ In & +:, 4 ( -.)

an intégration of which yields - o
D a1 i or2—al 1 o\ u(x) L -
{(1—5)h2 4+ 20— — = (aln—= - 1

( 2)“ Ty ‘2(“ "a) < Tasmp) . - 09

The success of the procedure depends on a ]udlclous choice for & We observe first

1
that an mtegratlon by parts in(11) yields « sin p, > — = au(zx) since au, > —1 b)
(1) and sin g, = 1 ifa == 0. Thus (15),can be written ) -
' a? 7, 12— al 1 o 2 .
F 1 — = -~ _  ——lalnl) — = . 16
P = 02)'1n6\+ _~ 2(,n“.).m<0 6

There holds F, > 0 when r, > «, and (16) thus determines a least upper bound

d
u, for r, One finds —== = =0 accordmg as & 2= g A 1.4428, here o, is the unique

positive solutlon of dox ) .
'l "a"’ 4 — a2 Ioﬂ[ii’m * ] ’ 4 1 o v
. I — =) ——— +— e~ —1|—=4==0." 17
( '2).,& +4e'.- I—zt3= o un
If r, < &4, thereis nothmg to prove. Ifa < xy < rpyweseto = g in (16) to obtam

7, < 2.806. If &y < a, we recall from (1) that au, > —1, sin ¢, = 1 thus, ( 5) can

now be written

, : 2\ 2 _qr .1 ' 2 .
' G(rn;'a)E(l—“—)ln.r—"+r"—a.—l(a1nr—") _i‘é<0 (18)
o a La) o a ' )

7)) T T\

~and (‘17) takes the form - o . . o -
' V. a?\ Y2 — a® '-a2[a-2;2-a' ] 2 1 B o ‘
_(1.—7).T+Te, “Hrate=os 9

which has the unique positive solution @y ~ 1.157 < (;40.-Thus', in the équation

. G(r;ya) = 0 we will have 7, increasing in a. Since ¢ < 6 (Theorem 1), we obtain from

(18) the stated eqtimate-l \

4. Proof of Theorem 3: We cons1der the segment of the solutnon curve ]ommg
(7w, 0) to (75, up). On that segment we have u > 0, sin v > 0. Wntmg v = sin y, we
have from (6) .

. Uy = —U {vr‘l ¢ ' . o C V'(20)'

and thus v, < —ortl, from which '
\ 70 < 7, L S L @

on the segment
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"We now integrate (20) in u along the segment, from 0 to u,, obtaiiing
Cup N . -
sin r
fdeu — (1 — cos y,) :’—-E u,?

from which

< }/—1/1 —cosy, = 12 VT:"_C"’_T <VZv,. (22)
Yn ‘ o :
" Thus by (6)
(rv)y = ~ru > —ru, > —_'}/2_7'2;,,‘ . o o ‘(23)'4

from which °

R 5 ,
v(r) > Tn¥n (1~-|- %;) — V%rv . ‘ : N ‘ (24).

r.

Thus, »(r) remains pbsibive at least until the value Ay, with

/‘-2:%(‘/2—“;). | . @)

We now observe u “(r) > v(r) and integrate the mequallt) ‘resulting from (24) from
r, to r. We obtam .

-

' : 1 = 7 - ]/Er ot ] ‘
: — V2 — = 1)t 26
y(r) > 7, {(1 —+— 24] r,,) In Py 1 (?’n2 I)I . (26) .
R ’ - . . : < ‘ . -
Once the hcnght u(Zry) is attained, we find from (6) (rv), = —ru < — ru(ir,) and
thus for ir, < r <7y, :
2 (72 Y2
1V < irgulir,) — u(/'.r,,),r—;;ﬂ
It follows that the value 7,, at which v = sin p = 0, must satisfy
S 2iru(ir,) . . L : - .
2 ——— - (Ary)2. . 27
S TGy Goalle 27)

In (27) we Lstlmatc the denominator from (26), and the numerator hy pldcmg (26)into
(6) and 1nte0ratmg from 7, to ir,. Using (25) we are led to the stated inequality (5 )8

. 5. Proof of Theorem 4: The volunie of any physical drop cannot exceed the
volume ¥V, of the drop obtained by taking the supporting planc-I7 through (7p: up).
. We have, in terms of arc length s measured from the’ VCI‘tC}\

