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Unter. Benutzung der Poissonformel von Tell I dieser Arbeit drücken wir die Spuren der 
Fundamental!osungen für die Warmeleitungsgleichung und die VelIengleichung einer korn-
pakten Rieniannschen Mannigfaltigkeit mit verschwindender Sektionalkrummung. clurcli 
solche Daten ails, die mit ihren geschlossenen geodatisehen Linien zusammenhängen. 

HcnoJlb3yH4opMyJIy rlayccoiia qacTIl I DTOtl paüoThl, Bblpai(aIOTCH cJ1ehI 4ylwaMeHTaJIbHblx 
peweinifi	BHCHIIR Tfl21 0 fl P0 B0JUI0CTII It BOJIIIOBOI'O ypaBIIeHU$1 HoMnaFTHoro nJ1ocForo 
ptitaona Mlloroo6pa3IIH TaKHMII AaHHbIM11, HOTOpbIC cnn3aHbl C ero 3MKIITb1MH reojie3Ii . -
'leexilMil Jl1ili1I}IMH. 
Using the Poisson formula of part I of this paper we express the traces of the heat kernel and 
the wave equation kernel-of a compact flat Riemannian manifold by data which are donnectcd 
with t.he'behaviour of its closed geodesics.	 '	 S 

In this second part we consider compact flat Riemannian manifolds (M, g). Using the 
Poisson formula of Part, L we derive a Jacobi transformation formula; it givs a 
relation between the spectruth of (M, g) and certain data which are connected with 
the behaviour of the closed geodesic lines of (M, ). In order to explain the meaning 
of these data ve firstly prove a theorem about the closed geodesics on a manifold 
of the aforesaid type.	 - 
( Let w be the st of non-trivial free hornotopy classes of closed curves in (111, q). 

Theorem 1: Claim (a): To every 8 E w there belongs a compact flat manifold M(0) 
of dimension n(8), 1	n(8)	n, and a non-trivial free hornotopy class 

'
00 on 

Through each point P E 31(8) go closed geodesics belonging to 8. All of them have equal 
lengths 1(8); their tangential vectors jorink(8) locally parallel fields on 

(It may happen that some of the closed geodesics through P have a self-intersection 
in P with different tangential vectors in P; it may also happen that each of the k(19) 
vectors, in P belongs to another closed geodesic of the class 8g.)	- 

Claim (b): There is an isometric immersion f : M(8) --> M. such that fo(M-(79)) is 
totally geodesic in (M, g). The closed geodesics of (M, g) belonging to 8 are exactly the 
curves /5 (c'), where c' is any closed geodesic of 111(8) belonging to 8. 

(It may happen that f0(M()) has self-intersection with different tangential 
planes; double covering is impossible.) 

For an P E M and any closed geodesic c through , P we denote 'by Up, the linear 
mapping of Mp onto itself induced by the parallel diplacement along c. If c E 8, 
P E Io(Ilio), then "P.c splits into mappings 17	and	which are tangential and 
orthogonal to 10(M(8)).	.	 0 

1) Part I of this paper was published in this journal in 1 (1982) 1, 13-23 

0
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Claim (e): We have Ij	= Id; further. .D() := Iflet (J1,+2 - Id)l is different

from zero and does not depend on the choice of P € f 6,(31(79)) and c € . 

Let A hethe Laplace- BItranii operator and a a covariant harmonic vector on 
(M, g). The differential operator 

C(M) 3 U 

L[u] := Au ± 4ig*(a, Vu) - 4 t2g*(a , a) u 

has a self-adjoint extension in L0(M) with discrete spectrum {f}E everyeigenvalue 
repeated as often as its multiplicity indicates. Let c be any closed curve iii M; then 
the value

:== 27rif a(dx) 

depends only on the free homotopv class ,0 of c. 

Theorem 2 (Jacobi transformation formula): Fort € C, Tic I > 0, one has 
-	 -	-

 
Af._ volili )	e.g— 

AfESpeCL -	 (47t)'I2 

, k(9) vol M())	
(1'
(4-tt)'" 0 D(9) 

Here and in the following "vol" refers to the measure induced by the Riemannian 
metric q. If ill is an n-torus, then (1) coincides with the usual transformation formula 
for 'an n-fold tlietaseries. 

