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On Capillary Free Surfaces without Gravity	 - 

E. MIERSEMANN	 - 

Dedicated to Professor Herbert Beckert on his sixty fifth birthday 

Das nichtpararnctrische Kapillaritätsproblem ohne Schwerkraft lhl3t sich mittels einer Strom 
funktion in ein Dirichiet-Problem für eine quasilineare Gleichung vom gemischten Typ über. 
fuhren. Wir beweisen ein Maximumprinzip für eine dern Gradienten der Stromfunktion zuge-
ordnete Gr6l3e und Regularitatseigenschaften von C 1 (Q)-Losungen in Gebieten Q mit Ecken. 

HerIapa1eTpuec1aH aajaqa HanHJIJIHpH0CTH 6e3 )ecTBHH C!J1bI TB)4eCT11 C flOM011bI0 
YHKUI1M T0Ka M0H<eT 6bITl, csegeua ii aa)a'ie )ilupllxJle gim xBa3uJ1ft1elHoro ypanenn 

cMe[uaHHoro Tuna. )joita,9biBaeTCR flpHH11fl MKCI4MM gJla BejIu q llHaI, COIIocTaB1eHHoh 
rpaueuy	HIU(flH roia, u cBocT8a pel'yJIHpHOCTM ji..iu C'(D)-pemeuKil B o61IacTHx Q c 

10BUMII TOq KaMU.	 - 

The non-parametric capillary problem in the absence of gravity can be replaced by a Dirichiet 
probledi for a quasilmnear equation of mixed type . by introducing a stream function. We prove 
a maximum principle for an expression depending on the gradientof the stream function and, 
furthermore, regularity properties of C 1 (Q)-solutions.in-domains Q with corners. 

1. Introduction 

We consider the non-parametric capillary problem in the absence of gravity. One 
seeks a surface 8: u = u(x), of constant mean curvature H, defined over a simply 
connected and bounded base domain Q 1t2, such that S- ' meets vertical cylinder 
walls over the boundary 9Q in a prescribed constant angle y, where 0 y 
This problem leads to the equation 

= 2H in Q	 (1.1) 

	

i1	IuI2- 
with the boundary condition 

ou

	

=cos y onaQ,	S	 .	 ( 1.2) 
1/ 1 -1- 1uI2 

see FINN and CONCIJS [2] and FINN [3]. Here n is the exterior unit normal on,aQ, 

I u I 2 = u , -j-u, and 2H = .!--t cosy, where	is the area of Q and Qj the 
length of	 I Q.	.	I	 . 

The problem to find explicit geometric criteria for the existence, of solutions of 
(1.1), (1.2) has been 'met with only partial success up to the present time, see FINN [3]. 
It can be replaced by a Dirichlet problem for a quasilinear equation of mixed type 
by introducing a stream function. We show that the problem of existence of solu-
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tions for this problem can be reduced to a certain boundary gradient estimate. In the 
last part .bf this paper we study the behavior of 0 1 (Q)-solutions of (1.1), (1.2) over 
domains with corners. We prove, in particular, that C I (D)-solutions belong to, the - - 
class C.A (Q) , 0 < 2 < 1, if 0 < a <i is satisfied for the interior angles at the 
corners. 

Acknowledgement: I would like to express my gratitude to my teacher Professor - 
Beckert for initiating my studies in the calculus of variations and in partial differen-
'tial equations andfOr his constant interest in the. progress of my work. 

2. The associated birichiet problem	 - 

Define

=	 (i = 1, 2). 
•	 V1 +tt I 2	 - 

Since (v1 - Hx1 ) ± (v2 - Hx2) = 0, it is possible to introduce a stream function - - 
by setting	 . 

• -	-	=	2 +
	 (2.1) 

•	Pa, =	- Hr,. 

Suppose the boundary- a.Q is given by x(s) = (XI (s), x2 (s)), where s is' the are length. 
We assume that the boundary aQ is . piecewisesmooth. On its smooth parts we have 

= 'X,Xl -f tPz,X2 =' ( —'V2 +H 2 ) 1 + (v1 --Hx1)±2 

=cos y+H(x2±1-2xj).  

By integrating from 0 to s we get .	 - 

V(8) = ( — IaQI 
1) cosy on aS2	 -	

/ (
2.2) 

where Q(s) is sketched in Figure 1. We mention that (J aQI) = 0. 

