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Unter. Benutzung der Poissonformel von Teil I dieser’ Arbeit driicken wir die Spuren der
Fundamentallésungen fiir die Wirmeleitungsgleichung und die Wellengleichung einer kom-
pakten Riemannschen Mannigfaltigkeit mit verschwindender Sektionalkiimmung. durch
solche Daten aus, die mit ihren geschlossenen geoditischen Linien zusnmmenhiingen.

Vcnonbaya dopmyay [Tayccona yactu I oTott paboTst, BBIPAKAIOTCA CIIENH éyuumtemanbumx '
pewenuit ypaBHEHHUA TEMIONPOBONHOCTH Il BOJNHOBOrO yPaBHEHMA KOMMAKTHOrO MIOCKOro
PHMAHOBA \dnorooﬁpasun TAKUMH JTAHHBIMH, KOTOPHIE CBfiI3aHHI C €ro 3AMKEHYTBIMH reojesit-
‘le(‘l(ll\iH Hllllllﬂ\l“ ' .

Using the Poisson formula of part I of thls paper we express the traces of the heat kernel and
the wave equa.tlon kernel of a compact flat Rlcmanman manifold by data which are connccted
with the behaviour of its closed geodesncs

In this second part we consider compa,ct flat Riemannian mamfold@ (M, g). Using. ‘the
Poisson formula of Part I.we derive a Jacobi transformation formula; it gives a
relation between the spectrum of (M, g) and certain data which are connected with

the behaviour of the closed geodesic lines of (M, g). In order to explain the meaning . :

of these data ve firstly prove a theorem about the closed geodesms on a manifold
.of the aforesald type.
( Let @ be the sét of non-trivial free homotopy classes of closed curves in (ﬂI 9).

Theorom 1: Claim (a): "To ever y ® € w there belongs a compact flat manifold M(H)
of dimension n(®), 1 < n(9) < n, and a non-trivial free homotopy class 94 on M(D).
Through each point P € M(J) go closed geodesics belonging to 8,. All of them have equal-
lengths 1(9); their tangential vectors form k($) locally parallel fields on M(9). v

(It may happen that some of the closed geodesics through P have a self-intersection
in P with different, tangcntlal vectors in P it may also happen that each of the k(%)
vectors in P belongs to another closed geodcsnc of the class 39,.)

Claim (b): There ts an isometric immersion fy: (19) — M, such that /o( ) 18
totally geodesic.in (M, g). The closed geodesics of (M, g) belongmg to & are exactly the

- curves fg(c'), where ¢’ is any closed geodesic of M (&) belonging to Jo.

(It may happen that fs(M(9)) has self- mtersectlons/ with different tangential
planes; double covering is lmpos51ble ) -
* For any P € M and any closed geodesic ¢ through P we denote by l[p ¢ the linear
mapping of M, onto 1tse]f induced by the parallel displacement along c. If ¢ € 9,
P € [5(My), thén ITp spllts mto mappmgs 17""‘g and f[pc; which are tangentlal and
orthogonal to jo(M (®) ) . _ .

\

1) Purt I of this paper was published in this journal in 1 (1982) 1, 13—23. °
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Claim (c): We have [10¢ = 1d; jurthe') D() := |Det (ITp, — ]d ) is different
from zero and does not (lepeml on !ize choice of P € fo M( (#) and c € 9.

Let A be'the Laplace- Beltrami operator and o a covariant harmonic vector on
(M, g). The differential operator

C (ﬂl) SUuUP> -
Liu]:= Au + 4mig¥(x, Vu) — dng* (o, o) u

has a self-adjoint cxtemlon in Ly(M) with discrete sp(,ctl um {/shep, every eigenvalue
repeated as often as its multiplicity mdlca,tes Let ¢ be any closed curve in '11 then

"~ the value

p(d) == 2ni f a(dz)

dcpends only on the free homotopv class ¢ of c.