The proofs of the Theorems I and-2 are given in § 1 and § 2, respectively. For the 
general theory of closed geodesics and free homotopv classes see H. BUSEMANN [16], 
W. KLJNGENBERG 23], W. R.INow 125], S. KOBAYASIET and K. No3ITzu [8], D. Gno-
MOLL, W. KLINGENBERG and W. MEYER [19].	 - 

The compact flat manifolds of dimension 2 and 3 are classified. (See H. H0PF 
[221. W. HTzsc11E and H. WENDT [21], J. WOLF [15]). For the general classification 
problem see [15]. For the problem of Poisson formulas on Riemannian manifolds see 
(additionally to the tapers quoted in Part 1) 11. D0NELLY [17], P. D. LAX and R. S. 
PHiLLIPS [24]. In particular, we refer the reader to the beautiful report of J. ELSTRODT 
[18] and its comprehensive bibliography. 

§1

Let 93 be an n-dimensional vector space over the real field R. We consider 93 also 
as an affine space, taking the elements of 93 both as vectors and as points. Let he 
a properly discontinuous group of affine transformations of 93 with compact funda- 
mental domain T(). if S € 05 is the mapping: r- a() + b, where a is a linear trans- 
formation of 93, we-write S = (a, (i ); the set 2 := {a	S € 03 with S = (a, 1')} is a

finite group of order r, which we call the homogeneous group of W. 

We introduce in 93 a positive definite scalar product (, t)) i- g(, tj) which is. 
invariant under the homogeneous group: g(a(), a(t))) g(, t) for every a € 2. 
The pair (93, g) is a metric vector space or an Euclideañ space, for which the elements 
of 0 are isotnetries. it is well known that for any given i  such a g can he found. 

Throughout this paper we assume. that the elements of (Si act freely on (93, g), 
i.e. the' have no fixed points. Then there exists a flat compact Riemannian mani-

,-.
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fold M = 93/63 for which (9.3, g) is the universal covering and whose .fundamental 
group n 1 (11f) is isomorphic to 63. Let

(1.1) 
be the covering map. 

In this section we shall study the periodic geodesics on M. For the sake of preci-
seness we say.: Geodesics are always oriented and parametrized by their are lengths 5; 
the parameter representation is unique up to substitutions s s + a, a € R. A 
periodic geodesic' with period 1 > 0 has a representation H s -* c(s) with c(s + 1) 
= c(s) for every s E R. A closed geodesic of length 1 arises fro'm the restriction of the, 
paratheter representation of a periodic geodesic with period 1 to a closed interval of 
length I. 

.1) c  i nit ion 1.1: An oriented straight line S of (9.3, g) , parametrized by its arc length 
s i- 5(s), s € It, is called S-invariant with length £ > 0, if there is an"S € 63 such that 
for every s € It: 5(5(s)) = 5(s - 1). 

The following facts arewell known. (See [16, 24].) 
(i) Ifs is S-invariant with length 1 > 0, then r o 5 is a periodic geodesic on ill with 

period' 1. 
(ii) Let c be a periodic geodsic on M with period I > 0 and let he any lift of c 

in 9.3, then there is exactly one S € 0, ,3	Id, such that S is S-invariant with length 1. 
(iii) Let c 1 , c2 be two periodic geodesics on Of with periods l, 12 ,'respectively; let S 

be a lift of c 1 in 93 which is S-invariant with length l. The closd geodesics c110111, 
= 12, are free homotopie on M, if and only if there is a lift 2 of c2 in 9.3 which is 

,3-invariant with length 12.  
(iv) Let 9 be a free homotopy class of closed curves in M, which is non-trivial; we 

denote by w th e set of these classes'. There are closed geodesicson IW'.belonging to t9, 
each of them can be extended to a periodic geodesic c on M. The lifts of these c are 
3-invariant (length = period) for suitable S € 63. The elements 'SE 63 arising in 
this manner form .a conjugacy class 0 of 63, 0 . (Ed). 

(v) The set of conjugacy clashes of 63 is denoted by Q. The correspondence between 
the non-trivial free homotopy classes € co and the conjugacy classes 0 € Q \ )Id) 
described under (iv) is bijective.  

Lern ma 1.2: Let S = (a, (1) € 63, 5	Id, be given. The 8-invariant straight lines

of (9.3, g) form a (n(a) - 1) - dimensional family of parallel lines filling but an n(a) - 
dimensional plane c(S); n(a) 1; all of thent are S-invariant with the same length 1(5) 
> 0. Finally, the isometry S. when restricted to the plane C(S), acts as a translation, 
whose . translation vector has the direction of the S-invariant lines and the length 1(5). 