- 
•	Fig.!	 0	 0 

Put F(, ) = (Vx. Hx2 ) 2 ± (VJz, + fix 1 ) 2; Since	-	 - 

= i	F	
+ Hx1 -),	•	/	

0	 •

(2.3) 

uxV(xJ+Hx2)  

S	 -	 •	 •	 -	 -
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the relation	=	gives us the differential equation (we are using the summ 
tiOn convention)'  

a,,(p) tPx,z, = 0 in Q	 (2.4) 

with the boundary condition (2.2) on ab, where Pi = - 11x2 , p' = px, + Hx1 
and a11 = (1 - P22) a22 = (1 - p2) a12 = a21 = PiPi If V E 01 (Q) and max F <.1, 
then the equation (2.4) is of elliptic type since 

(1 - F) 1 2	a11 ^5	for all	€ R2. 

Let Q = BR (0) be a disk with radius R and the center at the coordinate origin. Then
we have v(s) = 0 on M If max F < ifor a solution 1p € C'(Q) of the equation (2.4) - 

with the boundary condition ip = 0 on c9Q, then the maximum principle implies. 
= 0 in Q. From (2.3) we obtain immediately 

u = --i- 1/1 —H 1 x 1 2 + const. 

•	 If < y ^	is satisfied, then the assumption max F <1 is fulfilled. 

Now we ask for domains with v( s) = 0 on .Q. The equation (2.2) implies that 

•	 •.	 21121 x1x2 - x2z1	 •	 (2.5) 

on the smooth parts of bQ. By differentiating we have x12 - x21 =0 and, since' 
•	x = —cn where x is the curvature of 9Q at x(s), we can infer that 

d l x l 2	 •.	 . X	= 0 by using n = (z2 , —x1). 

Hence, since (2.5) must be satisfied on the smooth parts of aD, we obtain regular 
m-goñs and domains which we get from these polygons by rounding off one or some 
corners by the.incircle with coordinate origin at the point of symmetry. The inequality 

max F < 1 is in these cases equivalent to H max lxi < 1. This means that y> --
80	 •	a m

must be fulfilled. In fact, this is exactly the corner condition, see FnN [3], -- + y 

> --, where a is the interior angle at the corners.. 

3. A maximum principle for F 

Now we prove a maximum principle for F by using a method of Bernstein, see 
GriBA.1to and TE1JDINGER [4: Chapter 14.1]. • 

Theorem: Let ' € C1 (Q) ri C3(Q) be a solution 0/(2.4) and assume that max F(x, 
(x)) < 1. Then max F = max F. 

Q	OD 

Pro of: We derive a differential equation of second order for F. The assertion then 
follows from the classical maximum principle. Set /1 = —Hz2 , /2 = Hz1 and F = p2
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+ P22, where Pi =	H- /, P2 =	+ /2. We have 

=	 (3.1) 

= 2Pr.,Pr.i + 2Prp.TiJ,	 (3.2) 

P:.k	Pk.l ± (u.k - ik.:).	 (3.3) 

OV (By writing v,j we men	By differentiating the equation (2.4) with respect 
to Xk one obtains	,xi	 - 

a(p) V,kij +D9,a(p) Pz.k.1j = 0	 * 

where D, = -_. Multiplying by Pk and summing over k, we thus have 

a(p) PkV'.kij + D 4a11 (p) Pl.kPkV',ij = 0 
or, with (3.2), the, equation  

a 1 (p) F,1 - a 15 (p) P,iPr.+ Da15(p) P1.kPk.1i = 0. 

By using (3.1) and (3.3) we get 

a,,(p) F 1 +	D.a87 (p) ,jjF,j\ 

=ajj (p) rjrj + a11 (p)	+ b11 

where b11 = 2Hp1 p2 , b22 = — 2Hp1 p2 , b 12 .= b21 = H(p2 2 - P1 2 ) . Since	 . 

