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On a Non- Classncal Boundary Value Problem in Lmear Plane Elastlclty
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Dedwaled to my teacher Professor Dr. H. Beckert on the. occasswn of hzs 65. bwthday
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In dér Arbeit wird ein -nicht-klassisches Randwertproblem der. el')enen linearen Elastizi-
titstheorie betrachtet. Durch Zurickfihrung auf singulédre Integralglelchungen werden die
Fredholmschen Sitze bewiesen. Mit funktionentheoretischen Methoden werden der Einheits-
kreis.sowie Epitrochoiden eingehend untersucht. Es wird bewiesen, daBl zu jeder natiirlichen-
-Zahl n und innerhalb jeder beliebig kleinen Umgebung des Einheitskreises eine solche Ep)tro-
choide existiert, daB das homogene nicht-klassische Randwertproblem firr dieses Gebiet min-
destens » lmea.r unabhanglge Losungen besitzt.

B pa6ore paccmaTpusaeTca HeKMaccHYeCKan 3agava nnocxoﬁ Jmueﬁﬂoﬁ TEOPUH ynpyrocru
.CBefleAMeM K CHHIYJAPHEIM HHTErpajJbHHIM YPABHEHAAM AOKA3HBAIOTCA TEOPEMbI q)penrom,- '
ma. MerogoM Teopuu d)ym{ulm OHOM KOMIUIEKCHO! mNepeMeHHOM HCCIEXYIOTCA Ccaydyan
eMHUYHOrO KPYyra M aMUTPOXOHAOB. JIOKA3LIBAETCA, UTO AJIA NPOUBBOIBHOrO HATYPAIBLHOrO
uHCJIa 7 M BHYTPH NMPOM3BOILHON OKPECTHOCTH eJMHMYHOr0 Kpyra CYUIeCTBYeT TaKoH dOUT-
POXOHJI, YTO ONHOPORHAA HEKIACCHUECKAA KpaeBad 3ajadya Hupnxne B 9Toit ofstacTH uMeeT
‘. M0 MeHbllle# Mepe n .mmemlo -He3aBHCHMBIX- PeLeHu .
The paper deals with a non-classical boundary value problem -of lmear plane elasticity. With
the aid of singular mtegral equations, Fredholm’s theorems are proved. Using complex variable
techniques, the problem is considered for. the unit circle and cpitrochoids. It is proved that for
every positive integér n and within every arbitrarily small vicinity of the unit ¢ircle there
exists such-an epitrochoid for which the homogeneous non- classncol problem allows at least n_/
linearly independent solutlons

) I _ . ) ' I

In the present paper, & non- classical boundary value problem of llnear plane elasto-
statics is treated. In § 1 this problem is formulated with remarks on its mechanical,
significance: The proof of Fredholm’s theorems is sketched in §2 Using .complex . -

"+ variable methods, we consider the related homogeneous problem in §§ 3—7. In this .

way we can realize a remarkable sensibility of the considered non-classical problem
in-respect to the variation of the domain. Indeed, we shall prove that in every small
v1c1mty of the unit circle there are such domains for which the homogeneous problem
allows an arbitrarily large number of linearly independent solutions. This property
is quite interesting with respect to the simultaneous validity of Fredholm’s theo-

" rems. Notice that.a similar behaviour is unknown in the theory of related plane-pro-
blems for a single elliptic differential equation of second order, for instance, the obli-
_que derivative problem. In this case the number of linearly independent solutions .
of the corresponding homdgeneous problems depends only on the index of the problem;
but not on' the domain (Horx1cH (3], FICHERA [2], SCHUBERT, [11]). Another non: . .

classmal problem of plane elasticity has been studled in [7, 8] by the author.
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§ 1 Statement of the non-classical problem

Let D — R? be a given bounded simply connected domain with boundary L = aD .
€ €% (0 < § < 1). Let D be occupied by an elastic isotropic and homogeneous body
‘in the sense of plane elasticity with the Lamé constants 4, & > 0. We consider the
-problem to solve the system

Ty VW) =0 (x€D);i,j=1,2, summing up ;) e

Zj ,

of linear plane elastostatlcs w1thout volume forces with the boundary. condltlons
—0,™(z) cos (n(z), X} + 0,®(z) cos (n(z), x ) = 0 o (2a)
—u,(z) cos (n(z), X,) + uy(z) cos (n(z), x,) = g(z) (z €eL). (2b)

In these formulas, n(z) means the outward normal of L a.t Z,gis a glven function of
the class C#(L) (0 X « < f < 1), and ¢;® mean the components of the stress vector
o™ = (6,™, ,') in the Cartesian system, which satisfy the relations-

ol = oj5c08 (0, X)) (5] =1,2; summing up ). A
\
u;-in (2 b) are the components of the displacement vector u = (u,, uz) The relatlons
between u and o; are given by the generalized Hooke’s law

~

_ ' L w |, ou
oii_)‘e-(s‘j+#(3_xi+'—{§)' 6 = oz, + oz,

).

