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On Capillary Free Surfaces withmrt Gravity

E. MIERSEMANN

" Dedicated to Professor Herbert Beckert on his sizty fifth birthday

Das mchtparamctnsche Ka.plllarlta.tsproblem ohne Schwerkraft laBt sich mittels einer Strom-
funktion in ein Dirichlet-Problem fiir eine quasilineare Gleichung vom gemischten Typ iiber-
fihren. Wir beweisen ein Maximumprinzip fir eine dem Gradienten der Stromfunktion zuge-

_ordnete GréBe und Regularlta.tselgenscha.ften von C‘(Q) Losungen in Gebieten £ mit Ecken

Henapaverpuyeckas sagaya Kanunngpﬂocrn Gea uencmuﬂ CWIHl THMKECTH C MNOMOMBIO
dyHKUIE ToKa MOeT GHTh cBefleHa K 3amave JMpHXJe A KBAa3WJIMHEHHOr0 ypaBHeHHSA

‘CMELIAHHOTO THTA. J[0KA3HBAETCA NPUHIMI MAKCHMYMA [UIA BeJMYMHHE, CONOCTABIEHHOH
. TPafiMeHTy (byHKuuu TOKA, U CBOHCTBA perynﬂpuocru paa C(R)-pewenuit B obnactax 2 ¢

yrJIOBHMH TOYKaMH.
)

The non- paru.met,nc capillary problem in the absence of gravity can be replaced by a Dirichlet .
problem for a quasilinear equutlon of mixed type by introducing a stream function."'We prove

‘a maximum principle for an expression depending on the gradient of the stream funct,xon and,

furthermore, regularity propertles of CYQ)- solutions.in-domains £ with corners.

1. Introduction

We consider the non-parametric capillary problem in the absence of gravity. One
seeks a surface S: u = u(x), of constant mean curvature H, defined over a simply
connected and bounded base domain 2 — R2, such that S meets vertical cylmder

walls over the boundary 82 in a prescribed constant angle Y, where 0=y S —

This problem leads to the equation | 2
2 g us : ' ' '
Yy —————=2H in Q (1.1)
<1 0% YU jur , . . :
with the boundary condition
. -
=cosy on 99, : (1.2)

V1 + fuf?

see Fivn and Concus [2] and FINN [3]. Here » is the exterior unit normal on.8Q,

lug|? = w2 -+ u%, and 2H = 'a;;l cos y, where |Q| is the area of 2. and [6!2] the
length of 0. : 12
The problem to find explicit geometric criteria for the existence -of solutions of
(1.1), (1.2) has beén met with only partial success up to the present time, see Frxx (31
It can be replaced by a Dirichlet problem for a quasilinear equation of mixed type

by mbroducmg a stream function. We show that the problem of existence of solu-
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tions for this problem can be reduced to a certain boundary gradlent estimate. In the
" last part .of this paper we study the behavior of CY()- solutions of (1.1), (1.2) over

domains with corners. We prove, in partlcular that C1()-solutions belong to.the - .

class CV4(D), 0 < 2 < 1, if 0 < « < 7 is satisfied for the ‘interior angles « at the
corners.

Acknowledgemént I would like to express my gratitude to my teacher Professor
Beckert for initiating my studies in the calculus of variations'and in partial differen-
‘tial equatlons andfor h1s constant interest in the.progress of. my Work
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" 2. The assoeiafed Dirichlet problem \

Define .
‘ /
U e

t TR

’

. Since .(vl — Hxl),, + (v — Hzx,):, = 0, it is possible to inf:roduee a stream function y g
by setting . : ' :

v

) = — Hz,, . .
Yz, "'2+. 2 ) (2 1)

Cwm = ¥y — Hzy

Suppose the boundary o0 is gwen by z s) = (xl(s), x,(s)) where s is'the arc length
We assume that the boundary 0f2 is.piecewise smooth. On its smooth parts we have

b =ik + yabe =(—n + He) &, + (0 — Ha) &, .
a ) = cos y + H(zpt, — #2,). ‘ I

By integrating from 0 to s we get B

p(s) = (s — |69Q| I]g(gi)l) coey on 90 \ . ﬂ .' ) (‘2.2.).