-- F = PiP.ii + P2(V'.21 + H),
(3.4) 

-.	F2 = Pi(V'.12 - H) + P2tP.22, '	I 

cf. (3.1), we see that b 1 p 1	H(p2F 1 - p1-F ,2)-- 2H2F. It is easy to check that 
a,(p) /r,i/r.j = 2H2 - FR2. According to our hypothesis with respect to F the tp, 
can be calculated directly from (3.4) and the equation (2.4). This calculation yields 

= gill(p) F1 -	PIP' 

1P.22 = 9i 22(p) F,1 + 2H7 PiP,	 - 

V. 12 = g1 12() F,1 +	(p12 _L P22 )	 . 

where the g' 1' are certain regular functions depending on p. Thus we get from the 
above that F satisfies the equation 

a 1 (p) F 15 + bF , , = 4H2(1 - F) 

with known functions b1 belonging to C'(Q). The classical maximum principle implies 
max F = max F, provided V € C'(Q) n C3(Q) and max F < 1 1
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Corollary: There. exists a solution of (1.1), (1.2), provided 0 <y ^s	and 3Q is 
near a circle with respect to the C2-norm.	 2- 

For the proof we observe that a bounded slope condition, cf. Giinin& and 'TRU-
DINGER [4: p. 225], is fulfilled for such domain. Using this condition it, is possible to 
derive the inequality max F(x, (x)) = C < 1 for a C1 (Q)-sblution of (2.4), (2.2) if - 
'Q is sufficiently near a circle. The constant C'does not depend on tp. Then, by a 
standard argument, from the above maximum principle it follows the existence of 
a solution of (2.4), (2.2) I	 S 

Remark: We may weaken the-assumption of the above theorem to V E C'() only 
and max F <1. This follows from the weak formulation of the equation (2.4), see 

47	 - 

Part 4, since E .Cc (Q) is a consequence of the regularity theory 'for quasilinear 
elliptic equations of second order. 

4. Domains with corners  

L. SDI0N [7] has shown that. if j- + y> -- and a < 7r, then a solution of (1.1), 
- -.

	

	(1.2) is differentiable up' to the corner. Here a denotes the •interior'angle at this
corner. From Part 2 it follows that (1. 1), (1.2) can be replaced by the Dirichiet problem 

f a(x,tp) v dx = 0 	for all v E C000(Q),  
•	 D.	 -	 -	

•-,	 (4.1) 

• S	
,	 v=(s)	on 	-	-	-S	 - 

where' -  

-	-	
a1(x,)='(tp,—Hx2),-  

a2 (X, ) =-	

F	
+ Hx1 )	- 

and V is given by (2.2).  
Let the origin be a corner. of Q. We assume that a,p, a 2Q are in C2 and that a,.Q 

has positive and a2Q negative slope at the origin, see Figure 2.  

C12 9
oc 

Fig.2 - 

-Suppose u-€ C'(?) is a-solution of (1. 1), (1.2) and a < yr. This implies that -i- -f' y 
> - must be satisfied.. The inequality can be - verified by an easy calculation by' 
using (1.2) and the fat that (1.1) is elliptic at the corner. The assumption u E C'(S) 

28 Analysis Ed. 4, Heft 5 (1985)
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also implies that (4.1)is an elliptic problem since the associated V satisfies V E C'(Q), 
F < 1 in Q and the equation (4.1). 

Theorem: Let u E C1 (Q) n C2(Q) be a solution of (1.1), (1.2). Under the-condition 
0 <	t for all interior angles at the corners we have u € C' 1 (Q) n 112 (Q), 0 < ) < 1. 

r

	

	Proof: Results of thistype were proved by MIERSEMANN [5, 6]. Some details differ
from [5, 6]. The first distinction is that the vector field (a 1 (x, q), a2 (x 1 q )), q =V, is 
strongly monotone with respect to q for IJ < 1 only where again p	, — fix21
P2 = , + 11x1 .. The second one is the dependence onx. It is nothard to prove that, - 
the results of [5] stay true for strongly monotone C 1 -vector fields depending on x. 

: We omit the pr6of of this fact. 
It is sufficient to prove the regularity properties near the corners. Set e =!

n B(0) where Be(0) is a disk with radius Q and the centhr at the origin. Assuming 
?3,Q E C, there exists a continuation 0 E 02(Q) of V, provided 0< c <2i and 

> 0 is sufficiently small. The proof of the Theorem is almost the same as in [5] I 
Since (2.4) is of mixed type, the barrier construction of [5: p. 61] must be modified. 

Let E be the set of all functions E C'(QQ ) such that F(x, q) < 1 in Q, Clearly, E 
is a convex set. 

	

Lemma: Assume that for tb', T E E we have ip	on aQe and	- 

fa(x,ip)	dx	a(x, 'x)v. , dx 

for all v € C0 1 (Q) with v ^ 0 in Q0 . Then one has	99 in Q. 