Proof: Let s (s) = tj ± sD be the parameter representation of any straight 
line in (9.3, g),'assume g(, ) = 1. One has S((s)) = a(j) + 1 + sa(); therefore, 
our straight line is S-invariant with length 1 > 0, if and only if 

a(0) = u,	a(t)) + b = t) + lu.  
In § 1 of Part I we have shown the direct decomposition 

93= 9.3(a)9.3"(a)	,	.	 (1.3) 

with'9.3(a) = Ice  (a — Id 	=irn (a — id). 
Now, it is easily seen that (1.3) is an orthogonal decomposition. From (1.2) we see 
that the vector ti splits as foll6ws 

= lv + (t) .-' a()))	 .	 (1.4)
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with U E 3(o) j f— o(t) € 3'(or). The vector U and the positive number 1 > 0 are 
uniquely determined by (14), whereasj is uniquely determined modulo (a). If' 
C1 1 = 11 , a2 ..., a 11(0) is a basis of 3(u), then the family of S-invariant straight lines is 
given by	 .	 I 

•	i(s) = 00 	22a2 +	+ l.n(o)Qn() + SD	 (1.5) 

where po is any fixed vector satisfying (1.4); 2..... 6 R are the parameter4 of 
the family, n(a) = dim 3(o. Note that I = 0 means S(t).= ti, what is excluded. 
By thesame reason n(a) =0 is impossible. From (1.5) the assertions of Lemma 1.2 
can be read off. Inparticilar, the plane c(S) contains the point t3 0 and is spanned by 
the vectors a 1 = U, a2.....Qfl(a)., 

- Definilion 1.3: Using the notations of Lemina 1.2 we define: () : {T E 03= e(S)} . rLhis is a subgroup of J. Those elements of s(S) which act in c(S) 
as translations form a normal subgroup t(S) of a(S) with finite factor group (S)/t(S); 
denote r(S) : ord ((S)/t(S)). Further, a(S) nZ is a subgroup of the group t(S) 
with finite factor group; denote h(S) = ord (t(S)/(S) ni). 

In order to verify the correctness of this definition we remark that the elements 
of q(S) act freely in (c(S), i) as a properly discontinuous group of isometries. Z was 
the subgroup of translations contained in 0, their translation vectors form the lattice 
F. Therefore. () n contains those translations whose translation vectors belong 
to ['(a) = Tn 3(a). As we have seen in Part I (Lemma 1.2), ['(a) contains exactly 
n(a) linearl y independent vectors; but n(a) = dim c(S), thus it follows the finiteness 
of r(S) and h(S). Moreover, we see that M(S) : c(S)/a(S) is a compact flat manifold 
of dimerisioi n(o). 

Definition 1.4: Let S =(a, b).E Gli, 5 == Id, be given and- let the vector be 
determined by the decomposition (1.4). The number of pairwise distinct images of U 
under the action of the elements a(S) is denoted by k(S).  

We are now able to give the proof of Theorem 1. 

Proof of Theorem 1: Ad (a). We consider the manifold M(S) and-its universal 
covering c(S). We denote the covering map by s c(S) - M(S). Further, S € q(S) 
determines a conjugacy class of q(S) and consequently a non-trivial free homotopy 
class z5, of M(S). A closed geodesic belongs to 790 if and only if the associated periodic 
geodesic has an S-invariant lift in c(S). Let Q be any point of c(S) and Jet U = U, U2, 

bk be the k(S) pairwise distinct images of U under the, group ç(S). There are 
k(S) isometrics S = Td, S2 .....5k(s) 6 a(S) and points Q1 = Q, Q2, ..., Q,s such 
that S i maps the pair (Q 1 , U) on the pair (Q, U i ). The closed geodesics of M(S) through 

= zs(Q) € M(S).helonging to t9 are given by 

[0,11? 8 I - s(Q + sU),	i = 1,2,..., k(S)_1 

It 1 may happen that these relations do not describe k(S) pairwise distinct closed geo-
desics. For instanee,-if there is a value € (0, 1), such that 

5(Q + so) =r5 (Q + rs+ fl U0,	i 

then we have the phenomena of self-intersection with different tangential vectors. 
It is obvious that the images of the vectors U 1 , - . -, 1)k( s ) under ns form k(S) locally 
parallel vector fields on M(S). 