. where 02(s) is sketched m Flgure 1. We mention that w(|89|) = 0

x( O;

Fig. 1

Put F(d, y) = (s, — me + (9, o+ Hey? Since

L
-"_V-.l—.
."j(;l': Vl—

('/JI, + Hxl)’ s ‘ Vi E .
o .23

(—W:.H- Hzy),
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’

the relation u; z;, = u,,, gives us the differential equation (we are using the summa-
tion convention)’

,,(p)y),‘,,—() in Q ‘ B 2.4)

' with the boundary condmon (2.2) on 6.Q where Py = Yz, — Hz,, py= v, + Hz,
and a;; = (1 — p,%), ag, = (1 — P,?), @z = g = Py, Ify € CI(Q) and maxF <1,
then the equation (2.4) is of elhp’mc type since '

(1 — F) £ = a8i; < |§|2 for all £¢ R2.

Let 2 = BR(O) be a disk with radius R and the center at the coordinate origin. Then
~we have y(s) = 0 on 0Q. If ma.x F < 1 for a solution y € C"(Q) of the equation (2.4)

with the boundary condntlon p=0 on 982, then the max1mum principle implies-
= 0in Q. From (2 3) we obtain immediately ’

'e = —E' }/l — H? |z|? 4 const.

I o< oy g% is satisfied, then' the assumption max F < 1 is fulfilled.
: ( . a :

Now we ask for domains with z;:(s) = 0 on 812. The eq'uation (2.2) irlxplies that

)

. _ 212 A
)%y — Ty = ﬁ s A S (2.5’)
on-the smooth parts of 992. By differentiating we have x,&, — z,%, =0 and, since’
rT= —xn where x is the curvature of 62 at x(s), we can infer that
d |=|? N '

7o 0 by using n = (&, —&). .

Hence since (2.5) must be s&tlsfled on the smooth parts of 6!2 we obtain rcgula,r

m-gonhs and domains which we get from these polygons by roundmg off one or some. -

corners by the incircle with coordinate origin at the point of symmetry. The inequality -

max F < 1 is in these cases equivalent to H max |z| < 1. This means th‘at y > %
2 20

must be fulfilled. In fact this is exactly t.he corner condltlon see FINN [3] i + y

I > % where « 1s the mtenor angle at the comers

3. A maximum principlo for F o A

‘Now we prove a maximum prm01p]e for F by using a method of Bernstein, see
: G[LBARG and TRUDINGER [4: Chapter 14.1]. ' : _ -
Theorem: Let y € CY Q) n 03(2) be a solution of (2 4) and assume that max F(

yz,(x)) < 1. Then max F = max F.
a - ea

Proof: We derive a differential equation of second order for F. The assertion then
follows from the classical maximum principle. Set f, = —Hz,, f; = Hz, and F = p,*

~
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+ ot where P = 7/’11- + fi» P2 = Yz, + fo. We have

Fz =2pp.i, . : ‘ (3.1)
Fop, = 2.pr.7‘pr.i'_+ 2Pr_'/’.n';, T . . " (3.2)
Pk = P+ (fre — fe)- ‘ - (3.3)

(By writing v ; we mean ﬁ .) By dlfferentlatmg the equatlon (2.4) .with respect
to 7, one obtams

al}(p) v, kij + Dp,au(p) Pl k'l’ i, = 0

.o a . : .
where D,, = ——. Multiplying by p, and summing over k, we thus have

op,

@ii(P) Pev.kii + Dp2ii(P) Prabiy,ij = 0
or, with (3.2), the equation \ : - y

1 . .
o~ a.,(P) F; K3 B al;(p) Pr, :pr; + Dp,al;(p) Pt kpkw ii = O 1

By using (3.1) and (3. 3) we get
. 1 T
a,,(p) F; K1 + D a'u(?’) Y. UF LAY

- = ai;(p)w riW,rj + ai;(p) fr t'fr;' + bif‘/’ iy ~
where b,; = 2Hp,p,, by, = —2HP1P2: bxz = by = H(p,* — p,?). Since -

1
. E‘F = D1i¥.n +P2(W21 + H):

) . ‘ ' C(34) -
S ;2—Fz,=P1(W12—H)+ZP2'/’22’\ .
cf. (3.1), we see that b,y ;; = H(p.F,, — piF, 2)‘— 2H?F. 1t is easy to check tha.t

a;i(p) fr.ifr.j = 2H% — FH2. According to our hypothesis with respect to F the v ,;
can. be ca,lcula.ted du‘ectly from (3.4) and the equation (2.4). This calculatlon yields

'