The mechanical meaning of the condition (2) will be apparent from the consideration
of the “‘extreme fibre’’ of the body along L. In virtue of (2a), the extreme fibre is
tracted by pure tension or pressure, but not by shear stresses. The tangential dis-
placement of the extreme fibre is given by (2b). '

In terms of displacements, the problem (1), (2) can be formulated as follows: To
find a solution u-= (u,, u,) of the equations BN : o

1 Au + (A + p) grad div u = 0 S (5)

with bounda.ry conditions (2), where the connection between the stress vector and
the displacements is given by

o = (g, Uz(m) =J(mu,
6u, ou,
oz, 3:1:

J(n)u_2,u +)nd1vu+,u( )( —ng, 1), C®

N = (ny, ny) ; (co§ (n, X,), cos (n, xz)).

J (n) is called operator of normal stresses.

§2 Fredholm’s theorems

Fredholm’s theorems for the problem (1), (2) (or (5), (2)) can be proved by the aid
of a potential approach with the framework of [6], which'is sketched below. The consi. :
derations are restricted to such solutions u of problem (5), (2) which belong to the
class Q'+(D) n C¥D). For such a solutlon u we can find a vectorial densxty ®(y)
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= (.Q)l(y), ¢2(y)) of the class C%¢(L) which satisfies the form}lia ‘

-u<x>=V(x,<1>);éfr(x'—y)‘dﬂy)dg xeD. N

T

\

" Furthermore, the dens1ty @ is uniquely determined by the dlsplacements u [6]. The
matrix T'(x — y) in,(7) is the Kelvm Somigliana fundamental solution, glven by

I'z) = [ i(Z))ii=1.2,

ZZ".

l)(z) - aln l I 6.; + Iz'lzs k > 07 . ! - N (8) .
‘2 +3u b' A+
~ 2u(2 + 2u)’ 2u(A + 2u)°

The real constant k must not commde with an exceptional value but for a given do-
main D there exist no more than 2 exceptional values [6: p. 34 Hilfssatz 9.2]- The
main properties of the 31mple la,yer potential (7) can be found in [6]; for instance the
. jump relatlon A

T0) Vi By = lim’ T a) Vs @) = j:‘l’(Z)'-*-%fI‘z*(z‘ y) ®(y) ds
x3Dx—z€L
. Sy .
“with | :
 D*=D, D =¢CD, = [T Jij=120 o
PRz, ), T2, y)) = T (n) (n.(z -y Pz:(Z—y)) (i=1,2)

’ a.nd the formula

i[a . .
Z“?)=;[KF(Z—Y)‘1’(Y)¢18, \

Whlch are valid under the assumptlons L e C8, <I> € C%(L).. Moreover the displace-
ments u of (7) are solutions of (5) in the classmal sense.

In order to satisfy the boundary conditions, ® must be a solution of “the mt,egra,l
equation’ system

. —nz(z) PD,(z) + na(z) q7’2(5)

44 / (Bor(z, ¥) Buly) + Kt ) Puly)} dsy = 0, - (98)

% f (Kalz, y) P,(y) +K22(z, ) ¢2(y)} dsy = g(z), - (9b)

" where the kernel functions K;; are given by
K2, y) = —mz) T}, (2,Y) + m(2) T1,(2,Y),

. Kin(2,¥) = —no(2) I'7, (2, y) + m(2) I (zy),
Kyi(2, ) = —na(2) Tz — ¥) + m(2) Tz — o ,
Ko(z,y) = —n9(2) Ns(z — ¥) + m(z) Toalz — y). R R ‘
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The equivalence between (2), (5) and (9a), (9 b) follows from the results of [6] Further-
. more, the equation (9 b) is subJected to the opera.tor . .