Theorem 2 (Jacobi transformation ;‘ormuia) ForteC, Ret>O0,one has

: )_, _lf' _ vol M
ipeSpect - (4wt R -

Ly k() vol M(9) e BA-p@) ' (1)
ia (A=) @R D) °© ,

"Here and in the following “vol” refers to ‘the measure induced by the Riemannian
metric g. If M is an n-torus, then (1) comclde\ with the usual transformation formula
for'an n-fold thetaseries.

The proofs of the Theorems 1 and 2 are given in § 1 and § 2, respectively. For the
-general theory of closed geodesics and free homotopy classes see H. BUusEMANYN [16],
W. KLINGENBERG [23], \V Rixow [25], S. KOBAYAsm and K. Nowmizu [8], D. Gro-
-MoLL, W. KLINGENBERG and W. MEYER [19].

The compact flat manifolds of dimension 2 and 3 are classified. (See H. HOPE

[22], W. Ha~tzscHE and H. WENDT [21], J. WoLr [15]). For the general classification
ge

problem sce [15]. For the problem of Poisson formulas on Riemannian manifolds see
(additionally to the papers quoted in Part I) H. DoxkrLy [17], P. D. Lax and R. S.

PuiLLIPS [24). In particular, we refer the reader to the beautiful report of J. ELSTRODT '

[18] and its comprehensive bibliography.

s

$1. ,

Let R be an »-dimensional vector space over the real field R. We consider 8 also
as an affine space, taking the clements of 8 both as vectors and as points. Let & be

a properly discontinuous group of affine transformations of 8 with compact funda-,

mental domain F(®). 1f S € (S is the m;lpping‘: 1+ o(r) + b, where o is a linear trans-
_ formation of B, we_write S = (g, 0); the set L:= {o| 25 € @ with § = (g, b)} is a
" finite group of order 7, which we call the homogeneous group of &.

We introduce in B a positive definite scalar product (L) y) + ¢(r, y) which is.

invariant under the homogeneous group: g( (x), 0 1))) =g(x. y) for every o € L.

The pair (B, ¢) is 2 metric vector space or an Euclidean space, for which the elements

of @ are isometries. It is well known that for any given @§ such a g can be found.
Throughout this paper we assume. that the elements of @& act freely on (%,.g),

i.e. they have no fixed points. Then there exists a flat compact Riemannian mani-

i
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i

fold M = B/ for which (R, g) is the universal covering and whose fundamental
group 7,(M) is isomorphic to . Let . :
: 1’58—”11-:%/@, ! , (1.1)
be the covering map.

In this section we shall study the pCI‘lOdlC geodesics on M. For the sake of preci-
seness we say_: Geodesics are alw ays oriented and parametrized by their arc Iengths LR
the parameter representation is unique up to substitutions s +—>s+a, a € R. A
periodic geodesic’ with period I > 0 has a rcpresentatlon R > s > ¢(s) with ¢(s + 1)
= ¢(s) for every s € R. A closed geodesic of length [ arises from the restriction of the |
parameter representation of a periodic geodesic \\1t,h period ! to a closed interval of

length 1.

Definition 1.1: An oriented straight line € of (B, g). ﬁarametrized b Y its arc lenqth
s > &(s). s € R, is called S-invariant with length | > 0, tf there is an’S € (B such that :
for every s € R: S(&(s )—cs—+—)

The following facts are-well known. (See [16 241.) .

(i) If ¢ is S-invariant with length I > 0, then z 0 & is a periodic veodesw on M w 1t11.'
period- . . |

(i) Let ¢ be a periodic geodesic on M with period { > 0 and let € be any lift of ¢
in R, then there is exactly one § € &, S + Id, such that é is S-invariant with length L.

(iii) Let ¢,, ¢, be two periodic geodesics on M with periods 1, I,, respectively; let &,
lje,'u lift of ¢, in ¥ which is S-invariant with length /,. The closed geodesics c;o, L

== 1,2, are free homotopic on M, if and only if there is a lift ¢, of cz in Y whlch is
S invariant with length Z,.

(iv) Let & be a free homotopy class of closed curves in M, whlch is non-tmvnal; we .
denote by w the set of these classes. There are closed geodesics.on M belonging to 3,
cach of them can be extended to a periodic geodesic ¢ on M. The lifts of these ¢ are
* S-invariant (length = period). for suitable S € &. The elements 'S € @& arising in
this manner form.a conjugacy class 0 of @, 0 &= {Id}. -

" (v) The set of conjugacy classes of @ is dencoted by . The correspondence between
the non-trivial free homotopy classes ¥ € w and the con]uvacy classes 0 € 2\ {Id}
_described under (iv) is bijective.

Lemma 1.2: Let S = (6,0) € &, S %= 1d, be given. J‘he S-tnvariant str(uqht lines
of (B, g) form a( (o) — 1) — dimensional /annly of parallel lines filling out an n(o) —
dimensional plane e(S); n(c) = 1; all of them are S-invariant with the same length I(S)
> 0. Finally, the isometry S, when restricted to the plane ¢(S), acts as a translation,
whose translation vector has the direction of the S-invariant lines and the length isS).

7

Proof: Let s — g(s) = 1) 4 sv be the parameter representa‘mon of any straight '

line in (Y, g), assume g(v, ) = 1. One has S(g(s ) = g() + 0 + sa(v); therefore,
our straight line is S-invariant with length [ > 0, if and only if

o) =v, oY) +0=1 + . | H(1:2)
In § 1.of Part T we have shown the direct decomposition ) . : '
)@ B (0) o | (1.3)

\

© with B(0) = ker (¢ — Id), B+ (o) = im (¢ — 1d).

Now, it is easily seen that (1.3) is an orthogonal decomp'ositionA From (1.2) we see -
that the vector b splits as follows

b=l + (y 7—“ a(v)) . (1.4)

.-
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with v € B(0), ) — a(y) € V(o). The vector v and the posntwe number [ > 0 are

umque]y determined by (1.4), whereas't) is uniquely determined modulo V(o). If?

a; =0, g, ..., Q). 1S & basis of B(o), then the family of S-invariant straight lines is

given by ‘ '
t

S ’_) I(s) - t)O _{_ 202 + + /n(u)an(a) + SU - T (15)

where 1), is any fixed vector satisfying (1.4); Z,, ..., 240 € R are the parameterq of
the family, n(¢) = dim B(s). Note that ! = 0 means S(y).= v, what is excluded.
By the same reason n(o) = 0 is impossible. From (1.5) the assertions of Lemma 1.2
can be read off. In~ partlcular the plane ¢(S) contains the point 1, and is spanned by
the vectors a, = v, q,, .. > Anto)-. '

" Definition 1.3: Usmg the notations of Lemma 1.2 we define: q(8) := {T €Y
| T(e(S)) = (S)} “This is a subgroup of ®. Thosé clements of g(:S) which act in e(S)
as translations form a normal subgroup t(S) of g(:S) with finite factor group g(S)/t(S);
denote 7(S):= ord( (S)/t(S ) Further, g(8 )nZ’, is a subgroup of the group t(S)
with finite factor group; denote h(S) = ord ((S)/g(S) nT).

"In order to verify the correctness of this definition we remark that the elements
of g(S) act freely in (e(S ) as a properly discontinuous group of isometries. T was
the subgroup of translations contained in @, their translation vectors form the lattice
I'. Therefore, g(S) nT ‘contains those translations whose translation vectors belong
to I'(c) = Fn V(o). As we have seen in Part T (Lemma 1.2), I'(c) contains exactly
n(o) linearly mdcpendent vectors; but n(c) = dlm e(S), thus it follows the finiteness
of r(S) and h(S). Moreover, we sce that M(S) := e(S)/g(S) is a compact flat manifold
of dimension 7(g).

Definition 1.4: Let S = (0, b).€ @, S & Id, be glven and- let’ the vector. v bc
determined by the decomposition (1.4). The numbcr of pairwise distinect i images of v
under the action of the elements g(S) is denoted by k(S).

- We are now able to give the proof of Theorem L.

Proof of Theorem 1: Ad (a). We consider the manifold M (S) and.its universal
'covermg ¢(S). We denote the covcrmg map by zs: e(S) — M(S). Further, S € g(9)
determines a conjugacy class of q(S) and consequently a non-trivial free homotopy
class 9 of M(8S). A closed geodcblc belongs to 4§, if and only if the associated periodic
geodesic has an S-invariant lift in e(S). Let @ be any point of e(S) and let v = 0, 0y,
.., Dis) be the b(S) pairwise distinct images of v under the.group g(S). There are
k(S) isometries S, = Id, S,, ..., Sks) € g(S) and points Q, = @, Q,, ..., Qs such
that S; maps the pair (@;, v) on the pair (Q ;). The closed geodesics of M (S) through

= 75(Q) € M(S). belongmg to 190 are given by _ “

[Ollasr—n-sz—}-sb) i=1,2, . k(S)

It,may happen that these rclatlons do not describe k(S) pairwise distinct clo:.ed geo-
desics. For instance, if there is a value 5 € (0, 1), such that

t
25(Q + sv;) =‘nsQ+~(s.+s]n,, i37,

then we have the pheriomena. of sclf-intersection with different tangential vectors.
. It is" obvious that the images of the vectors Dy, ..., Bys) under ss form k(S) locally
“parallel vector fields on M(S).

It ‘remains to prove that the construction of the mamfold M(S) is mdepcndent
from the choice of § within its conjugacy class 6 belonging to a given . If
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8 = TST“, T ¢ @, then a simple calculation shows , -
o eS) = Te(S), o(8) =Tg(S) T . (1.6)

There ex1sts a well-defined 1sometry @ of M(S) onto M(S’) such that =g =@ o ng

o T-'. The isometry ¢ maps the periodic geodesics of M(S) with S-invariant. lifts on

the perlodlc geodesics of M(S’) with S'-invariant lifts and the same period. Further,

© one has k(S) = %(S’). We can now identify the manifolds M(S) and M(S) (accordmg
to, the isometry @) and it is therefore legitimate to write M(ﬁ), U(9),. k(8) and n(#)
instead of M(8S), US), k(S), n(s), respectively.

Ad (b). Define the map fs: M(S) — M by [s= 70 g~ This map is locally
isometric, because this is brue for = and ms. Because ns“(M(S)) =e(S) S Vis a
plane, fs( S)) is totally geodesw in M. The correspondence of the closed geodesms‘
under fs which belong to & in M(S) and to ¢ in M is now clear.

If we choose instead of S a conjugate element 8" = T'ST-1 € @&, then we find at
once fs: = fso ¢! and- it is legitimate to write f, : M () — M. If there are two dif-
ferent points P,, P, of M(J) with fa(P,) = f4(P,), then there are two points Q,, Q,
of e(S), which are @-equivalent, but not g(S)-equivalent: In fo(P,) = [5(P,) we have
self-intersection of M(#) with different tangential spaces, but no double covering.

-Ad (c). Let [0, (8)] 3 s > c(s) be any closed geodeslc in M belonging to & 6 w

. with P = ¢(0). Let & be any S-invariant lift of ¢ in ¥ with length I($). Assume:
S = (0, b). Denote by =7, the dlfferentlal of 7 at c(O), &(UD)), respectively. Then
Jit.is easily seen that .

‘Mp.0om =m,, Moo =a,.