9H
Y = gi* }(/p) F;— 5 PiPas
' - 2H ‘ _
v =92 Fi + — Py .

o~ H
1P12=9i12(P)F'+—(P12—LP22)

where the g;!* are certam regular functions dependmg on p. Thus we get from the
above that F satisfies the equation

“i;(P) F. + bF,=4Hl — F)

with known functions b; belonging to C'(£2). The classical maximum prmc1p]e 1mphes

max F = max F provided y € C‘(Q) n 03(!2) and max F < 118
<22 a

T
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~

Corollary There. exists a solution of (1 1) (1.2), provided O0<y=s l and o is
near a circle with respect to the Cz-norm - )

-

.For the proof we observe that a bounded slope condltlon cf. GILBARG and TrRU-
DINGER [4: p. 225], is fulfilled for such domains. Using this condition it.is possnble to
derive the inequality max F(z, y,(z)) = C < 1 -for a C*(£2)-solution of (2:4), (2.2) if

9R is sufflclently near a, circle. The constant C’does not depend_on yp. Then, by a
standard argument, from the above maximum ptmmple it follows the existence of
_a solution of (2. 4), 2.2) 1

Remark: We may weaken the- assumptlon of the above theorem to y ¢ C‘(Q) only ,
and max F <.1. This follows from the weak formulation of the equation (2.4), see

Part 4 since p € O®(RQ) is a consequence of the regula,nty theory for quasxlmear’
elliptic equations of second order.

4 Domams w1th corners -

L. Smorx [7] has shown that .if = + > — and « < m, then a solution of (1.1),

2
(1.2) is dlﬁerentlable up' to the corner.- Here « denotes’ the interior’ angle at this
corner. From Part 2 it follows that (1. 1), (1. 2) can be replaced by the Dirichlet problem

fa (x ¥s) v, dz = 0" " forallve Co®(92), oo ’
o : ' ‘ . I B )|
=y ona o ~ '
where * . '

.a1<¢;«k1>=V1_ (e, — sz)f S

(’Pz. + Hz,) -

: . 1
a(z, y;) = ———
and yp is gnven by (2.2).
Let the origin be a corner. of 2. We assume thet 8,82, 8,2 are in C? and that 6 Q
has positive and 8,2 negative slope at the ongm see Flgure 2.

14 ’ X
. i \ . ‘
Q 8,9
32\ .
o
i
, x
Fig.2

\

‘Suppose u-€ /() is a- solutlon of (1.1), (1.2) a.nd « < 7. This 1mphes that = 5 +y
> E must be satisfied.. The mequahty can be _verified by an easy calcula.tlon by
' usmg (1.2) and the fact that (1.1) is elhptlc at the corner. The assumptlon u € CY(R)

28 Anal)sm Bd. 4, Heft 5 (198.:)

)

. v
- “ .. \
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also 1mphes that (4.1) is an elliptic problem since the associated y satlsfles pE C‘(.Q)
F < tin £ and the equation (4.1).

Theorem: Let u € CY(Q) n C¥Q) be a' solution of (1.1), (1.2). Under the'condilion
0 < x <= for all interior angles at the corners we have u € C3(2) n H3(2),0 < 2 < 1.

Proof: Results of this type were proved by MIERSEMANN [5, 6]. Some details dlffer
from- [5, 6]. The first distinction is that the vector field (al(x q), a(x, q)) q= Y 1
_strongly monotone with respect to ¢ for |p| < 1 only where again p; = yz, — Hx2,
P2 = ¥z, + Hz,. The second one is the dependence on'z. It is not hard to prove that. -
the results of [5] stay true for strongly monotone C!- vector fields dependmg on 2.
We omit the proof of this fact.

It is sufficient to prove the regularity properties near the corners. Set: .Q =0

n B,(0) where B,(0) is a disk with radius ¢ and the center at the origin. Assummg

2,2 € C?, there exists a continuation @ € C¥(2,) of v, provided 0°< « < 7 and
o> 0is sufflclcntly small. The proof of the Theorem is almost the same as in [5] I
Since (2.4) is of mixed type, the barrier construction of [5: p.61] must be modified.
Let E be the set of all functlons @ € C'(%,) such that F(x @;) < 1in Q,. Clearly, E
is a convex set. ’

Lemma Assume that fory, @ € E we have p < P on BQ and :

fa,(x 1,0,) vy dr = fa.(x tp,) vz, dx
2

for all ve Co1(92,) with v = 0 in .Q Then one has y =< ¢ in Q,.