Proof: This comparison principle, follows immediately by using the convexity 
of E and the fact that for all € H 2 we have 

(1 - F)- 1!2 II 2 a1111 (1 - F)- 312 k2 

where in this part we put a1 
= a1 (x, q) with q = 

Here q, is a function belonging to E I 
From the Lemma it follows that there exists at most one solution E . C'(Q) of 

(4.1) such that F(x, ) < 1. 
A function 99 € C'(Q) n 02(Qe \ {01) is said to be a barrier of ip at x = 0 if the 

following conditions are fulfilled: 
(i) €E,
(ii) on OQo, -	 . 

(iii) a11 (x, IPx)	0 in Qg.	 .	. 
From the Lemma we obtain q ^ V in .g for a barrier T. Put 

= 0(0) + 0) x1 + Ar' sin (1 + r) 0 
where (r, 0) denote polar coordinates in the plane and A, 1u andr positive constants. 
We will show that one can choose these constants in such a way that q satisfies (i) to 
(iii), provided e > 0 is small enough. Since 0 € C2(1 we. have	 - 

	

(x) = (0)+ 'P,(0) x -f h(x) where Ih(x)i	c1Ix12. 

- According to our assumption one has	 -
(x) = (0) + ,(0) x + R(x) where IR(x)I <c(g) g in Q, 

0 as with a function c(g) such that c(g) —*	 — 0
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We shall prove that 

tp	Q n aBe(0)	 (4.2) 

is satisfied. If Ao' IP sin(i -f t) 0	c() is fulfilled, then we have the inequality
(4.2). Set

C2 = min sin (1 + T) 0. 
(r.9)( Q Q	 -	 - 

Provided TO > 0 and o > 0 are sufficiently small, we see that c2 > 0 for all 0 <T 

•	^s r0 . Put c0 (0 ) = max (c( 	for a ô with 0 < 6 < 1. If we choose A = 
x	then the inequality (4:2) is satisfied.  

Now we will prove p Z-! mp on a.Q n B,.-Again, this inequality is tru .e if we have 

c0 (o)	' r 1 1 11 ' :!- c 1 -2, (0 < r	o) or co() > c. 

From the definition of c0 (o) it follows that the previous iriequalityis satisfied for all 
O <	oo' provided is small enough.  
• Now we check the assumption (i). An easy calculation yields 

S	 . 

F(x. ) = ((o) - Hz2 +' .1 ()"-gi)2 q,  

+ (x (0) + Hz1	c() 
()y g2)2 

where	 -. 
= (1 + i) cos 0 sin (1 + T) - (1 '+ r) sin 0 cos (1 + r) 0, 

.g2 (1+z) sin 0 sin (1+r)0+(1±t) COS 000S (1+r)0. 

Consequently, the function	satisfies F(x, ) < 1 in Q for a sufficiently small 
00> 0. 

The inequality (iii) was pro'ed in [5: Lemma 2.2]. 

	

Replacing A by —A we obtain Iv' - I	c xI'' in 4 . From this inequality; we 
get	 S	 . 

•	 EC''(QO)nH2(QQ)fora).with 0<,< 1, 

see [5]: Since u is given by (2.3), the same is true for u. 
Remark: if we assume that u € C(D), then we can control c(o) and we get 

IIu IiC 1 .A13 ) C , for 0 <fi < 2 < 1, provided we have chosen ft > 0 sufficiently small. 
The constant C depends, for fixed Q and y, on jJuI[cI,p(j) only. 

Once one has obtained v' € C'-'(Q), it is possible to apply the theory of linear 
elliptic equations of second order , in domains with corners, see AZZAM [1]. The linear 
transformation which transforms the equation a . ,(0, v'(0)) mp, = 0 into the Laplace 
equation transforms y into a new angle co. The vector v'z(0) can be obtained -from (2.1) 

- and (1.2). An easy calculation yields for co, 0 < co <, the equation'	 . 

•	 to	/	cos2y\	a 
tg---=(l— .	1tg--.	

•	 .	 S	 S	 - 

•	smn2--)	 .	 S	 S 

28*
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,The angle w is.exactly the angle at the cOrner of the surface u(x) about the origin. 
Provided' 0,Q, 	are sufficiehtly regular, then we have 

	

U E Cm+2.A()	(O•( A < 1; m = 0, 1,2, ...) 

if (IJ <	is satisfied 
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