, From these relatjons it follows that

Yo lp,0m = g1,

But o-! when restricted to B(o) %(0‘1) = ker {0 — Id) equals the identity; on
‘the other hand n,(% a)) is the subspace of Mp tangential to’ fo( M (#)) and therefore
agee = 1Id. If ¢ is the restriction of ¢! to 8L (s) = im (¢ — Id), then & cannot
have the elgenvaluc 1 and o — Id is one-to-one on B 1 (g). Therefore: Det (173, — 1d).
= Det (5 — Id) == 0. If &’ is another lift of ¢; the element S must be replaced by, a
con]ugate element S' = T'ST-!, one has 8 = (¢, 1), BL(c') = TV (s) . and
Det (6" — Id) = Det (¢ — Id). This determinant depends therefore.only on the
con]ugacy class 6 or the free homotopy class '0 [ ]

Tor later use we prove the following two lemmas.

Lemma 1.5: Let S€ @, S =+ Id, be given, assume S = (a, D) E.é Between the
- numbers k( ), t(S), 7(S) (Definition 1.3 and 1 4) the following equatzon s valid

k() = m(6) h(S) #(S) S L (1.7)
(m(0) was the number of ¥- con]ugacy classes contained in 0):

Proof: The isometry § acts in.¢(S) as translation with translatlon vector ly.
Any isometry 7' = (t, ¢) of an Euclidean space is comnmutable with a translation, if
and only if t does not chapge the translation vector. Thus, if N(S) denotes the nor- -
malizer of S in g , we have N(S) n t(S) = t(S) and '

(S) = ord (g(S)/1()) - ord(R(S)/1(3)). - R . (1.8)

]
I
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As we have seen above it is forany 7' € &:
- e(I'ST-1) = Te(S). o (1.6)

From this relation one finds at once that R(3) is also the normalizer of S in @&. Fur-
ther, one has N(S)nT = g(S) nT. This can be scen as follows: if T € g(S)nT,
then T' is'a translation, whose translation vector is in ¢(S); § acts also as translation
in e(S); the action of 7' and S on ¢(S) is therefore commutable: 7' € N(S). Conse-
quently, q(S)nT S N(S)nIT. The inverse inclusion is trivial. From the normal
chain

CMES) 2 HS) 2 NS) T
we find- : ‘
' ord (T(S)/t(S)) ' ‘ : | -
= ord (R(S)/N(S) n T): ord(t )/N(S) 0 T)

‘= ord (R(S)- i/‘l) sord (t(S )/g(S)'n T).

A?cording to Re_mark.3.2 of Part I we have :
ord (R(S) - T/T) = r/m(h)

and therefore with Definition 1.3: .

(1.9)-

ord (R(S)/t(8)) = r/m(6) h(S). .
FI‘OI;] (1:8) and (1.9) the assertion follows B ' .
Lemma 1.6: For any Se®, S+ Id. onehas . ‘
vol (M(8)) = vol F(L(@))/h(S) 1(S). " (1.10)

(J’([’(a)) is any fundamental domain of the lattice I'(s).) .

Proof If F, is any fundamental domain of e(S) with respcob to thc translation

"roup t(S) we have
. o ) .
. vol M(8).= vol F,[#(S). ’ ’ S IO B B

As we have seen above, the lattice /(o) corresponds to the translation group T n g(S)
<. 1(S); (see the text following Definition 1.5). From

h(S) := ord (1(S)/T n g(S))
it follows at once that .
vol F, = vol F(I'(0))/h(S). CL(112)

“The forxlliula.s,(l .11), (1.12) contain the assertion 8

Tn Scction § 2 of Part I we have constructed a complete orthonormal system {ys} in
the Hilbert space L,(®) of quadratically integrable ¢-automorphic functions over
Y. The identification of the elements of [,(®) with those of L,(8), M = V|G, is
obvious.. The construction of the y; goes as follows. We consider the dual lattice
I*— R*of 'z B let t = {1, ..., 1} be any class of pairwise equivalent principal
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" vectors u; € I'*. (See Dcfinition 2.3 of Pa-rt I.) To t there beiongs the function -

. i ¢ o ’ . -
B3 ply):= Vi 2 exp 2rilu;, ;) + Cuj. DI : (2.1)
_with certain vectors a; € B. The vectors u;, j =1, ..., 1, permute under the action

of the homogencous group g; therefore, they have the equal lengths g*(u,, u,) =

g*(u, u), g =1,..., L
Let A be the La,place Beltrami op(,rat,or and « a covariant harmonic vector on
(M, g) We consider the elliptic differential operator

C°°(Jl[) . o
> L[u] = Au -+ 4u1g (x, Vi) — 4mPg* (a, x)u.

‘To the vector field « on M there corresponds a constant vector @ € RV*, such that
oT(a) = a for every o € 2. If we identify functlons on M with &-automorphic fune-
tions on B, then we can write

Llu] = Au + 4rig*(a, Vu) — 4=%g*(a, d) u
It is easily seen that . a N
Liy) + 2y = 0, 7 = 45%*(wy + 8,1, +8). - (2.2)

The set of all classes f was denoted by § (Part I). The equatlon (._.._) shows that
{w;}ggg, is a system of elgenfun(,tlons of L with eigenvalues {i}icy. Because {piecy
is complete, the set {/¢g)icp represents the whole spectrum of the self-adjoint mtensnon :
L Of L:

“{ihtep = Spec L. . o , (2.3)
After these prcparatidns we are able to prove our second theorem.

Proof of Theorem 2: The proof is an application~gf our Poisson formula (the
Theorem .in § 3, Part I) to the follo“mg functlon f. Let ¢ be any complex number
with Jte t > 0 we put

B3 f(r):=exp {—g(r, z/4t—i<r,2nﬁ> . . (29

Obviously, fis an element of the Schwartz space @(%) further, one has for every -
r€Band o€ L: flof (x)) = J(x) '
We need the Bouner transform f of {, performed with that Lebesgue measure s of
B for which a fundamental domain F(X) for. the translation group T & ® has the -
measure 1. The invariant Lebesgue measure v associated to the met,nc 9 dlfferb from
1 by a factor vol (F(T)).
Thus we obtain:

V* 5 um> f(u) = fcwp —l(u-f—drra 3 = 93, 5/4t } du(z) -

= (4mt)"* (1/vol J(i)) exp. —tg*(u 2xd, w4 2=a)) . (2.5)
From (2.2) and (2.5) it follows that

I1(2RE) = @mt)2 (1/vol F(@)) X e M. (2.6)
R (T o L Ay €SpecL ’ R
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(Néte: J(2=f):="f(2=u,) = --- = f(2=u,;).) This is the left hand side of the above

quoted Poisson formula. The right hand side has the shape:
1 :
b= 2 mi0) I(f). (2.7)
T geQ - ‘ :

In order to evaluate I4(f) we choose any element S = (O‘ b) of the conjugacy “class 0
According to the equatlon (3.13) of Part I we have '

L) = (1/elo )f/a+b)du() - e
Bl . 4 ’ .

If 6 = {Id}, then B(s) = {0}, 6'= O e(o) = 1 and m( ) = 1 Consequently, we have .
m(0) Io(f) = f(0) = 1. ) _ (2.9)

" Now we assume 0 = {Id}. We use the decomposition' (1.4)
_ b=+ (9— oly), | ,
with . .. . o -
v € Vo), Y —oy) € Vi), glb,v) =1, I=1US).

This enables us to write S

Io(f) = (L/e(@) [ 13 + W) dute).