Proof: This comparlson principle. follows immediately by using the convex1ty
of E and the fact that for all £ ¢ R* we have

(1 — F) 12 [P < aid; < (1 — F)yo g,

where in this part we put a;; = ﬁa,gzq:_q) with ¢; = ¢-,.
1

Here ¢ 1s a function belonging to E |
From the Lemma it follows that there exists at most one solution y € 01(9) of
(4.1) such that F(z, ;) < 1.
A function ¢ € C(£,) n C"(.Q N {0 {0}) is said to be a bazxrier of yatx =0 if the
following .conditions are fulfilled : -
) geF,
(i) p=y on 2@,
(iil) a;j(z, @z) P2z, =0 in LQo.
From the Lemma we obtain ¢ =  in Qp for a barrier ¢. "Put
_ D0) + (D,,(O) z; + Arltesin (1 4 1) @
where (7, 0) denote polar coordinates in the planc and 4, u and T positive constants.
. We will show that one can choose these constants in such a way ‘that @ satisfies (1) to
(iii), provided ¢ > 0 is small enough. Since ® € CZ(QQ) we have
P(x) = P(0) + D,(0) z; + h(z) where |h(x)] = ¢z)?.
_ According to our assumption one has : _
p(z) = B(0) + &,,(0) z; + R(x) where |R(z)] =clo)e in 2

with a function c(o) such that c(o) -0 as ¢ — 0.
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We shall prove that .
Py on +Q 0 2B;(0) ' o ’ ) @2

is satisfied. If Ao'*# in (1 +1)02= c( )g is fulfilled then we have the mequahtv
(4.2). Set

¢ = min sin (1 4 1) @
(r.9)ede

s

Provided 7, >0 and o > 0 are sufficiently small, we sec that ¢, > 0 for all'0 <t -

7% Put colo) = max {c(p), g"} for a & with 0 < 6 < 1. If we (,hoose A= c(o)

" Xo - then the mequality (4 2) is satisfied. : . 2
'\ow we will prove ¢ = p on 89 n B,.-Again; this iriequa.lity is true if “i'e have
Colo) et = 7t (0 < 7 < 0) or colo) = €10- ST

From the definition of colo) it follows that the previous mequality is satlsfied for all
0 < 0 < gy, provided g, is small enough. .

e

- Now we check the dssumption (1). An easy calculation yields S~ '
N . . : ~
. . ( ) r .‘" 2 K .
Pl ) = (9.(0) — Ha, 4 22 o) e
o . ) Co )
o .
(%,(0) + Ha, + 0 (3) gz) .
where : i o
g, = (1 + u) cos @ sin (1 4 r) ®— (1'+1)sinBcos (1 +1)0,
9o = (14 w)sin Osin (1 + 1) © + (1 + 7) cos O cos (1 + ) 0.
Consequently, the function ¢ satisfies F(z, ¢,) <lin: 2,. for a eufflcnently small

Qo > 0.

The mequaliby (iii) was proved in [5: Lemma 2.2].
chlacmg A by — A we obtain |1p — P =c¢c ]xl“’" in G, From this inequality, we
get -

"Y€ C"‘(.Qe) n Hz( ) for alwith 0<2 < 1,
see [5]: Since u, is given by (2.3), the same is true for u.

A

Remark: If we assume that » € O #(22), then we can control ¢(o) and we get
lullcriay < C for 0 < B < Z < 1, provided we have chosen 8 > 0 sufflciently Qmal]
The constant c dcpends for fixed 2 and 7, on |juj|cr.s7) only.

Once ‘one has obtained w € C14(Q,), it is possible to apply the theory of lincar
elliptic.equations of second order in domains with corners, see AzzaM [1]. The linear
transformation which transforms the equation a,,(O y),(O)) Yr,z, = 0 into the Laplace
equation transforms y into a new angle w. The vector y,(0) can be obtained from (2.1)
and (1.2). An easy calculation yields for w, 0 < w < 7, the equation, .

w _cos® y « : .

sin? —

28%
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,The angle  is.exactly the angle at the corner of the surface u(z) about the origin.
- Provided 8,2, 3,2 are sufflclently regular, then we have : ‘

uec'm+“( W, 0<2<1; m=0,1,2,..)

if o < —— 53 + ey is satisfied.” = -~
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