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‘ Mit Hilfe einer neuartigen Anwendung des Schauderschen Fixpunktsatzes werden Existenz-
sitze fur einc Klasse von quasilinearen singuliren Integrodifferentialgleichungen und eine zuge-
hérige Klasse von nichtlinearen singuliren Integra.lglelchungen bewiesen.

'C momoubio HOBOT0 NPUMEHEHUA NPUHIMOA Hlaynepa ROKA3HIBAIOTCA TEOPEMH CYILIECTBO-
BaHMA MJIA .ONHOTO KJACCA KBABIIMHENHWX CHHIYIAPHHX HHTerpo-auddepeHUNaTbHHX
ypabBHeHuit M CBA3AHHOIO' C HMM KJacca HeJMHeAHHX CHHPYISAPHHX MHTErpajIbHHX ypaB-
HEHHM.

By means of a novel application*of Schauder’s fixed point theorem, existence theorems are
proved for a class of quasilinear singular-integro-differential equatlons a.nd a related class of
nonlinear singular integral equatlons :

_ Introduction

Nonlinear singular integral and integro-differential equations with Hilbert or Cauchy
kernel have been treated by many authors, cf. PogorzELsK1 [12] and the recent mono-
graph [8] by GusEmNov and MuKHTAROV. But as a rule only existence theorems
are given for (in some sense) small nonlinearities. Without smallness assumptions
on the data existence assertions were obtained for special classes of such equations
by means of the theory of monotone operators in spaces L, of summable functions
[1,9,7 (cf. also 8), 2, 13] and recently for Cauchy kernels by means.of a nonlocal
‘implicit function theorem in the Sobolev space W,! and in the space C" of contmuously
differentiable functions [10].

In this paper a class of quasi-linear mtegro -differential equations Wlth Hilbert
kernel and a related class of integral equations are investigated by mieans of the
~classical Schauder fixed point theorem in the space C of continuous functions. Redu--
cing the integro-diffecrential equation to an equivalent integral equation of fixed
point, type, . the application of Schauder’s theorem yields some general existence
theorems for the integro-differential equation.under various kinds of assumptions
on the data. By differentation a related class of integral equations is reduced to these
mtegro -differential equations. This class of mtegral equations contains the known
Theodorsen integral equation of conformal mapping as a particular case. For its
solution in case of a general smooth starlike Jordan curve an existence proof will be
given which is independent of the Riemann mapping theéorem. For some subclasses
“of the integral equations the uniqueness of the solution is proved, too.

By means of analogous methods as here the Riemann-Hilbert problem for holo-
‘morphic functions and the Poincaré problem for harmonic’ functions in the unit disk
are dealt with in the author’s papers [14, 15], respectively. : :

-
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386 . L. v: WOLFERSDORF

- 1. ‘Statement of problems

, We look for 2z perlodlc solutions @.€ W 1(—7! 7!), p> 1 of the quaszlmear mtegro-
dzj[erentuzl equation

(s)+H[M<-,<p)¢']-(s)=F(s)+H[Nt~,¢)] () for aa. se[—m]

SR - ‘ _ (1)
‘ safisfying~the additional condition ‘ o - . “
P0) =k - SR S (2a)
or ' R :
o _\2_:zf‘l’(8)d8=c,’ : ' - S @b

~* respectively. Here'k, ¢ € R are given real constants and

“x

K . B - s _
Hlw](s) =3 f~w(a) eot 3 do | .
is the well- known Hilbert transformation . -with cotangent kernel of a function
w € Ly(—mn, n),p/l

The assumptions on the given functlons M(s, @), N(s, p) and F(s) Wlll be specified.
la.ter Of course, -F has to fulfil the condition ° .

Jreds=o e
which is necessary for the solvablhty of (1) since f H{w] (s) ds = 0 for any function
w € Ly(—n, 7n), p > 1. Cos . == “

Further we deal with the mtegral eqwuwn _ ' - _
¢ls) + Hlm(, 9)] () + Kln(, @) (s) = f(s), o ‘ 4) -
where H is the Hilbert transformation and ' o
~ . ‘ Z '

O'—S‘_ . ~ 1
2)“7," | , .

Klw] (s) = —l—fw(a)' In (4~sin2
_ 2n .
The transformation K is re_lated to H by the well:knowri foﬁnula

= Klw] (s) = —H[o] (s) o ) - ' (5a)
) for any function o € Lp(;n, z), p > 1. Moreover, ‘ A

‘iﬂwu@eﬂmmg . _.n.._' o (5b)

for any function w € W. l( -7, n) p>1 Therefore, differentiating (4) yields the -
: equatlon (1) with

- M8, @) == mg(s, sp),v Nis, <p) = n(s ) — m,(s, 9), F(s) "{/'(8), - (6)
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s

if the given functions m(s, @), n(é @), and f(s) satisfy suitable'a.ssumptions (Precise
assumptions on these functions will also be given later. For f € W, (—=, n), p > 1,

* the function f* obviously fulfils the necessary solvability condition (3) ) Furthermore, -

'

_fK[w](s’)ds;o - -

for any function-w € Ly(—, n) p > 1. Integrating (4) over (—n, ) thus leads to
the additional condmon (2b) with the given constant

=—fma f..- D M.

Le., under suitable assumptions the integral equatlon (4) is equivalent to the mtegro- i
dlfferentlal equation (1), where M, N, F are given by (6) together with the a.ddltlonal
condition (2b), where cis given by (7). - S

Remark:- In case of n(s, ) = 0 the .equation (4) can also be reduced to the
,followmg Riemann-Hilbert problem - for the holomorphic functlon W(z) U(z)
' + zV(z) in the unit disk with the boundary values p(s) = U(e")

- V(e")-—m(s U(e*)) + (Hf) (s) S |

with the’ addltlonal condition

-

»U(O_).—_ p f/(s) ds )
~Problems of such type are-dealt with in our pa.per [14] by an analogous method as
here. . , .

2. Existenvcc theorem’
* Putting . ‘ ; ’ o a N N
Ks) = M(s, g(s) . ' o (8)

o) = Fle) + HINC, @) (), . 9)

‘the integro- -differential equatlon (1) takes the form of the linear mtegral equamon‘
(A.1) in the appendix for v = <p Smce -

_and _

TN

fmwds—o - : S - - (10)

-
-

due to the assumption (3), any solution v € L,,(-n, n) to this equatlon has a vamshmg
integral over (—z, ) and therefore represents the derivative.¢’ of a 2n pcriodic
fundtion ¢ € Wpl(—=n, ), p > 1. ,
© We make the\followmg basic Assumption A on the data:
(1) M(s,p)is a continuous function on [—x, #] X R which is 2n penodlc in's.
(ii) N(s, @) satisfies the Carathéodory condition'on [—=, 2] X R, i.e. it is measur-
able in s on [—=x, ] for all € R and continuous'in ¢ on R for almost all s € [—=, ),

[
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388 L. v. WOLFERSDORF

and it fulfils aﬁ estimation of the form . - .

V(s )| S Nof6), No € Lo(—a, m), 1<o< oo, - (11)

for ‘@ from bounded intervals of R.
(iii) F € L,(—n, 1) with the same exponent o as in (11) and fulflls the condition
(3). (f N(s, ) = 0 also o = oo is allowed.) :

Then 4 is a continuous 2z periodic function and g € Ly(—m, n) for any continuous
27 periodic function ¢.

The equablon (1) is therefore equivalent to the expressmn (A.8) in the appendlx\
for v = ¢’ with 2, g given by (8), (9). Taking into account the additional condition
(2a) or (2D), respectively, we obtain the equivalent fized point equation :

¢ = Py . (12)

¢

" for @, where the operator P is d:efiried for’any 2n periodic continuous function & by

—

(P) () =k + [ Uo, §) do oy
0. . o _ '
with the kernel . )
Us, §) = Da(s) e=tm a2(8) g(s) — oc(S) e~ (WO H[fg eHr] (s). (14)
The constant D = D[£] is glven by . ;

D[&] = tan g - 2i~z fﬂ(s) g(s) elHrIe) dg N , . (15)

where A
1 ! " . I
pls) ds, -

/4='2—n

-

’ and the functions g = gls, E), & = x(s, £, 8= ﬂ( ) 4= ul(s, E) are defmed by .

-2 0

g(s, &) = F(s) + H[N(-, &)] (s), (16)
u(s, &) =-arc tan i(s, £), A(s, &) = M(s, &), _ RN )
(s, &) = cos (s, §) = 1[{1 +7%(s, &), \ (18a)
o Bls, &) =sinu(s, &) = As, H[YT + 225, §). . (18b)
In case of (2 a) the constant k is prescribed, Whereas in case of (2b)
k=k[-§]=c——l-ffl(a,§)ddds. ' ' > (19)
. 2n - . - . 4 .

We no“; estimate the kernel I(s, &).

Lemma Let p be an arbztmry number satzs/_/mg 1 < p <'p and put x = 2pg/

[e — p). Denote further ,ul = min u(s), pe = “mazx u(s), s € [—a, x], and assume the
,oscﬂlatlon of u(s) X ‘ i

Yy =m—m <Az .. ' (20)
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’

" Thén for the L, norm of U(s, &) the estimation

o a 1p
_”l(ﬁg)”p‘:‘( [ ks, &P ds) '

| < @) (gl {1+ [, + tan uo] (cos w2 (21)

: holds where Mo = mMaX [—p,, u;] and A, is.the norm of the Hilbert trans/ormatwn n .
L(—=, 7), r = 2po/le + pl; ,

_-tan(n/2r)v if 1<r'§_'2' - i -~
" leot (nf2r) if 2Z<r< oo ' ' 4

(cf. [11: Kap. IV, § 7).
_.Proof: It is

fieC-, S)Iip = ligllp + lle~ ”“H[ﬂg e”"]llp + lle™ ¥, tan po 5 flgl lef] ds.

"Further since 1/p = 1]p + 2/x
- Hgllp = (27~ ligll,
'éince 1/p=tjr + 1/x

e, S @ fomnn),
_ and since r=1[x+ 1)

]

[ lgl 1ot ds < (2@ el gl

—_n

where 1/t = 1 — (1/r). Fma.lly, accordmg to the well-known Zygmund lemma [16]
under the assumption (20) it is

Nl < (2) (cos 2N o
so that
| e HeH[Bg €], < fle~iul | HTG e#rll,
. . < A, o], fleH¥] ligll, < A2 (005 %)~ gl
This together-yields (21)

We consider the operator P on the convex compact subset R of the space C[— -7, n]
of 2n penodxc continuous functions defined by :

= {§ € O[—m,7]: |&(s)| < R, 15(81)\'—‘5(82)I = Rolsy — s5'}y, . (22)

.~ where q is the exponent conjugate to P and R, R, are fixed posmve numbcrs to be
specified later. We make the following addltlonal Assumption B:

(i) Ms, <p) is a bounded function on [—x, 2] X R satisfying the inequa]ity.

2)/—-/42—/11<7Z/x S . ) (23)
for some p with 1 <p<p, x= 27)@/[@ — p] where u, = arctan 2,, k=1, 2, '

A = inf M(s, @), 2, = sup M(s, @), the mflmum and supremum are taken over
s € [—n n], p € R .
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4 ’ : .
(i1) The lnequallty (11) w1th a flxed functlon N0 € Ly(—m, ;rz) holds umformly .
. with'respect to g € R. . 4 N
Under the assumptlons A and Bit is ’

gl < IFlle + 4, Ns =6 < o0, o T (24)

where - N, is the norm of: :No and 4y the norm of the Hilbert transformatlon ‘in
- Ly(—, n), and by the above lemma we have.the estimation

e E)Ilp = (22 GiL + [4, + Y] (cosxy)=¥y =L - (2.5)
.w1th Ao = max [ —2y, 45] for any functlon E € C[—a, =] N , e
. In case of (2a) we take - o

.

Ry = L, R—[k[+(2n)1/qL - ‘

Then the operator P maps the subset ® of O’[ 7, 7] into itself because for ¢ .,'="I’§
lt lS . . . l. i ' .

p(s1) — @) = f s, &)1 ds < fsy — sl I0C- s)n,, < Lis; — softfe
and . ' : . ' )
@l = ltp(O)l + Itp(é‘) — @(0)] < Ikl + (27!)"" L ] '
Analogously, in case of (2b) we take
’ Ry=L, R=ld+22NL

usiﬂg the estimation ~
[kl < lol + f id(s, §)| ds < |cf +.(2ﬂ)‘/q Hl(', Ellp < lel + (271)”" L.

Furthermore like in our paper [14] one can show that under the assumptlons A
~and B the operator P:  — ® is continuous in the norm of C[—z, n]. The Schauder
fixed point theorem applied to the equation (12) in & then yields the existence of
a solution @ € & to the equation (1). Moreover this solution is absolutely contmuous
and has a derwatlve @'(s) = l(s <p(s)) @ € L,(—m, ), ie p€ W =7, 7).

Theorem 1: Under Assumptions A and B the mtegro -differential eqwuwn (1)
.possesses a solution ¢ € W,'(— -7, 7).

Corollary: If the function n(s q)) satisfies the Caratkeodory condition and an esti- .
" _mation of the form (11), the functions m(s, ?). and f(s) are differentiable and the corre-

sponding functions M(s, @), N(s, @), F(s) given by (6) fulfil the assumptzons A and B,
the tntegral equation: (4) possessses a solution ¢ € Wyl(— 7, m). ,

Remark 1: Assumption (i) of B is fulfilled for apy nonnegatlve (nonposmve)
bounded function M(s, ¢) satisfying the inequality

sup-M(s, p) < tan (n/x) (inf M(s, @) > > —tan (n/:’t)). _ ‘.(26)
" Remark 2: Assumption (ii) of B can be weakered to
NG P S Nyfs) + Nofs) R, 0< 8 <1, , (27)

for s € [—=, @), lpl < R and any positive R, where N,,, k=1,2, are flxed functlons .
from L,(—=, n). Namely, in t.hls case -

(-, €, < Const, + Const, R®
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for £ € § and the operator P maps § into itself if the constants R, R, are taken suffi-
ciently large (The same conclusion is valid if (27) is fulfilled only with 6 =1 but the
norm of N, in L,(—n, =) is sufficiently small.) .