Bl

" Herc the vectors 3 € 8 * (¢) and the unit vector v as well as the vector a are orthogonal.”
We can therefore write: -

\

Tu(f) = (1elo)) ™" [1(3) dyut (3).
. T8l C o .
According to Definition 3.1 of Part I the measure u} is the Lebcsgue measure ofu

the (n — n(o )) dimensional vector space R 1 (0) normalized in such a manner that
any fundamental domain J(Pl( )) of the lattice 1'% (¢) has the measure 1. If we tran-
sist to that Lebesgue measure v} which is mduced in BL(g) by the metric g we must
write: . ,
- vf'/(a)du;(a (1vol F(I'* (o )ff(z, ydvi(s). -

B Lo ' Bl : L

The lattice I'! (o) = (a-— Id) (I") was a sublattice of I't (o). I'n SB.l( o) and the
latter decomposes in exactly e(o) cosets modulo I'} (o). (See Definition 1.3 of Part [.)
Thus we have

e(o) vol F(I't (a)) = vol 3‘(1’; ().
Now we obtam

Io(f) = .(4rt)(n—na)2 (_vo] F(T (0)))—1 e~ 1S At—2mi(SV.0) |

1f ¢ is the free. homotopy class of closed curves on M corresponding to the conjugacy-
class 6 == {Id}, we can write [(S) = [(3), 7 (a) = n(d). Further, it is easily seen that

8) (v, &) = 2mi f (dz) = p(d

where ¢ is a- closed geodesic havmg an S invariant llft i.e. belongs to #. Finally, we
. can use the following lemma which we shall prove at the end of this section.
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. ;- . .
- Lemma 2.1: In'the just used notations one has

mB)  vol F(I) _ k(®) vol M(9)
r. Vol F(THo) . D@)

From the Poisson formula
- 1
2, f@2rt) = — 3 m(B) Ie(f)
e T e€0Q, . .
we obtain finally - . . ‘

. e._ilx _ vol M Z k() vol M(v?)
A!éSpch) - (4me)ni2 Pr (4mt)?0)2 D(9)

~10)/at—p(8) _

'This formula is' exactl); the desired result of Theore\m.-2 ]

. Proof-of Lemma 2.1: Let gy, ...; £, be any Z-basis of I, such that g, ..., L@
is'a Z-basis of I'(¢). Further, let 1y, ..., §), be any orthonormal R-basis of B, such that
Y1, -+ Da iS.an R-basis of V(o). The matrix X whose entries are the coordinates of
“Ti;---» Tn With respect to ), ..., 9, has the form , ' :

; _ ¥, * ‘ ) |

where X,, X, are matrices of type (n(u), ﬁ(a)), (n — n(6),n — n(o)).'
We have. : , )

vol F(I') = |Det X, - Det X,|, vol F(I'(0)) = [Det X,].

"Let % be the;natrix \:'hose entries are the coordinates of (¢ — Id) (,), ..., (¢ — Id)(x,) -
with respect to 1), ...; 1),. Then we find

g (0 O\(& *\_(0 0

L__AO QI 0 :{2 o 0 ‘)«Ix?.‘
Here % is the matrix of the restriction of ¢ — Id on B4 (o) taken With respect to the
orthonormal basis Yn()+1, - - -, ). Further, AX, represent the coordinates of a Z-basis

of Iy (6) = (6 — Id) (I") with respect t0 Yuoys 15 ---» Yn- Consequéntly, we have

|Det (AX,)] = vol F(Iy (a)) = |Det | [Det X,
. | Det Uj vol F(I') '
 vol F(I(0))
If & deriotes the restriction of 0! to B! (c), then we have D(&) = |Det (¢ - Id)|,

(compare the proof of Theorem 1 (c)). Therefore, we find [Det A| = D(¥), and from
(2.10) it follows that ’ L A

vol F(I) ' v.ol F(I(o)) |

(2.10)

vol F(I () D(9)
TFrom Lemma 1.5 and 1.6 it follows that , ' .
m(0)  volF(I) _ k(S) vol M(S)

r volF(It(e) - D)

But M(S) and k(S) depend only on the conjugacy. class 6 or equiv‘alehtly ond 8 .