~

N
Sp

3 R
' do S d L
Yy =aru, — 22 f ou -K ds = m',,2u,, + 27 T (0 sin y) ds = aryu,

0 : 0

N

. by the goverh/ing equations (2), since siny = 0 at s = 0, s,, Accordmg to (22)
2, and the theorem follo“s 1

.
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6. The estimates we have given are in nondimensional form. To obtain the corre-
sponding dimensional results for a given physical configuration, we need only multiply

- each spatial coordinate that appears in any relation by }J». Thus, for a water drop

hanging from a glass plate in vacuo .in. the earth’s gravitational field, for which
situation one has y & 0, x & 29, we find r, < 0.46 cm, »,'< 0.54 cm, 7, < 0.99 cm,
-V < 0.81 cm?. These values, although they are within the range of reality, are cer-
" tainly not sharp. The results do provide, however, general qualitative information
that could not be obtained from the methods that were previously available. We
remark that as u, = 0, 7, and 7, become the first positive zeros of the Bessel functions
Jo(ry and J,(r); thus r, ~ 2,405, r,, ~ 3.832. In the dimensional case just considered,
r, &~ 0.447, r,,~0712 : '

“Figures 3 and 4 show results of computer calculations, of r, and of V, with increas-
ing |uy|. The appears to be either continued oscillation about or very slow conver-’

, gence toward the values for t.he smgular solutlon U(r) (see § 7

2.50 : 2 I
N \
T. 1.88 .
r;’ [\ /\ [\'[\[\’\AAf\l\AI\AAAAAAAAAAA'A““““A..;
f 1.25 F \/ Vl V V V v VVVVVVVV,VVVVVVVVVVvvvvvvvvv'vvv
0.63 |-
. AN
r Ty L 1 L. 1 P
0005525 50 7.5 10.0 5 B0 15 2. ,
: -y
O

Flgure 3. Initial null- -point for drop proflle and singular solution

. 200
T 15.0 | ' : .
v I /\ /\ [\I\I\n!\AAAAAﬂAAAAAI\AnAMAMAAAMAAAA
10.0 + \/ \/ V V VVVVVVvVVVVVVVVVVVVVVWWHVW". .
5.0
0.0 Il 1 1 1 1 . } 1
.00 25 5.0 7.5 10.0, 125 15.0 17.5 20,
<. _ud J—— .

Figure 4. Maximal volume for pendent drop and singulér arop

7. Minor extensions of the estimates given above, in conjunction with estimates -
already available in [5], suffice to show that from any family of pendent drop solu-
tions, with u#, — —co, there is a subsequence that converges uniformly in compacta,
to a limit curve that is again a solution of (2) and has the general appearance of

~

" 292 Analysis Bd. 4, Heft 4 (1985)
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the “singular solution” shown in Figure 2. The existence of such solution as a graph
U(r) was proved in [3]. It can be shown (cf. [5]) that any limit curve obtained by
- the above procedure is asymptotically close to U(r) for small 7, in the sense that both
curves are asymptotic to the hyperbola ru = —1; however, it is not yet known
whether the limit curve is uniquely determined, nor is-it known under what circum-
stances it can be represented as a graph, nor has the uniqueness of U (r) been proved.
For partial results and conjectures relating to these questions, see [3—5, 7).

" 8. The bound we have shown for the volume has an interesting heuristic conse-
quence.. Imagine a drop of liquid, situated above and resting on a horizontal homoge- -
neous plane /7 in a vertical gravity field. It is known (cf. [6]) that a unique such drop

- exists for any V. Let us choose V larger than the bound given by Theorem 4. We

_ now rotate /7 about an axis through a diameter of the wetted disk, supposing that

. the adhesion forces suffice to keep the wetted surface unchanged. It can be shown

* [8] that the contact angle distribution can no longer be constant when /7 is tilted,

nevertheless it seems reasonable to suppose that, at least for small angles of tilt, a

formal solution of the physical equations should continue to exist. If the plane could

be rotated through an angle 7z, we would obtain a pendent drop configuration, which
by Wente’s theorem [22] must be symmetric and governed by the system (2). But
by Theorem 4, no such solution exists. Thus, at some angle ¢, of tilt, the solution
must develop an instability, of a sort that prevents its further continuation (the
configuration studied in the present paper could be continued in u, regardless of the

. instability). Some computational evidence of such non-continuability was encoun-

" tered by Milinazzo (see the Appendix in [8]). . :

S
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