It -remains to prove that the construction of the manifold M(S) is independent 
from the choice of S within its conjugacy class 0 belonging to a given 0. If
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5' = TST', T E 0, then a simple calculation shows 

e(S') = Te(S), çj(S') = Tçj(S) T- 1 .	 (1.6) 

There exists a '.ell-defined isometry 92 of M(S) onto M(S') such that r' =* 99 ° 
o T'. The isometry T maps the periodic geodesics of M(S) with S-invariant lifts on 
the periodic geodesics of M(S') with S'-invariant lifts and the same period. Further, 
one has k(S) = k(S-). We can now identify the manifolds M(S) and M(S') (according 
to. the isometry q) and it i therefore legitimate to write M(0), l(), k(0) and n() 
instead of M(S), I(S), k(S), n(o'), respectively. 

Ad (b). Define the map f: At(S) -^ M by Is = 'r o ts'. This map ,is locally 
isometric, because this is true for 'i and n. Becaus rs-1(M(S)). = e(S) 3 is a 
plane, fs(M(S)) is totally geodesic in M. The correspondence of the closed geodesics 
under Is which belong to 00 'inM(S) and to 0 in M is now clear.	- 

If we choose instead of S a conjugate element 5' = TST-' E 03, then we find at 
once fs' ==- is o and it is legitimate to write / : 111(0) - M. If there are two dif-
ferent points 1' s , P2 of 211(0) with 1(P1) = /0 (P2 ), then thei'e are two points Q1, Q2 
of c(S), which are -equivalent, but not (S)-equivalent in f8 (P 1 ) = f0 (P2 ) we have 
self-intersection of 31(0) with different tangential spaces, but no double covering. 

Ad (c). Let [0, 1(0)] D s i-*c(s) be any closed geodesic in Al belonging to 0 E w 
with P.= c(0). Let ë he any S-invariant lift of c in 93 with length 1(0). Assume: 
S = (a, 6). Denote by 'i 1 , • i2 the differential of r at E(0), (l(0)), respectively. Then 
itis easily seen that 

[I 0	21 2 a = 

From these relations it follows that	 - 

n 1 1 0TIp0 1 a 1 .	-	 - 

But cr' when restricted to 3(a) = 3(a 1 ) = ker (a - Id) equals the identity; on 
the other hand ,0(a)) is the subspaceof J11p tangential to'/o(M(0)) and therefore 

= Id. If & is the restriction of a to 93 1'(a) = im (a - Id), then & cannot 
have the eigenvalue I and & - Id is one-to'-one on 3' (a). Therefore: .Det (T1 Id) 
= Det (& - Id) == 0. If ë' is another lift of c, the element S must be replaced by. a 
conjugate element 5' = TST- 1, one has 5' (a', 6'), 93.L(a') = T3 1 (a) and 
Det (&' - 1d) = Det (& - id). This determinant depends therefore only on the 
conjugacy class 0 or the free homotopy class 0 I 

For later use we prove the following two lemmas. 

Lemma 1.5: Let S E 0, S	Ed, be given, assume S = (a, 6) E 0. Between the

numbers h(S), ((5), r(S) (Definition 1.3 and 1.4) the following equation is valid 

rk(S) = m(0) h(S) i(S)	 S	 (1.7) 

(rn(0) was the number ofconjugacy classes contained in 0) 

Proof: The isometry S acts in -c(S) as translation with translation vector l. 
Any isometry T = (r, C) of an Euclidean space is coninutable with a translation, if 
and only if t does not chapge the translation vector. Thus, if 1(S) denotes the nor- 
malizer of S in s(S), we have ?(S) n t(S) = t(S) and 

k(S) = ord ((S)/ t(S)) : ord((S)/ t(S)).	 (1.8)
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As we have seen above it is for any T E J: 
-	e(TST-1) = Tc(S).	 (1.6) 

From this relation one finds at once that 1(S) is also the normalizer of S in J. Fur-
ther, one has (S) n -= s(S) n. This can be seen as follows: if T E q(S) n, 
then T is- a translation, whose translation vector is in e(S); S acts also as translation 
in c(S); the action of T and S on c(S) is therefore commutable: T E (S). Conse-
quently, q(S) n Z	st(S) n Z. The inverse inclusion is trivial. From the normal

chain

t(S) Q T(S) n 

we find

ord (SJI(S)/t(S))	- 

= ord (4S)/1(S) n	):ord(t(S)/(S) n 

ord ((S)	: ord(t(S)/q(S)n	). 
According to Remark 3.2 of Part I we have 

ord (1(S)	= r/nt(0) 

and therefore with Definition 1.3: 

ord (1(S)1t(S))	r/rn(0) h(S). (1.9) 

From (1:8) and (1.9) the assertion follows 

Lemma 1.6: For any S e 03, S	Id. 6ne has 

-	-	 vol (M(S)) = vdi	(1'(o))1h(8) r(S) . (1.10) 

(31'()) is any fundamental domain of the lattice f'(a).) . 

• Proof: If	is any fundamental domain of c(S) with respect to the translation 
group t(S) we have 

•	.	vol M(S) . = vol Y 1 /r(S). (1 .11) 

As we have seen above, the lattice 1'() corresponds to the translation group Z n q(S) 
. t(S); (see the text following Definition 1.5). From 

h(S) := ord (t(S)/	n ti(S))	 . 

it follows at once that

vol <T = vol J(F(a))/h(S).	.	 .	(1.12)


The forulas. (1.11), (1.12) contain the assertion U 

In Section §2 of Part I we have constructed a complete orthonormal system (} in 
the Hubert space L2() of quadratically integrable -autornorphic functions over 
3. The identification of the elements of L2 (i) with those of L2 (M), M= 3/i, is 

obvious.. The construction of the	goes as follows. We consider the dual lattice 
3* of P c 3; let f = {u 1 , . .., ii} be any claps of pairwise equivalent principal 
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vectors ui E r*. (See Definition 2.3 of Part I.) To f there belongs the function 

i	() : =	exp {2i[(u 1 , a 1) ± (u1, )]}.	.	 (2.1) 
_ - 	Vi j=1 

with certain vectors a 1 € 93. The vectors u, j	1, ... . 1, permute under the action

of the homogeneous group 2: therefore, they have the equal lengths g*( tti. u 1 ) = 
9;0 (up U 1),) = 1, . . ., L	 - 

Let A be the Laplace- Beltrami operator and a a covarianf harmonic vector on 
(M, g). We consider the elliptic differential operator 

C(M)u 
i-^L[u] := u	4zig*(a, Vu)	4 2g*(a , a) U. 

To the vector field a on .M there corresponds a constant vector a € 93*, such that 
= ö. for every a E 2. If we identify functions on ill with -automorphic func-

tions on 93, then we can write 

•	L[u] = L,.0 + 4ri9*(ä , Vu) - 4 2q*(a j a) U. 

It is easil y seen that  

•	L[] -f- ).	= 0, , = 42g*(ui + t, it, + a).	 (2.2) 
The set of all classes f was denoted by	(Part I). The equation (2.2) shows that 

{t}fE is a system of eigenfunctions of ii with eigenvalues {2f}fE. Because f}rE. 
is complete, the set {,}fErepresents the whole spectrum of the self-adjoint extension 
LofL:	 .	 . 

{}fE. = Spec L. .	 .	 (2.3)


After these preparations we are able to prove our second theorem. 

Proof of Theor!n 2: The proof is an applicatioir'gf our Ppisson formula (the 
Theorem .in § 3. Part I) to the following function /. Let t be any complex number 
with 91c t > 0; we put 

•	93 )K	exp {—g(, )/4t — i(, 2ir)}.	 (2.4) 
Obviously. / is an element of the Schwartz space (93); further, one has for every 

€ 93 and a E 2: /(a()) = /().	- 
We need the Fourier transform of /, performed with that Lebesgue measure 1.1 of 

93 for which a fundamental domain	) for. the translation group	J has the - 
measure 1. The invariant Lebesgue measure v associated to the metric q differs from 

by a factor vol (()).	 •	 S 

Thus we obtain: 
93* ,u i—' /(u) = f exp (—i(u ± 27ra, ) -- g(, )14t} du() 

= (4t) 11 12. (J/Vol Y()) exp.{_tg*(U ± 2. it ± 2ã)}.	 (2.5) 
From (2.2) and (2.5) it follows that 

E7(2) = (4rt)"1'2 (I/Vol cT())	e1	 (2.6) 
• f €'	 .	.	tESPccL	 -
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(Note: 7(2t) :=7(2tu 1 ) = .• = 1(2u,.) This is the left hand side of the above 
quoted Poisson formula. The right hand side has the shape: 

	

I I Z m(0)Io(j).	 (2.7)

r 

In order to evaluate I(/) we choose any element S = (a, b) of the conjuacy class 0. 
According to the equation (3.13) of Part I we have	. 