‘Remark 3: Since for a continuous function u the functions ex## ¢ L (—a=, =) for
any finite » > 0, from (12)—(14) it follows that the solution ¢ € W !(—=, =) for any
1< p <o not, only for the value of p determined by the assumptlon (23). N

>'3 Further existence theorems

. We employ a modification of the above method in the case g = 2 estimating the
norm of. the kernel l(s £) in a.nother Way In - Assumption ‘B the inequality (23) is’
replaced by - -

=<2, ' @)
"Then from' formula (A.26) of the appendix we have the estlmate '
8, Il < E, lgll, ' : ' (29)
'where 11+l denotes the norm in Ly(—mn, ). The constant E, is glven by
' E, = B I+ ;.,] (cos 21, » e (30)
where ' . : - h : : ]
B, = 2/[1 — tan y] : " ) ~ o (81)

~ and again 2, = max [—1;, 4,]. -
~ Now, under Assumption Bitis

gl S WFI+ No = Gy < o0, ' (32
where N o is the L, norm of the function No in (11) Hence
-, Ol = E’ Go= L. (33)

Therefore we can take p = p =2 and ¢ = 2'in the definition (22) of the subset
® with R0 = Lyand R = k| + ]/ELO or R-=|c] + 2}/2—7;L° in the case of (2a) or
(2b), respectively. Then the operator P again maps R into itself.

" Besides, the operator P: & — & is continuous in the norm of C[—=, =]. Namely,
let £, € ®, » = 1,2, ... be a uniformly convergent sequence with the limit function
& € R Wer have to show that the functions P&, defined by (12), (13) conveige uni-
formly to P&,. For this it is sufficient to prove that the functions (s, &,) converge
weakly in' Ly(—n, x) to I(s, &). Moreover, in view of the uniform boundedness of the
L, norms of I(s, &,) by (33) it suffices to.show the weak convergence of the functions
Us, &,) to I(s, &) in the space L,(—=, =) only.’

Now obviously, the continuous functions A,(s) = A(s, &,), #a(8) = u(s, &), on(8) .
= «(8, &), Bals) = B(s, £,) converge uniformly to Zo(s) = A(s, &), . wo(8) = u(s, &),
and so on. Further, the functions N(s, &,) converge strongly in Ly(—n, 7) to N(s, &)

_ and therefore also the functions g,(s) = g(s, &,) to g(s, §). Moreover, due to the

a.ssumptlon (28) and the Zygmund lemma it can be shown like in the corresponding

proof in [14] that the functions exp [+ H(u,)] converge strongly to exp [;};H(yo)] .

-in Ly(—m, ) and also in Ly, .(—z, n) for sufficiently small positive ¢. .

Therefore, the constants D[E,,] defmed by (15) converge to D[¢,). It remains to
- prove that the functions , .

Al ~e-"“~H[h e"“n]‘ b = Buge,

t

e . . .
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converge weakly to A[&o] in Ly(—mn, n). As is shown in Appendix 2 the functions’
A[&,] have uniformly bounded L, norms under the assuraption (28) like the functions
l(s, &) do by (33). Besides, the functlons h, converge strongly in Ly(—=, 7) to

ko = B(s, &o) g(s, o)-
Then, for any y € Lo(—x, n) we havo

=< [(A[€,] — e~ HeeH[h, eHtn), y)

o [(emHmoH R, éHun] — A[&,), 7)|
=8, +8, '

where (-, ) denotes the usual scalar product. -
Itis : )
Sy = |(1 — effrn=Hre A[E,] y)|

g ”X”ec ”A[§,|]||2 ”1 —_ e”"n_”I‘aHZ
< Const |le~Hro(eHro — eHun)||,
< Const |le=Heo|| |lefre — eHbn||.

with ‘some p' =2+ ¢>2 and ¢ = (1/2 — 1/p')7! < . Taking ¢ sufficiently
small, the functions exp [H,u,,] converge strongly to exp [Hup)l in Ly(—zm, 7). Also
the function exp [—Hpy,] is summabel to any power q" << oo (cf. [6: Kap IX, § 5])
Therefore, S, — 0 as n — co.

Fmally,

o = I(Hh, o) — Hihy o], o=t
= lle” ”l"/”q 4, ”h efia — ho e””"”r s

where 7’ =. (1 —1/¢")t = (1/2 4+ 1p')" 1> 1 and A, is the norm of the Hllbert
transformation in L, (—n, z). But the functions h, exp [Hu,] converge strongly to
hy exp [Hyo] in L(—n, m) since exp [Hu,] converges strongly to exp [Hu,] in
Ly(—=m,n) and h, converges strongly to ke in Ly(—=, 7). Hence, also S, -0 as
n — oo.

This proves the continuity of the operator P: § — & in 0[ x, @)

Applying again the Schauder fixed point theorem to the equation (12) in R, we
obtain

Theorem 2: Under Assumptwns A and B with ¢ = 2 and the mequalzty (28) instead
of (23) the integro-differential equation (1) possesses a solution @ € Wol(—=n, n).

Remark 1: Assumptlon (i) of B with (28) is [fulfllled for any nonnegative (non-
positive) bounded function M (s, ). ,

Remark 2 The remark 2 to Theorem 1 also holds for Theorem 2. If further
M(s, @) is a nonnegatlve function satisfying the inequality

M(s, @) < M, + MyRe, 0<ow<l, o (34) -

for s € {—m, ], l|p| < R and any posmve R, we have the same estlmatlon for the -
corresponding quantities 4, and tan 2y in (30) with respect to |¢| = R. Then the -
constant E, grows not stronger than the function R? as R goes to infinity. Therefore,

a solution to equation (1) exists if w < 1/2 in case the assumptlon (11) for N(s, (p)
holds uniformly with respect to @ € Rorif § + 20 < 1 in case the function N(s @)
satisfies (27).

v
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*  Finally, we o deal with the case of a strictly posmve or strictly negatlve function
Ms, ¢): ’

M 9) 2 My>0 or M(s, o) < —M, <0 . (35)
for s € [—7:, n] and ¢ € R. The functlon v = s, 5) is the solutlon to the equatlon,
v(s) 4 H[A(-, ) v] () = (s, &), I - : (36)

“where 1 (s, &) = M(s, &(s)) and the functlon gls, E) given by (16) fulflls the relation_

fg(s $)d8—0

.
-=

in view of the assumptlon (3) Hence the mequa.hty (A.33) of the appendlx yxelds the
estimation"

WC, Ol = (/M) llgh. - o : C (37
Further in case of (35) the assumptlon (28) is fulfilled. Thus the above continuity
proof for the mapping P on § remains valid.! This 1mplles . } ,

Theorem 3: Let M(s, p) be a continuous function on [—n, n] X R which is 27:
. pertodic in s.and satisfies an inequality of the form (35), and let N(s, @) bea Carathéo-
" dory function on [—n, ] X R satisfying an inequality of the form (27) with 0 < 6 < 1,

where o = 2. Then the mtegro differential equation (1) has a solutwn @€ W2 (—n, ) .

" for any F € L2( —m, m) salisfying the, relation (3).

. Rema.rk A solutlon to equatlon (1y a.]so exists 1f the function M(s @) satisfies an :
’mequahty of the form . . .

Mww>wM+Mmﬂ O<wp<t,’ ‘ (38)
for s€ [—n 7], |¢p| < R instead of (35) where M,, M, >0 and ¢ + 0 < 1

-4, 'Spe(;ial case. Uniqu’eneés theorem

A. We consider the following particular case of the equation (1):

B N-(s @) =dM(s,p), d€R; F(s)=0. . (39) '
In this case ' - , o
AL WQ—MW(WM—MWM, . o (40)
', and according to formula (A.8,) of the appendlx the kemel I(s, &) of the lntegral
equation (12) has the simpler form o
Us, &) = d — d(cos )"t x(s) e—tHmNe) C T (41)

where

n=§fu(§,é)ds' |

" 1) Froin (37) and (14) also the uniform boundedness of the L, norms of the functions A{&,] - .‘

in the above continuity proof follows,
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.- -

We only assume that the continuous function M(s, ) is bounded such that the
oscillation -of the function u = u(s, &) is not greater than 2y = u, —u, < = for any
& € C[—m, n], where g, = arctan 4, k = 1, 2, and 4, = inf M(s, ¢), 2, = sup M(s, @)
X (s, @), the infimum -and supremum- are taken over s € [—n, n], ¢ € R. Applying
Zygmund’s lemma to (41), we obtain the éstimation . -

2, E)lp < (2207 1d] [1 + YT T 7 + Jo® (cos py)~ lm] : (42)

for 1< p< n/2y, where 1, = max [—2,, 4,]. Also the continuity of the correspondmg‘
operator P in the space C[—x, ] can be shown like in [14] or, easier, like in the corre- .
" sponding proof for Villat’s integral equation in the theory of plane cavity flows [3:
Chap. VII]. Le., a solution to equation (1) exists without an additional assump-
tion on the oscﬂlatlon of M(s, @) of the form (23) o : ~

Theorem 4: Let M(s @) be a bounded continuous function on [—m; z] X R whzch :
is 27 periodic in s. Then the integro- dz/ferentzal equation (1) with (39) possesses a solu-
tion p € WH—m, ), 1 <p< n/[yz — ml, wkere pi = arctan %, k= 1,2, and
2y = inf M, 12 sup M.

Remark: As in Remark 3 to Thcorem 1, from (41) it follows that indeed the solu-" .

- tlon(pEW Y(—m, ) for any finite p > 1.

In case of the mtegral equation (4), where (6) holds the assumptlons (39) write

2o, @) = ma(s, @) + dmy(s, g),  fls) = Const, " - (43)
E.g., this is fulfilled with d _-—1 if n(s @) = = f(s) =0 and
m(s, @) = Qe + 9), - S )

whereQ isa 2n perlodlc continuously differentiable functlon This case embraces the
well-known T'heodorsen integral equation o/ conformal mapping ( (cf. [5: Kap I1)) for
which

Qs) = In(s), a o (45)

where o = p(s) is the representation in polar—coordmates of the starlike Jordan curve:
* J to be mapped onto the unit disk. More precisely, for the Theodorsen equation

I(s, &) = cos u - e—(_’m«)(a) -1, . : . . (46)

-where u = u(s + £) and : .
2'(s) - -
o) R :
. is the anvle between the outer normal to J and the radius vector in the point (s, (s))‘
of J. The operator équation ( 12) with (46) is an integrated form of Frlberg s integro- °
dlfferentlal equation (cf. [5: Kap. II, § 4.4]). J :

" Theorem 4 thus yields the existence of a solution to the Theodorsen equation for
a smooth sta,rhke Jordan curve with contmuous function o'.

u(s) = arctan ——-

B. Finally, we state qome simple wuniqueness theorems for continuous $olutions of
- the integral equation (4). In the following we assume that m(s, @), n(s, @) are contl-
nuous functions which possess continuous derivatives Me($, @) and ny(s, @).

Let ¢4(s), £ = 1, 2, be two continuous solutions of (4). Then the difference func-
tion @ = ¢, — tp2 sa.tlsfles the equation

@) + HIA() 0) () + KIBO B () =0 s
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.

with the contir{‘uous functions . : ’
. . 1 )

., A(s) = [ mg(s, ?2($) + tei(s) — @u(8)]) dt,

) ) 5 .

1

B(s) = f”w(s ‘Pz(s) + t[%(s) — @ofs )dt
o ] .

.

We consider three cases. " : - -
In case I: n(s, p) = 0 it is also ‘B(s) = 0 and the equation T

O+ HAOP =0 T )

has only the trivial continuous solution ®(s) = 0 as it follows from Appendjx 1..
" In case TL: n(s, p) = ngp, o € R, it is B(s) =.n, and we have the equation

P(s) + H[A() D] (8) + noK[®] (s) = 0. : : _(80)°
L We multiply (50) by H[®] and integrate it over (—m, n) It is

. <

f PH(P] ds = j K[®] H[®)ds = 0

!

| (recall tha.t H[D] = —(d/ds) K[<D]) and

¢ f H[P] - H[A(D] ds f ®- Adids

—5 -

on account of the relation f D( s) ds =0 followmg from (50) by integrating it over

- i

( 7T, :'z) - Therefore, we obtain fA(s) DYs)ds = 0 whlch implies @(s) = 0 if A(s)

has constant sign on (—x; ~r) I e., the solutlon to the equatlon (4) is uniquely deter-
- mined if either - - - : .

my(s, ) >0 or my(s, p<o . I (51’) o
for almost all s € [—7x, #] and all ¢ €R. ‘ : » .
In case III n(s, p) = vm(s, p), ». € R, we multiply the correspondmg equa.tlon
m+Hmumm+MMUMM—0“ o 82)
by A® and integrate it over (—z, 7). Thls gives ' '

. fA(s)¢2(s)ds+va¢ K[A(D] =0..

—n —n

Now f xK [7} ds S 0 for any contmuous functlon x and therefore v f A(s) ¢2(s) ds

=0, ThlS 1mp11es <D(s) =0 if vA(s) has nega.tlve sugn on (—m, ). I e the solutlon
to the equation (4) is uniquely determined if .

-
~

) sign » - mq,(s, ) < 0 . . ‘_ - (53) :
for almost all s € [—=, 7] and all p € R. ) . _ o ~

~
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’

Theorem 5: The mtegral equation (4) with continuous coefficient m(s, p) possessing
a continuous derivative my(s, p) has at most one continuous solution in the cases I-IIT
zf in case II and III, respectwel Y, the condition (51) and (53) is fuljzlled

Appendix
" 1. Solution of the equation

- - o(s) + HIAC) 0] (s) = g(s) for a.a.. s €[—m ) @)

- Let 2 be a 2x periodic continuous functlon and g a function summable to a _power’
. greater than one. We look for a solution v of (A.1) summable to a power greater than
one. Substituting

Cw=lv, v_w/}-g—H[w] o, _ (A.2) .
we obtain the equation o ‘
w4+ AH[w] = g . (A.3)
for w. This equation has the unique solution (cf. [4: Chap. IV, § 31]2)
 wls) = DB(s) e~ 4 a(s) fls) gls) o
—fls) - H g B (s), (a4
{
where _ , : , L '
u(s) = arc tan A(s), _ . (A.5)
. ' 1 ) . 2s)
&(s) = cos u(s) = ——, (s) = sin p(s) = ——m"—mre (A.6)
afs) u(s) TG B(s) “{ T3 e _
] . : . . . )
- and the constant D is given by )
D ="tang- %z /ﬂ(s),g(s) e‘”‘fi"’.ds ' o S (AT)
wifh the mean Yalue
Here it has been used that ' , *

tan g = f e~He sin u ds f e~ Hk cos pds
is equal to the expressmn —Im '}’(O)/Re ¥(0) ‘of the holomorphic function ¥(z)
= e~#SKNa) in. the unit disk, where S is the Schwarz integral. :

Therefore, the equation (A 1) has the unique solution .
(s) — D(x(s) e—(Hp)3) + a‘z(s) g(s) — zx(s) e—(Ha)3) H[ﬁg em] (A8)

2) In formula (31 19) of [4] the sngn + has to be changed into —

v



Integro-differential Equations with Hilbert Kernel 397
.\ V

The solution (A.4) of the equation (A.3) is derived in [4] for Hélder continuous
functions Z and g. But accordmg to the general theory of singular integral equatlons
with continuous coefficients in spaces of summable functions (cf. [11: Kap. TIT]).

- it also holds true under the above more general assumptions about 1 and g. Also
the derivation in [4] can be directly performed under these general assumptions
utilizing the solvability of the Dirichlet problem in the Hardy classes with an expo-

nent greater than one (cf. [6: Kap IX, §§ 4, 5)).

We still simplify the expression (A.8) for v in the partzcular casesg = land g = H2.
By means of the holomorphic function @(z) = e#S¥ in the unit disk possessing the
boundary values @(e®?) = (« + 18) eH# one obtains the relations

) . ) 1 - . _— v
s H[ﬁe”ﬂ:ae”"—%fae”“ds=<xe”“7-cosﬁ s

and _

l ﬂ.e”“ ds = sin fi. ' o
27z . ' ) L
i'Therefore ‘the solution (A. 8) for g= 1 takes the form -

vo(s) = (cos @)™ 0‘(8) e"”“""’ » ' | (A 8)

Further, the solution v, for g = H}. is given by v, = 1 — v, as can be seen from the
equatlon (A.1). ILe.,

~
1

0,(s) = 1 — (cos F)*! «(s) ot - (A.s,)

’

2. Estzmatw?zs in the L, norm.

Let be g E Lz(——:’z n) and v, w € L2( n, n) Then, from the second formula in (A 2)
the estimation v — g|| < |lw]| follows, where ||-|| denotes the norm in Ly(—z, ). On
account-of the formulas (A. 4) and (A.6).this'means that :

IR Bl S o — SN a9
for the functlons o : N N '

W(s) = e~ [gg 6] 5) — Do-tma, (A.10a)

2(s) = B(s) g(s). . ‘ - L (Arl(').b)

> The iniequality (A.9) writes

fA(SF’,z)(S)dng, - - ) o A1) -

AP, 7) = (6 — ) P2 4 daf¥y — (a2 — 52)7

Z (a2 — 2 — 2q0) W2 = (a2 —p +%ﬂ2) 7

where

’

= [2(1 —.g)cos?u — 1] P2 — [(% - 1) 2 (? — 1) cos.2 ,u] %2

for an arbitrary positive constant g.
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 We now assume that , _ B
k) Sy <afd, sel-ma), . (A.12)
©'with a constant y. Then cos? yu = cos?y and '

v

A(Y’ 1) = [2(1 —q) coszy— 1]5!'2 [(% — 1) —2 (% — 1) cos? 'y] 2

f0<g< 1.1In particular, choosing

o1 = tany
=TT tany B0V , .
+ we obtain” o o
LAY, ) =K, l.m Ky B ) (A.13)
with the constants ' . . |
K = i__*__::% K, = % : (a.14)

From (A 11) and (A 13) w1th (A 14) the estlmablon o _
: ¥l = e, Ixl ‘ o : S (A.15)
" with the constant ‘ ' - ’

s o : g ' | o |
\ K, . 14 tan y _ cos 2y ) A ] .
07 o VKl .1 —tany 1= sm 2y o i (A.16)

fo]lows Under the aSSumptlon (A.12) the solution v of (A.1) then satisfies the ine--
quality vl < ||| + lgll = C, lixll + llgll or because of [lz|j = siny - gl