:() =0 (d_s) =(E§ + 1), 8§ — arc ‘length..parameter.‘

Thus we obtain the equation. L

.[b;?ﬂ%”?ﬂrfﬁz _,>@w%@,
L L . : cT

)

. R . . . ' ‘ d . ) M . R .
A %mm@m+&MwQW@ﬁﬁym+mr - eb)

Using the considerations of [4: p. 11‘%], one can easily prove that t,he equatidns (9 b)
and (9b’) are equivalent for ® € C%<(L). The system (9a),.(9b’) is a singular integral
equation system. In the complex - plane (¢ =z + zzg) the system (9a), (9b') can
be splltted into the terms , , ’

D) | 0 e
: ! L N . ' ' L

where €'is a ‘conllpletely'continuous operator and' . ) : -

A() = [ "2(4') nl(_C)],; B(C) = [ .“?nx(C)- ‘an(C)] 0= u

- o o —any(8) . any(O)’ A 2u
Because of X o )
L —nykeny  tmpeeny
| det [A + B] Fan, . tan, = ac = const. = 0,

" the system 9 a) (9b ) is of regular type in the sense of MUSKHELISHVILI [10] with
1ndex x=0.

- Consequently, Fredholm s theorems are’ trué for (9a), (9b ) and, in virtue of the
equlvalence between! (2),(5) and (9a), (9b), we get the same result for thé boundary
value problem-(5), (2) (or (1), (2); respectively). Particularly, there exist at most a
finite number of solutions of the homogeneous problem (1),.(2) (with g = 0). '

In the following, we will determine explicitely the number & = k(D) of linearly ..
independent solutions of-the homogeneous problem (1), (2) for some special domains
D by using complex variable methods and conformal mapping technique.

§3 Funda'rnenta-l formulas .

In ordcr to apply complex varlable methods, we make use of some widely used for- .
mulas. Let w(z) be the conformal mapping from the unit circle in the complex z-plane
to the domain D in the ¢- plane Then we can introduce curvilinear rectangular
co-ordinates ¢, ® in D, which arise by mappmu of the polar co-ordinates p, 3 of the
-unit circle. Turthermore it is well-known' in plane elasticity that there exist two
ho]omorphlc functions (), ¥(¢) which describe the deformation completely.

These functlons are in one-to-one correspondence to the ho]omorpluc functlons



o(z) = pi(w(2)), viz) = Wx(w(z)) By setting ‘px(C) = ¢y (C), ¥ (C) - (C), P(2)
= (Dl(w(z)) ¥(2) = ¥\(w(z)), one gets A _
‘ ¢'(2) = &'(2) P2),  Y'(2) = w'(2) ¥(2). R (1
The following formulas were deduced e.g. in [9]:
. . - 2 .

z—z) (@@ ') + ') ¥(2),

.0'00'.’— 10,6 = P(z) + GT(Z-) - ‘
' (12)

0 107 v+ i) =% o) (mp’(z) ~ 22 Ve - @)

- Here Gops Top’ miean the components of the stress tensor with respect to the Cartesian
system in the~considered point ¢ € D, whose axes have the directions of the o- and .

#-co- ordmate lines. u,, up are the corresponding components of the displacement

. vector. Moreover, we can always assume ¢(0) = 0. Setting o = 1, we get the boundary .
values of the.éxpressions (12). Now, the homogeneous problem (1), (2) (g = 0) can .
be -considered .as a problem for determination of the analytlc functions’ <p(z) p(z)in

the unit cu'cle from the boundary condltlons

:

o’ (l)[w(l) () + o'(t) ()] o o

In the next section we consider the boundary- value problem (13) for the mapping

function w(z)'= z + ¢z?, ¢ € R. The corresponding domains D are epitrochoids. In

consequence of ‘the conformlty we have the condition w'(z) == 0 for [z| = 1. ThlSv ‘
.lmplles IqI <tp:

§ 4. The homogeneous problem in the case w(z) = z + qz”

.A. Now; we consider the problem (13) in ‘the specml case w(z) = z + ¢zP (p €N;

7 = 2). Because of t{ = 1 on'the unit circle, the boundary conditions become

h [
20 (t) [a (%) (1) +'() &(’(t)] '

.'l _t2w(—
1
¢

= ® (—)w(t)+tw(l)¢(t)+tw(t)w(> :

! {1
w(t) ——“ (7)
=Y -—

1 't)[w(nera'({)W];o, o u

tw'(1) g(t) — 22 70 =0 for |t|=i-‘

.

1) In the case of plane deférmation we have x = At 3’“ =3 — 4o, in the case of enemhzed
+u &
504+-6p 3-—0o i FTH
p_la.ne stress- x = —_—

— