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Mit Hilfe einer neuartigen Anwendung des Schauderschen Fixpunktsatzes werden Existenz-
sáAze für einc Masse von quasilinearen singulären Integrodifferentialgleichungon und eine zuge-
horige Klasse von nichtlinearen singulären Integraigleichungen bewiesen.	 - 
C DOM011uIO HoBoro npHMeHeHwl npHHiAHi3a fflayepa l0K3bIBIOTCH TeopeMsi - cynecTBo-
BaHWI gan -OJH0ro iiiacca RBa311sMHeHbIx CHHJ1HHUX u1lTerpo-epe11s1a.nbHsx 
ypaBHeHHtl M CBH3aHHOI'O C HHM Haacca HeJmHettHbzx CHHP11RHbIX BHTerpa.IIbHUX ypaB-
HeHuft. 

By means of a novel application-of Schauder's 'fixed point theorem, existence theorems are 
proved for a class of quasilinear singular integro-differential equations and a related class of 
nonlinear singular integral equations. 

Introduction	 S - 

Nonlinear singular integral and integrb-differential equations with Hubert or Cauchy 
kernel have been treated by many authors, cf. POGORZELSKI [12] and the recent mono-
graph [8] by GUSEINOv and MUKIITAROV:., But as a rule only existence theorems 
are given for (in some sense) small nonlinearities. Without smallness assumptions 
on the data existence assertions were obtained for special classes of such equations 
by means of the theory of monotone operators in spaces L of summable functions 
[1, 9, 7 (cf. also 8), 2, 13] and recently for Cauchy kernels by means.of a nonlocal 
implicit function theorem in the Sobolev space W21 and in the space C' of continuously 
differentiable functions [10]. 

In this paper a class of quasi-linear integro-differential equations with Hilbert 
kernel and a related class of integral equations are investigated by means of the 
classical Schauder fixed point theorem in the space C of continuous functions. Redu-
cing the integro-differential equation to an equivalent -integral equation of fixed 
points type, the application of , Schauder's theorem yields some general existence - 
theorems for the integro-differential equation under various kinds of assumptions 
on the data. By differentation a related class of integral equations is reduced to these, 
integro-differential equations. This class of integral equations contains the known 
Theo1orsen integral equation of conformal mapping as a particular case. For its 
solution in case of a general smooth starlike Jordan curve an existence proof will be 
given which is independent of the Riemann mapping theorem. For some subclasses 
of the integral equations the uniqueness of the solution is pr&ved, too.  

By means of analogous methods as here the Riemann-Hilbert problem for holo-
morphic functions and the Poincaré problem for harmonic functions in the unit disk 
are dealt with in the author's papers [14, 15], respectively.  
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1. 'Statement of problems	'S 

We look for 2v periodic solutions q . E WP 1(-7r, i)' p> 1, of the quasilinear integro-
di//ereniial equation 

(p'(s) -4-- H[M( . , ç) q,'] (s) = F(s) + H[N . , q)] (s) for a.a. S E [—'t,711 
V	 V	 ' 'V	 S.	

-	 ( 1) 

satisfying-the additional condition  
V	

-	 (0) =	 ,	 ,	 (2a) 
or  

f(8) d8 = C,	 '	(2b) 

- ' respectively. Hei-e' k, c E R are given real constants and	 V 

H[w] (s) =
	

(0(a) cot a - 8 da 
2oT f	 2 

is the well-known , Hubert transformation , with cotangent kernel of a function 
• wEL(-7r,),p>1.	 -	 V 

The assumptions on the given functions M(s, q), N(s, q) and F(s) will be specified 
later. Of course, -F has to fulfil the condition 

f F(s) ds = 0,	 (3) 

which is necessary for the solvability of (1) since JH[oi] (s) ds = 0 for any function 
V	

wE L(—, 7) p > 1.	
V	 V'	 -	 V 

•	 Further we deal with the integral equation	 - 

T(8) + H[m(', q')] (s) + K[n( . , q)] (s) = /(s),	 (4) 

where His the Hubert transformation and	 - 

-	K[w] (s) =	fco(a) in (4 sin2 a 5) 
da 

• The transformation K is related to H by the well-known formula	V 

V ,	 K[w] (s) = —H[w] (s),	 (5a) 
V 

for any-function w E L(—, v), p> 1. Moreover,	 V 

d H[w] (s) =Hkp'] (s)	',	V	 •'	 (5b) 

for any function wE W 1 (—; ), p > 1. Therefore, differentiating (4) yields the 
• • equation (1) with	 ,	 V 

M(s,'cp)	n,(s, q),, N(s, q') = n(s, (p) — m8(s, q), F(s) = f'(s),	(6)
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if the given functions m(s, 92), n(s, q) and i(s) satisfy suitable assumptions. (Precise 
assumptions on these functions wili also be given later. For /'E W 1 (-2, pr), p > 1, 
the function I- obviously fulfils the necessary solvability condition (3).) Furthermore, - 

fK[]()ds=O  

for any function-co EL,(—r, 'i), p> 1. Integrating (4) over (— pr, ) thus leads to 
the additional condition (2b) with, the giyen constant 

	

- '	c=_f/(s).	 (7) 

Le., under suitable assumptions the integral equation (4) is equivalent to the integro-
differential equation (1), where M, N, F are given by (6), together with the additional 
condition (2b), where c is given by (7).  

Remark:- In case of n(s, ) = 0 the equation (4) can also be reduced to the 
following Riemann-Hilbert problem for the holomorphic function W(z) = U(z) 
+ i V(z) in the unit disk with the boundary values q(s) = U(e48):	- 

V(e) =rn(s, U(ei8)) + (Hf) (s) 

with the additional condition  

U(0) = - f/(s) ds 

Problems of such type are 'dealt with in our paper [14] by an analogous method as 
here.  

2. Existence theorem
	 I" 

Putting
= M(s, q(s))	 '	 '	 '	 ( 8) 

and
g(s) = F(s) + H[N( . , )] (s),	,	 '-	 (9) 

the integro-differential equation (1) takes the form of the' linear integral equation 
(A.!) in the appendix for v = ': Since,  

	

-	-	fg(s)ds=0	 .	 '	 - ,	(16)	- 

due to the assumption (3), any solution v E L(—,t,'rr)'to this equation has a vanishing 
integral over (-at, ) and therefore represents the derivative q' of a 2t periodic 
function q' E W'(—i, sr), P > 1. 

We make the'following basic Assumption A on the data: 
(i) M(s, p) is a continuous function on [-iv, r] x R which is 2n periodid ins. 
(ii) N(s, q') satisfies the Carathéodory condition'on [— pr, r] x R, i.e. it is measur-

able ins on [ —a , r] for all q' ER and continuous-in 92 on R for almost all s E [—az, z], 

25*	-
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and it fulfils an estimation of the form	 - 

IN(s, q)J ;5 N0(à), N0 E L,(—n, 2i), 1 < o < c,	 (11) 
for .99 from bounded intervals of R. 
(iii) F € L(-71, ) with the same exponent 0 as in (11) and fulfils the condition 

(3). (If N(s, q)	0 also e = cc is allowed.) 
Then), is a continuous 271 periodic function and g € L(-71, ) for any continuous 

271 periodic function q. 
The equation (1) is therefore equivalent to the expression (A.8) in the appendix' 

for v = q" with 2, g given by (8), (9). 'Taking into account the additional condition 
(2a) or (2b), respectively, we obtain the equivalent fixed point equation 

q=Pq	 12) 
for q, where the operator P is defined for'any 271 periodic continuous function by 

(Ps) (s) = k+ f 1(a,  fl da	 (13) 

with the kernel	 - 

l(s, ) = Doc(s) e(hhl)(8) + 4 2 (8) g(s) - u(s) e'(Th)(8)H[8g e"] (s).	(14) 
The constant D = D[fl is given by 

D[fl = tan p . f(s) g(s)	ds,	 (15) 

where

f
it	 ,u(s)ds, 

and the functions g = g(s,	), a '= a(s,	), fi =	(s,	), a = a(s, ') are defined by 

g(s,	) = F(á) + H[N( . ,	)] (s),	 S (16) 
1u(s, 4) = arc tan 2(s,	),	).(s,	) = .111(s, i(s)),	 ' (17) 

,X (s ,	) = cos 1u(s,	) = i/j/i + 22 (s,	), (18a) 

5(s,	) == sin i(s,) = 2(s,	)/J/1 + ). 2 (8,	). (18b) 
In case of (2a) the constant k is prescribed, whereas in case of (2 b) 

k = k[]= c -	ffl(a	) dd ds.	 , (19) 

We now estimate the kernel l(s,	). 
Lemma: Let p be an arbitrary number satis/ying 1 <p <o and put =, 2p/ 
- p1 . Denote further Lj = mm	s(s), a2 = max ,u(s), s € [-21, x1, and assume the 

oscillation of ,4) 

=	/2j <7l/?. (20)
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Then br the L norm of l(s, ) the estimation 
lip 

lIl(, )II	(i l(s, 
• 

)I ds)	 -. 

^ (27t)2/ X III (1 +• Ar ± tan p] (cos xy) 21 }	 (21) 
holds, where yo = max [- 9u 1 , P2] and Ar is the norm of the Hilbert transformation in 
Lr(, 2), r = 2po/[e + p]; 

A

	

	-Jtan (x/2r) if 1 <r ^2 -	 - 
r - icot (/2r) if 2 < r < oo - 

(cf. [11: Kap. IV, § 7]). 

Proof: It is 

- Ill(-, )II	!II + lie	H[gei1P]	± lie	tan Po f 
ll Je Hy l ds.. 

' Further, since i/p	ie + 2/,c 

-	llgil	^5 (2ir)2l* IIgIIQ, 

since i/pr— hr ± l/x 

lie -"'ll	(2r)'fr lle"I! 

and since hr = 11x ± lie 

ui iel ds	(2)hi i e 'iJ ugh,, 

where i/t = 1 — (l/r). Finally, according to the well-known .Zygmund lemma [16] 
under the assumption (20) it is	 S 

•	 IIeY'll ^ (2z)' I" (cos ,'y)—l/ 
• so that

Ile—H[flg eThn]Ii	Je"'lj llH[flg e]r 

	

:5 A rIle -HP 11. 110011. llgll,	A r(2)2iX (cosxy)	ugh0. 
This togetheryields (21) I	 • 

We consider the operator P on the convex com pact subset P1 of the space C[—r, x] 
of 27v periodic continuous functions defined by 

= { E C[—r, i] l(s)l	R, j(s 1 )	(52)i 5 R0 s 1 - sh/},	 (22) 

where q is the exponent conjugate to p and R, R0 are fixed positive numbers to be 
specified later. Wemake the following additional Assumption B: 

(i) M(s, ) is a bounded function on[—t, v] x R satisfying the inequality 
2)/ = i2 — Pi < aix	 (23) 

for some p vith 1 <p <, ' = 2po/[e - p], where Pk = arctan Ak, k = 1, 2, 
inf M(s, ), )2 	sup M(s, ), the infirnum and suprelnum are taken over 

8 E :[ —r, ii], E li	 S
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(ii) The .inequality (11) with a fixed function No E LQ ( —di, ) holds uniformly 
with respect to q' E R.  

	

Under the assumptions' A and B it is	 - 

llll	llF lIe + ANo_ G < co,	 i	(24) 

where No is the norm of N0 and A1 the norm of the Hubert transformation in 
Le(-7r, ii), and by the above lemma we havethe estimation '	S 

Ill(.;	 ;5 (2v)Ix G{1 ± [A + 21 (cos y)2/ = L	 (25) 

with A, - max [-21 , '21 fOr any function E C[--r, ]. 
• In case of (2a) we take  

R0:= L, R = ki + ( 27r ) llq L.	.	-	 •'	 .	 .	 .	 . 

Then the operator P maps the subset R of C[--, v] into itself because for q 
it is	 .	-	S.	 S 

-	 - (82)1	f(l(s, E)J ds	18'-	Ill(', 011 P < Lie1 -	1Iq 

And

	

^S (0) + ç(s) - (0)i	J ki + ( 2;z )llq L. 

Analogously, in case of (2 b) we take 

R0 =. L, R,= lei+ 2(27r)u/L 

using the estimation	 . 

lki ;5 lei +f 1(5 )l ds	id + (2)hI Ill(	)ii	id + (27r) l lq L 

Furthermore, like in our paper [14] one can show that under the assumptions A 
and B the operator F:	 is continuous in the norm of C[—n, ii]. The Schauder 

• fixed point theorem applied to the equation (12) in ft then yields the existence of 
a solution ç' E R to the equation (1). McIreover, this solution is absolutely continuous 
and has a derivative 9'(s) = l(s, q(s)), ' E L(—, ,), i.e. q' E W1(_, ). 

Theorem 1: Under Assumptions A and B the integro-differential equation (1) 
• possesses a solution T E .W,1 (—n, ). 

•

	

	Corollary: It the function n(s, q) satisfies the CYarcahéodory condition and an esti-




mation of the form (11), the functions m(s, p) . and f(s) are differentiable and the corre-
L sponding functions M(s, q), N(s, q), F(s) given by (6) fulfil the assumptions A and B, 

the integral equation (4) possessses a solution q' E 

	

Remark 1: Assuiiptión (i) of B is fulfilled for apy nonnegative (nonpositive)	S 

•	bounded function M(s, ç) satisfying the inequality	
-	 S 

- 
sup-M(s, ,) <tan (v/x) (ml M(s, )>—tan (/)).	 (26) 

•	

• Remark 2: Assumption (ii) of B can be weakened to 

;iN(s,)i ;5N1 (s) + N2 (s)R1 ,	0 <a <. 1,	 •	 (27) 

for s E {—v, ii], fq	R and any positive R, where Nk, k -= 1, 2, are fixed functions 
from LQ (—t, ).Namely, in this case	•	 .	 S	 - 

•	il(,	Const1. ± Const2 W	•	

•	 S	 •
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for E P1 and the operator 'P maps R into itself if the constants R, R0 are taken suffi-
ciently large. (The same conclusion is valid if (27) is fulfilled only with 6 = 1 but the 
norm of N2 in Le(—r, i) is sufficiently small.) 

Remark 3: Since for a continuous functionu the functionse ±hlP E L,( -7r, )for 
any finite r > 0, from (12)—(14) it follows that the solution ç E W 1 (_r, r) for any 
1 ,,< P <, not only for the value of p determined by the assumption (23). 

3. Further existence theorems	 0 

We employ a modification of the above method in the case o, = 2 estimating the 
norm of. the kernel l(s, ) in. another way. In Assumption B the inequality (23) is 
replaced' by	. 

2 = U2-1L1 </2.	.	 (28). 

- Then fromformWa (A.26) of the appendix we have the estimate 
III(., flII E; E, III	 .	 - ..	 ( 29) 

where	denotes the norm in L2(- 7Z , ). The constantE7 is given by 

B7	[1 + 2] (cos 2y) 1 ,	 .	0	 (30)

where'  

By = 2/[1 - tan y]	 •0	
.	 ( 31) 

and again ).0 = max [ — A,,A2 ].	.. 
Now, under Assumption B it is 

u g h	IIFII + No	G < oo,	 .	.	(32) 

where No is the L2 norm of 	function No in (11). Hence 

II I ( . ,	E7 .	L0.	 0	
-	 ( 33)	- 

Therefore, we can take p = = 2 and q = 2 in the definition (22) of the subset 
ft with B0 = 4 and R = k ± 1fLo.or R-= -I c I + 2 lfL0 in the case of (2a) or 
(2b), respectively. Then the operator P again maps 'k into itself. 

Besides, the operator P: S --> SIt is continuous in the norm of' C[- 7z, '7r]. Namely, 
let	E P1, n.	1, 2, ... be a uniformly convergent sequence with the limit function 

E S. We , have to show that the functions defined by (12), (13) conveIge uni-
formly to P 0 . Far this it- is sufficient to prove that the functions l(s, i,,) converge 
weakly in 'L,(-7r, ) to i(s, ). Moreover, in view of the uniform boundedness of the 
L2 norms of t(s, f,,) by (33) it suffices to show the weak convergence of the functions 
l(s, i,,) to l(s, ) in the space L,(—n, t) only.' 

Now, obviously, the continuous functions A(8) = A(s, i,), 1u(s) = (s, 
= c(s,	(s) = fl(s, ) converge uniformly to ),0 (s) = 2(s,	u0(8) = u(s, 
and so on. Further, the functions N(s, ) converge strongly in L2 (—r, iz) to N(s, ) 
and therefore also the functions ge (s) = g(s, f,,) to g(s, ). Moreover, due to the 

• assumption (28) and the Zygmund lemma it can be shown like in the corresponding 
'proof iii [14] that 'the functions exp [+ H(1u)] converge strongly to exp.[±H(1u0)] 
in L2(—r, i) and also in L2+e( —r , n) for sufficiently small positive E. 

Therefore, the constants D[] defined by (15) converge to D[ 0]. It remains to 
prove that the functions .	0 

e""H[h e"-],	h =
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converge weakly to A[ 0] in L1 (—v, ). As is shown in Appendix 2 the functions 
A[J have uniformly bounded 4 norms under the assumption (28) like the functions 
l(s, a,,) do by (33). Besides, the functions h converge strongly in L2( — '-E , 70 to 
h0 =fl(s,	g(s, ).	 - 

Then, for any x E	) we have  

- A[], x)I 
e''H[h e11'-], x)I 

-+ J(e"°H[h Hp,,] - A[E0], z)I 
=81+82, 

where (., •) denotes the usual scalar product. 
It is	 S	 - 

= (1 — e 11'', A[] x)I 
•	 IIxII	A {]II2 Ii i - eHnhu1o12 

•	 Const Ile '-(e"° — OP. Al2 
S	 Con-st	Ile"' - e '"II .	 - 

with some .p' = 2 ± e > 2 and q' = (1/2 - 1/p')' < oo. Taking e sufficiently 
small, the functions exp [Hu,,] converge strongly to exp [H1u0] in L . (—t, ii). Also 
the function exp [—H1u0] is summabel to any power q' < oo (cf. [6: Kap. IX, § 5]). 
Therefore, S --* 0 as n -> oo.	

S 

Finally,	 S 

82 = (H[h e""] - H[h0 eHlo] e'oy) 

IIe "xII' A r'Ilhn e" - h0 eHP o!r ,	S 

where r' = (1 — 1/q') 1 = (1/2 + l/p') 1 > 1 and Ar. is the norm of the Hubert 
transformation in L, ,(- 7r, ). But the functions h exp [H] converge strongly to 
h0 exp [114u0] in L,, (—n, z) since exp [H] converges strongly to exp [Hu0] in 

and, h converges strongly to h0 in L,(-7r, ). Hence, also 82 -*0 as 
fl-±oo. 

This proves thecontinuity of the operator P:	A in C[—, it]. 
Applying again the Schaudcr fixed point theorem to the equation (12) in , we 

obtain	 -•	 S 

Th eorem 2: Under Assumptions A and B with = 2 and the inequality (28) instead 
of (23) the integro-di/ferential equation (1) possesses a solution q' E W2'(—, ir). 

Remark 1: Assumption (i) of B with (28) is [fulfilled for any nonnegative (non-
positive) bounded function M(s, q). 

Remark 2: The remark 2 to Theorem 1 also holds for Theorem 2. If further 
M(s, q') is a nonnegative function satisfying the inequality 

M(s,q)^5M 1 -1- M2 R'',	0 <w <1,	 (34) 
for s E [—, yr],	1? and any positive R, we have the same estimation for the 
corresponding quantities 20 and tan 2y in (30) with respect to lip l R. Then the - 
constant E grows not stronger than the function R 21 as R goes to infinity. Therefore, 
a solution to equation (1) exists if co < 1/2 in case the assumption (11) for N(s, q') 
holds uniformly with respect to 92 E R or if 6 + 2o < 1 in case the function N(s, q') 
satisfies (27).
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• Finally, we deal with the case of a strictly positive or strictly negative function - 

M(s,	M0 > 0 or M(s, q) —M0 <0	 .	(35) 
for s € [—v, 7r]and q € R. The function v = l(s, ) is the solution to the equation-

t'(s) +	) v] (s) = g(s, ),	 S	
(36) 

where 2(s, ) = M(s, f(s)) and the function g(s, ) given by (16) fulfils the relation 

f.g(s, ) de = 0 

in viess of the assumption (3). Hence the inequality (A.33) 'of the appendix yields the 
estimation 

Il(, 011 (1/M0) IIII (37) 

Further, in case of (35) the assumption (28) is fulfilled. Thus the above continuity 
proof for the mapping P on Q remains valid.' This implies 

Theorem 3: Let M(s, q,) be a continuous function on [—yr, r] x R which is 2' - 
periodic in s. and satisfies an inequality of the form (35), and let N(s, q) be a Carathéo-

• dory function on [—v, v] x R satisfying an inequality of the form (27) with 0 <ô < 1, 
where = 2. Then the integro-di/ferential equation (1)- has  solution q € W2 1(r, r) 
for any F € L2 (—v, i) satisfying the , relation (3). 

Remark: A solution to equation (1) also exists if the function M(s, q) satisfies an 
inequality of- the form 

•	M(s, q')	11[M 1 + M2RW.1 ,	0 < w0 < 1,	 (38) 

for s E [ — pr, v], I-	R instead of (35), where M 1 , M2 > 0 and ô + w0 < 1. 

4. Special case. Uniqueness theorem	 - 

A. We consider the following particular case of the equation (1): 

N(s, ) = dM(s, q), d € R; F(s)	0.	 (39) 

In this case	 S 

g(s, ) = dH[M( . ,)] (s)	dH[] (s),	 •	'	(40) - 

and according to formula (A.8 1 ) of the appendix the kernel l(s, ) of the integral 
equation (12) has the simpler form	 - 

l(s, ) = d - d(cos /i)' a(s)	 •	(41) 
where •	 , S 

f .(s,	ds.	
S	 ., 

1) From (37) and (14) also the uniform boündedness of the L2 norms of the functions A[] 
in the above continuity proof follows.

-	 I
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We only assume that the continuous function M(s, ) is bounded such that the

oscillation of the function = u(s, ) is not greater than 2y = /22 —7 <n for any - 

E C[—, sr], where IUk = arctan A, k = 1-, 2, and 2 = inf M(s, ), A = sup M(s, q') 
x (s, ), the infimum and supremum', are taken over s E [— yr, at], ' € R. Applying 
Zygmund's lemma to (41), we obtain the estimation 

Ill(-, )II 	(27t)'1" Idl [1 + j/1 + 2 2 (cos p)_hIPJ	 (42) 
• for 1 <p <42y, where 2 = max [-2,2]. Also the continüity of the corresponding 

operatpr P in the space C[—r, ] can be shown like in [14] or, easier, like in. the corre-
sponding proof 'for'Villat's integral equation in the 'theory of plane cavity flows [3: 
Chap. VII]. I.e., a solution to equation (1) exists without an additional assulnp-
tion on the oscillation of M(s, )) of the form (23). 

Theorem 4: Let M(s, ) be a bounded continuous function on [---r,'i] x R which 
is	periodic in 8. Then the integro-dif/erential equation (1) with (39) possesses a solu-
tion q E W'(—'z, ), 1 <p </[p2 -	where 1Uk = arctan hk, k	1, 2, and


= infM, A2 = sup M. 

Remark: As in Remark 3 to Theorem 1, from (41) it follows that indeed the solu-
tion q' E W,,1 (-7r, ) for any finite p> 1. 

- In case of the integral equation (4), where (6) holds, the assumptions (39) write 

n(s, q ) = m8(s, q') + dm,(s, ),	f(s) = Con.st.	 (43)

E.g.,'this is fulfilled with d'= —1 if n(à, 9 ) =f(s)O and 

m(s, q) = Q(s .+ q'),	 (44) 

where Q is a 2n jeriodic continuously differentiable function. This case embraces the 
well-known Theodorsen iategral equation of conformal mapping (cf. [5: Kap. II]) for 
which 

• .	Q(s) = In e()	 (45) 
where = e(s ) is the representation in polar-coordinates of the starlike Jordan curve 

• J to be mapped onto 'the unit disk. More precisely, for the Theodorsen equation 

•	l(s, ) = Cosa	- 1,	 (46) 
-where 1u =,u(8 + ) and	 - 

•	 /2(8) = arctan 	 (47) 

• is the angle between the outer normal to J and the radius vector in the point (s, (s)) 
of J. The operator equation (12) with (46) is an integrated form of Friberg's integro-
differential equation . (cf. [5: Kap. II, § 4.4]).  

Theorem 4 , thus yields the existence of a solution to the Theodorsen equation for 


	

•	a smooth starlike Jordan curve with continuous function '. 

B. Finally; we state some siniple uniqueness theorems for continuous Solutions of 
- the integral equation (4). In the following 'we assume that m(s, q,), n(.s, 9)) are conti-




nuous fuhctions which possess continuous derivatives m(s, 92) and nQ (s, q).	- 
Let 92k(8), k= 1, 2, be two continuous solutions of (4). Then the difference func-' 

tion t-	p, - 922 satisfies the equation  

	

•	'	•(s) + H[A(.) ] (s) + K[B( . ) ] (s) = 0	 (48) 

/
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with the continuous functions 

- A(s) = f m(s, 912(5) +A(s )	2(8)]) dt, 

--	B(s) =J n,(s, 2(5) + 11 1 (s) - 2(5 )1) dl. 

We consider three cases.	 -	 I 
In case I: n(s, ) = 0 it is also -B(s)	0 and the equation	 - 

(s) + H[A( . ) ] (s) =0	 -	 (49) 
has only the trivil continuous solution(s)	0 as it follows from Appendix 1..


In case II: n(s, q) = n0q, no E R, it is B(s) =-n0 and we have the equation 

O(s) + H[A( . ) I] (s) ± n0K[] (s) =	 - (50) 

We multiply (50) by H[O] and integrate it over ( — ir, az). It is 

• fH[ø] ds =f K[ø] H[k]ds =0 

(recall that H[01 = —(d/ds) K[]) and 

f H[ø] H[A] ds =f. AO ds	 -' 

on account of the' elationf (s) ds= 0 following from (50) by integrating it over 

(— yr, ).Therefore we obtain f 'A(s) 2(s)ds = 0 which implies (s) = 0 if A(s) - 

has constant sign on ( —pt; at). I.e., the solution to the equation (4) is uniquely deter-
mined if either	 - 

•	 m9,(s, p ) > 0 or m,(s, q) < 0	 (51) - 

for almost all s E [ — 't, 7n] and all 92 E R.	 * 

•	 In casi III: ii(s, 92) = vm(s, 92), 'v. E R, we multiply the corresponding equation 

•(s) +H[4() ] (5) + vK[A( . ) 01 (5) = 0	-.	,	 (52) 

by AcIi and integrate it over (— yr, iv). This gives	 - 

I fA(s)2(s)ds+vfA.K[A]ds=0.
 

Now f K[] ds 0 for any continuous function x and therefore v f A(s) 2(8) ds 

0. This implies O(s) = 0 if vA(s) has negative sign on ( — t, in). -Le., the solution' i 
to the equation (4) is uniquely determined if	* 

sign v . m,(s, q).< 0 - -	 *	•	•.	 (53) - 

for almost all s € [—xv, v] and all p E R. •	 -	-	•	- - 

12
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Theorem 5: The integral equation (4) with continuous coe//icient m(s, (p) possessing 
a continuous derivative m(s, q) has at most one continuous solution in the cases I—Ill 
if in case II and iii, respectively, the condition (51) and (53) is ful/illed. 

Appendix 

1. Solution of the equation 

-	- v(s) 4- B[2( . ) v](s) - g(s) for a.a.. s E	].	 :	(A.1) 
Let 2 be a 2r periodic continuous function and g a function summahie to a . power 
greater than one. We look for a solution v of (A.1) summable to a power greater than 
one. Substituting 

w=AV,	v=w/A=g—H[w],	 -	 (A.2) 
we obtain the equation S 

w + 2H[w] = Ag	 (A.3) 
for w. This equation has the unique solution (cf. [4: Chap. IV, § 31]2) 

w(s) = Dfl(s) e(J)(8) + a(s) fl(s) g(s) 

	

—fl(s) e(I)(8)H[flg e"'] (s),	 •(A.4) 
where	 S 

It(s) = are tan A(s),	 (A.5) 

a(s) = cos fL(s) = _______ ,
	fl(s) sin fL (s) =	A(s)	

(A.6) 

	

V' l ± 22(s)	 J'l + 22(s) 
and the constant D is given by 

I) = tan
	f fl(s) g(s) e(')(8 )ds	 (A.7) 

with the' mean value	 -	 - 

Here it has been used that	 .	S


tan=fe_ H$sin /L ds/ fecosfLds 

is equal to the expression —Tm P(0)/Re q'(0) of the holomorphic function W(z) 
= e(S)(2) in the unit disk, where S is the Schwarz integral. 

Therefore, the equation (A.1) has the unique solution 
v(s)	Da(s) e(!)(8) + cx2 (s).g(s) -. a(s)	H[flg e"] (s). -	(A.8) 

2) In formula (31.19) of [4] the sign + has to be changed into
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The solution (A.4) of the equation (A.3) is derived in [4] for Holder continuous 
functions A and g. But according to the general theory of singular integral equations 
with continuous coefficients in spaces of summable functions (cf. [11: Kap. 111]). 
it also holds true under the above more general assumptions about A and g. Also 
the derivation in [4] can be directly performed under these general assumptions 
utilizing the solvability of the Dirichiet problem in the Hardy classes with an expo-
nent greater than one (cf: [6: Kap. IX, § 4, 5]). 

We still simplify the expression (AS) for v in the particular cases g = 1 and g = M. 
By means of the holomorphic function (z) = ei(Sl)(2) in the unit disk possessing the 
boundary values (et8) = (a + ifi) e4y one obtains the relations	- 

H[fl eH ] = a eHm-
	

a e11 ds = a e11 - COS ff 
27r f 

and  

_ffl CHI' ds=sinP. 

Therefore, the solution (A.8) for g =j takes the form 

(s) = (cos ) a(s) e	 (A.80) 

• Further, the solution v1 for g = HA is given by v 1 = 1 - v0 as can be seen from the 
equation (Al). I.e.,	 - 

•

	

	- v1 (s) = 1 - (cos )' a(s) e( ) (8) . .	-	 (A.81)


2. Estinwztjon.s in the '2 norm. 
Let, be g E L2 (—ii, 'i) and v, w E L2 (—', n). Then, from the second formula in (A.2) 
the estimation liv -. Il l!w Il follows, where denotes the norm in L2(—, ). On 
account-of the formulas (A.4) and (A.6),this'means that. 

I!aW + PX111	lax  

for the functions  
W(s) = e( hf )(8)H[flg e"] (s) - D	 (A.lOa) 

Z(S) = a(s) g(s).	-	 . -	.	(A.lOb) 

The inequality (A.9) writes  

fA(W,x)(s)dO,	-	.	- (A. 11) 

where	 - 
A(W,) = (a2 - 2) W2 + 4afiWx - (a2_ 2)y2 

^ (a2 - - 2qa2) W2 (a2 - fi 2 + fl2 x 2	--

.	= [2(1 —.q) cos2	1] W2 -
	

- i)	2	- i) Cos 2i] x2 

for an arbitrary positive constant q.	-	 - 

-	 -
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We now assume that  

Iu(s)J	y'<	z/4,	s E [—az,	],	I (A.12) 
with a constant y. Then cos 2 1u ^ cos2 i and 

•	 A(W, x) Z^ [2(1 —q) CO52y — 1]w2 — — 1) —2 (I COS2] x 

if 0 <q < 1. In particular, choosing	- 

1 	tan y	 .	..	........- 
tany, q	

'1	tan
. 

+
	

y 

we obtain'	.	.	.

- (A.13) 
with the constants	. 

1— tan y	
YT	1+tany -	 = (A.14) 1	tan y'	1— tan? 

From (A.11) and (A.13) with (A.14) the estimation	- 

!l'II	^S	C	lizil	 .	.	.	.	.	. •..	 (A.15) 

with the constant	 .	. 

1 + tan y	cos 2y	 . 
7— A 16 (	•.) I/1— tan y1--- sin 2y.	. 

follows. Under the assumption (A.12) the solution v of (A.1) then satisfies the me-
quality	!v I!	IWI	+ 1 1	C, III + 11g1l or because of I!xl	sin 	IJlI 

lv i!	(1 + Sifly . C7 ) Ill!	(i +	c7 ) ugh. (A.17) 

Obviously, the inequality (A.17) holds true for all functions g E L2(—t,) if the 
•	assumption (A.12) is fulfilled. 

We further derive analogous estimations to (A.15) and (A.17) under the less restric-
tive assumption	 • 

-	 lv(8)1	v <f4	.	. (A.18) 
•	where	•	 -	 .	 •.	 .	. 

V (S) = z(s) -	,,	2A 	max /z(s) + -mm	/4(5). (A.19) 
0	

-. 

The inequality (A.18) is fulfilled if  

•	 2y = max ti(s) - mm	/4(8) <r/2.	 • (A.20) 

At first we introduce the functions  

•	P(s) = H[flge"](s) —D,	/ (A.21a) 

xo(s) = a(s) g(s) e( hI )(8 ) ,	-	 . (A.21 b)

10	-	 --'	.	 -'	 • 
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where W0 = Hxo - D, and the constant  

1 0 = _ fXo(s ) ds = -f(s) g(s) e(H)(8) ds.	 (A.22) 

Then the function 

W0(z) = e1>[(Sx0) W .+ iD0 tan ],	 (A.23)


where

=
ds  

2;x f 

and S again denotes the Schwarz integral, is holornorphic in the unit disk and satis-
fies the condition Tm W0(0) = 0. 

	

The function W0 has the boundary values	 •-	 -. 

	

Di)],	

S 

Tm WO(e 8) = — 6-HI, [COS v (W0 + D1 ) + sin v 
where	 -	 - 

D1 = D - D0 tan 1 = D0[tan p - tan ].	 (A.24)-

Therefore, putting *6 	cos v(s), fi = sin v(s), we obtain the inequality 

•	IIe"[co('+ Di)--fioxo]II 2	-Iie "[oxo - fl0 ( W0 + D1)]112, 

'which is analogous to the inequality (A.9). 
• Fiom this inequality in the same way as above the inequality 

•	IIe(Wo + D1 )jI':5 C7 lexoI  

follows, where the constant C7 is given by (A.!6) again. Due to the formulas (A.lOa, b) 
and (A.21 a, b) this means that  11W. + D1 e hIu II	C711x11, and on account of (A.24) 
we obtain . II'Ii	C 1 1X II + ID0 1 I tana - tan;; I iie"ii. Finally, iD0 1	(1/2r) u g h-
x 1Ie 11u ui, and under the assumption (A.18) tan p -- tan u	tan p + 1 and hhe"hi 

	

/	 ir	h/2	•	 -.	 . 

(0
2

•) in virtue of the well-known Zygmund lemma [16]. Therefore,


	

cs2y	 5	 • 

-•	

•	 li Wil ^5 C 1 1A + [1'+ tan p h] (cos 2'	 - (A.25) 

From (A.25) the estimation •	

• 

•	• -	Iivui	E7 u g h	 ,	
•	

-•	 (A.26) 
- 

•	 with the constant	 - 

Ey 
•	

= B + [1 + Itan p] (cos 2y)-1,	
-	(A.27) 

-	-	where	 •	 • - •	 • B7 = 1 + C7 = 2/[1 —tan '],	-	•	 (A.28)	• 

for the solution v of (IA.!) follows. The inequality (A.26) holdsjfor all g E L2 (—n, r) 
if the assumption (A.18) is fulfilled.	 -• •	, 

If the function ..A is strictly positive (or strictly negative) and f g(s) d8 = ' O the
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solution v of (A.1) can be estimated in another way. Namely, applying the Hilbert 
operator to (Al), we obtain the equation 

•	 By - Ày = Hg + Const	 .	 (A.29) 
taking into account that 

H2= - + 
2n f 

for ay functión E L2 (—z, ). Further, from (A.l) it follows that 

fv(s) ds =fg(s) ds = 0	 .	 (A.30) 

by assumption. Multiplying (A.29) by. v and integrating it over (.—r, ), therefore 
yields the relation 

f A(s) v2(s) ds 
= -f vHg ds	 (A.31) 

using that f vHv ds = 0. 

Let now the' assumption	 - 

A(s) ^ M > 0 or 2(s) ;5 —M0 <0 in [— yr, r]	 (A.32)

be fulfilled, ' respectively. Then (A.31) implies the estimation 

M0  v2(s) ds	±f 2(s) v2(s) ds	Il 11g1, 

since j j Hgj j 	ugh, and we obtain the inequality 

hJ vhI 5 (1/Mo) III	 ..	.	.	.	 (A.33) 
for the, solution v of (A.1). 
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