I(/) = (I/e(a)) f I( + ) d	(a).	 (2.8)

	

S	 - 

•	If U = (Id), then 3 1(a) = (0), (= 0 1 e(a)	1, and m(0) = 1. Consequently, we have. 

•

	

	 in(0) Io(t)	/(0) = 1.	 (2.9)


Now we assume 0 (Id). We use the decomposition (14) 

b= 1t3 + (tj.- a(t))), 

with	 S 

D E Z (a), tj - a(tj) E 3 1 (a), g(, ) = 1, 1 = 1(5). 

• Thi 's enables us to write	 - - 

Io(1)	(1/e(a))f1( + l)d'ç. 

Here the vectors 6 E - (a) and the unit vector i as well as the vector a are orthogonal. 
We can therefore write: 

= (1/e(a)) e'	 2r. 	f f(s) d	(s).
- 

According to Definition 3.1 of Part I the measure y l is the Lebesgue measure of' 
the (n - n(a))-dimensional vector space 3 I (a) normalized in such a manner that 
any fundamental domain T(P 1 (a)) of the lattice I' 1 (a) has the measure 1. If we tran-
sist to that Lébesgue measure v which is induced in 3 1 (a) by the metric q we must 
write: . 

-f /() du'- () = ( 1/vol Y(FI (a))) f /(,) dv- 

The lattice r,1 (a) = (a - Id) (F) was a sublattic of P1 (a) = r  93'(a) and the 
latter decomposes in exactly e(a) cosets modulo T(a). (See Definition 1.3 of Part I.) 
Thus we have	 . 

e(a) vol 7( ['I (a)) = vol 5r (1 (a)). 

Now we obtain. 

Jo(t) = •(4tt)(7_h1(0))I2 (vol	[' (a)))- e_1'/4_2mnu(1) 

if ö is the free.homotppy class of closed curves on M corresponding to the conjugacy 
class U	(Id), we can write i(S) = 1(9), n(a) = n(0). Further, it is easily seen that 

2—nil(S) (, a) = 2iri f (dx) = p(),	 S 

where c is a closed geodesic having aii S-invariant lift, i.e. belongs to V. Finally, we 
can use the following lemma which we shall prove at the end of this section.
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0• 

Lemma 2.1: Inthe just used notations one has 

M(0 )	vol 3(F)	k(9) vol M(ö) 
r. volr(r'(ti)). - - 

From the Poisson formula 

=	m(0) IOU) 
r OEQ 

we obtain finally  
= vol M 

	
k(79) vol M(t9) e 10j4t_p	S 

•	 1SpecL	 (47tt)I2 +,'E- (47t)"°"2 D(0) 

This formula is exactly the desired result of Theorem-2 U 

Proof -of Lemma 2.1: Let El , ..., ,, be any Z-basis of I', such that fl,..., gnm 
isa Z-basis of F(a). Further, let tj, ..., t,, be any orthonormal 11-basis of 8, such that 

t)flO is an fl-basis of (a). The matrix X whose entries are the coordinates of 
,, with respect to t, .... to,, has the form 

f	
*\ 

•	 kO	Xj'	•,	 S 

where X,1^2 are matrices of type (n(a), n(or)), (n - n(ó,.n - n(a)). 
We have,	 - 

•	vol 3(1') = JDet X -'Det X21, vol 3(1(a)) = Det j.	 S 

• Let X be the matrix whose entries are the coordinates of (a - Id) ().....( a - Id) (i,,) 
with respect to t),, ... t,. Then we find 

0 (O	\(	*\(0 

ko .t) ko	&2)	\ 2) 

Here W is the mtrix of the restriction of a Id on 13 (a) taken with respect to the 
'orthonormal basis t),(,) +'j , . . .,t. Further, W12 represent the coordinates of a -Z-basis 
Of L'(a) = (a - Id) (F) with respect to tn( o )1 , ..., tj,,. Consequntly, we have 