7
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As a counterpart of the Jacobi transformation formula (1) we sthll give a,ocorr'e-
sponding cos-formula.

Definition 2.2:" For an integer m = | and a real number a = 0 we defmc the
distribution 7'(m, a) € D'(R) as follows:

(T(m, @), gy = (—2m)1=miz g0~ "”/-[«p( + o=k (2.11)
if m odd,y and )

(T'(m, @), ) =2(—2m)""2 | ——m=x A2[p(t) + @(—1)] dt S (2.12)
- : : . Yer —at ’ .
if m even; in both cases @ € D(R) and A := (1/t) d/dt.

We remark that for m even and ¢ = 0 we can- write

(T(m, 0), ) = (—2m) =12 [ Amp(t) + p(—t)]dt.”

Proposition 2.3: In the sen_se of distri[)utions over R we have:
N 1
2D, =2 5 cosVigt = vol M - T(n, 0) + x> @) yol M(#)
' J;ESpecl ‘ 0€w D)
: = (2.13)
Remark 2.4: a) One has: .

&P T(n(9), 1(9)).

singsupp D, = {+l€ R| 2 & withl = (9} v {0}.

b) The distribution D, is the trace of the fundamental solution of the wave equa-
tion over M :

*u
ot?

L

— Lju} = 0. S -

If n is odd, then Huygens principle is valid for this equatlon Conscquently, one
‘must have for a suitable ncighbourhood U of 0 € R: y

(supp D) n U = (singsuppD)n U = {0}.

This is in accordance with (2.13). It is obvious that in the case m even  such a neigh-
bourhood cannot be found. In this connection the following corollary secems remark

- able.

Corollary 2.5: Let n be an odd number. ‘1‘/ M s orientﬁble then
supp D, =sing supp D, .

If M is not orientable, tken this relation is /alse
. P

Proof: Let M be an orientable mamfold For every element S = (0,0) € & we -
must have Det ¢ = 1. Taking into account that 7 is an odd number we find n(c)
odd, i.e. n(#) odd. The assertion follows from supp T( n(P), a) = {a, —a} in that case.
On the other hand, if M is not orientable then at'least one »(#) must be an even inte-

» ger and we have supp T (n(9), a) = [a, o) U (—co, —a] I
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Proof of the Proposntlon .3: Let 7, 2 be positive real numbers, 2 sufflclentlyﬁ

large. Using integration in the complex w- plane we define

1+ 00i .

. 4~ 1-nf2 _ —/1 /
Az, 2):= —= f et ‘"/"w B+ 3 Y. (2.14)

. ) Py | . AfESpecl -

1—ooi
Well-known integral formulas give

: ; I -2 : : 5 1x
Az, 7) = w2 (2¢/Y 7)Y J“_,,, (Vi) (2.15)

)EESpecl,

Here, J denotcs the Bessel function w1th index ». If 7 > 2n, then the last series is
umformly convergent in every compact z-interval. (Compare the analogous calcula-
tions in the non-euclidean case [20].) Now, we use our Jacobi formula; we obtain
from (2.14): : '
vol M . ¢4-n-1
I'((2.— n + 1)/2) . . _
Ly T (- n0)12)( ) vol M(z?) ' :
OEw D) r((2 —n( 1)/2)

We choose the value 2 = 2n - 2 and complete the definition of A(r, 2n'-+— 2) by

Az, 2) =

.

ePO(E — P T (9.46)

\

puttino 40.2n +2)=0 and A(—7,2n + 2) = —A(r,2n + 2). We consider _

Az, 7n + 2) as an odd element of D'(R), to which’ we apply the operator
<4 :
- Q-+ 1)l—n)2 Z fln) , .
’ dt . oo o,

This can be done term by term in both cxpressmm (2.15) and (2.16) of A(z, 2n + ¢ )
The comparison of thc arising series glvcs the desired result 8 .
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