\

uvué<i+siny-0>ngug(1‘+‘1V'20)ugu. S 4'(A.17)

Obwously, the mequahty (A.17) holds true for all functions g € Ly(—n, 7t) if the
assumption (A.12) is fulfilled.
We further derive analogous estimations to (A.15) and (A. 17) under the less restnc-

tive assumptum N

o) <y <' n/4-,‘ 3 v O A1s)-
whero : T : o )

v(S) = #(8) — i, 2/ = max u(s) + -min p(s). . : (A.19)
. 8€{—n,m) . sgl—x,nl . .
The mequahty (A 18) is fulfllled if

2y = max ,u(s) — min () < 7/2. - _ (A.20)

a€{~n.x] ¢ s€[—n.7) . J

At first we iqtroduoe the functions ’
Wy(s) = H[fg e#*]s) — D, / o | (A.21a)
xo(8) = B(s) gls) ettimre), A - , (A.21 b)‘
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where W, = Hy, — D, and the constant
Dy = -l— Xo($) ds =‘i “.ﬂ(é‘) g(s) e(’."‘"‘l ds. . ' L (A22)
’ ’ 2n A 2n ; ) .

Then the fu_nction

Wolz) = e?f‘5*>tﬁ>[(sZoj‘ (2)+ iDy tan 5], o (A.23)

= f v(s) ds R . ,
R s
and S again denotes the Schwarz mtegral is holomorphlc in the unit disk and satis:

fxes the condition Im W,(0) = 0.
* The function W, has the boundary values

Re Wo(e¥).= e‘”"[eos y. - %o — sinw (‘I’o + D,)]

Im Wo(e") = —e~ ”"[cos v (Y’o + D,) + sinv . %o,
where

Where

2

D,=D—Dotan§=Do[tan;7—ta.n§]. . B - ' H('A.24)~
. The;'efoie, putting & = cos »(s), fo = sin »(s), we obtain the inequality -
, e~ #¥Taxo(#5 + D) + forolli* = fle*Tavoo = ol Fo + D;)an,
. "which is analogous to the inequality (A.9).
. From thls inequality in the same way as above the mequahty
* e Hu(W, + DS C, o~ el L

) .
follows, where the constant c, 1s given by (A.16) ega.ln Due to the formulas (A 10& b) -
and (A.21a, b) this means that ¥ + D, e=H¥|| < C,|lxll, and on account of (A. 24)
we.obtain [ < C, 7l + |Dol [tan & — tan| le=#%i. Finally, |Dyl = (1/2n) Jg|
X lle®#||, and under the assumption (A. 18) jtan i — tan 7| < |tan Z| + 1 and []ei”“il

12,
co?; ) in virtue of the well known Zygmund lemma [16] Therefore,
vl ] )
. IS Gy lixll + [f + [tan 7] (00S 2)’)'1 ligh -~ ' ' "~ (A.25)
o From (A.25) the estimation ' N '
Il < B, lgl A y (A.26)
w1th the constant - ) ‘ /., ' ‘ B
C E = B; +[l+itan;4|](cos2y)" ' o T A2
where . . . .
B, =140, —2/[l—tany], T ' . - 7(A.28)

for the solution v of (A. 1) follows. The mequa,llty (A. 26) holds ffor all g € L2( —m, %)
if the assumption (A.18) is fulfilled.

If the’ functlon Als stnctly posmve (or strictly nega.tlve) a.nd f g(s) ds =0 the

7 —”
s
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solution » of (A.1) can be estimated in another way. ‘\Iamcly applymg the Hilbert
operator to (A.1), we obtain the equation

Hy — v = Hg + Const =~ . (A.29)

takmg into account that : - : .
. .
Hp'= —p + —
P=—9+t5 fw(S) ds

for any function ¢ € Ly(—, n) Further, from (Al) it follows that
[ v(s)ds = fg(s) ds=0 ‘ . (A30)

—n':

by assumption. Mu]tlplymg (A. 29) by.v and integrating it over (—n, n), therefore
. Yields the relation -

'

, f 2s) v¥(s) ds = ff" vHgds | . (A.31) -

using that [ vHvds = 0.
Let now the assumplion ' s .' T
)= My>0 or As)< —My<0 in[—nx, ] ) (A.32)
be fulfilled,'respect‘ively. Then (A.31) implies the estimation

M, [ v2(s)ds < = [ 4(s) v%s) ds < [l gl

-_n —n

since ||[Hg|| = |lg|l, and we obtain the mequahty

bl < (/o) lgh A Ay

for the~solut10n v of (A.1).
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