•	

-	 Det ( 1 2)1 = vol Y(F (q)) = IDet tI j Pet 3C 2 1  
- jDet2tl Vol 3(17) 	(210 

vol 3(F(a))	 , 

If & denotes the restriction of a- I to 3 1 (a), then we have D() = IDet (& - Id), 
(compare the proof of Theorem 1 (c)). Therefore,' we find IDet 2 = D(), and from 
(2.10) it follows that	•	 •	 •	 .	 ,	 ,	 - 

vol 3(T) - vol 3(P(a)) -	- 
•	

vol Y(J(a))	D(0)	 •	 • 

From Lemma 1.5 and 1.0 it follows that	 S	 - 

M(0)	vol 3(F) - k(S)Vol M(S)	•	 -	 S 

r	vol 3(Pe('a)) -.	D(t)	 - 

But ill(S) and k(S) depend only on the conjugacy. class 0 or equivalently on t9 U 

/	 S
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As a counterpart of the Jacobi transformation formula (1) we shall give a.corre-
sponding cos-fdrinula.	 - 

Definition 2.2: For an integer . 7h	1 and a real number a	0 we define the

distribution T(m, a) E '( L) as follows: 

('J'(rn, a),	(_2m)I2 fl0_m)I2[(t) + p(t)]a	 (2.1 J)


if in odd, and 

•	-	(T(i, j , ) = 2(_2)-19/2 
ff

A (in ' 2 [(t) + (—t)] dt	(2.12) 
-.	 Vt2	a 

if m even; in both eases T E (l{.) and A := (l/t) d/dt. 

We remark that for m even and a =- 0 we can-write 

(T(m, 0), ) = (_2)_mI2fA(12)[(t) + (—t)] dt. 

Proposition 2.3: In the sense of distributions over R we have: 

2D := 2	cos t = vol M . T(n, 0) ±	
k(s) ol M 

ESpecL	 .	Ow	D(t)
(2.13) 

Remark 2.4: a) One has: 

sing suppD = {+ 1 E RI i	with 1 = l()} u {0}. 

b) The distribution D is the trace of the fundamental solution of the wave equa-
tion over 31:

—L[u]=0. 

If n is odd, then Huygens principle is valid for this equation. Consequently, one 
must have for a suitable nighhourhood U of 0 E Ii: 

(supp D) n U	(sing supp D) n U = (0). 

This is in accordance with (2.13). it is obvious that in the case in even such a neigh-
bourhood cannot be found. In this connection the following corollaty seems remark-
able. 

Corollary 2.5: Let n be an odd number. if M is orientable then 

supp D = sing spp D. 

1/ .111' ih not orientable, then this relation is false. •	 .	 . 
Proof: Let ill be an orientable manifold. For every element S = (, h) E C33 we 

must have J)et a = 1. Taking into account that n is an odd number we find n(a) 
odd, i.e. n(0) odd. The assertion follows from supp T(n(t). a) = (a, —a) in that ease. 
On the other hand, if M is not orientable then atleast one n(0) must be an even inte-
ger and we have supp T (n(9), a) = [a, cc) u (—cc, —aJ I
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Proof of the Proposition 2.3: Let r, 2 be positive real numbers. 2 sufficiently. 
large.. Using integration in the complex co-plane we define 

1+ci 
•	 1.-1_

"
fl/2 

f 
A(r, 2): = 2 A--
 e'°14w	1)/2	' e 2 dw.	 (2.14) 

_,.1	 ESpecL 
 

- Well-known integral formulas give 

4 (i, 2) = _n/2' (2I)"'2J)A_ 1)/2(V	) .	 (2.15) 
A tE Spe c L	 -	 -	 - 

Here. J, denotes the Bessel function with index v: If 2 > 2?a, then the last series is 
uniformly convergent in every compact -r-interval. (Compare the analogous calc'ula- 
tions in the non-euclidean case [20].) Now, we use our Jacobi formula; we obtain 
from (2.14): 

A	vol M	 . 
(x, ,.)= P((2 . — n + 1)/2) 

(n—n)))/2	vol M() 
CP5{i2 - 12(0)0h/2).	(2;16) - 

OE ^D() ['((2 - n(s) + 1)/2)	 + 

We choose the value 2 = 2n 2 and complete the definition of A(t, 2n. + 2) by 
putting A(0. 2n + 2) = 0 and A(--r, 2n + 2) = —A(-r, 2u + 2). We consider 
A(t, 2n + 2) as an odd elment of '(It), to which, we apply the operator 

2) fl ± 1)_(1—n)/2 d	 - 
dt 

This can be done term by term inboth expressions (2.15) and (2.16) of A(i, 2n + 2). 
The comparison of the arising series gives the desired result A 
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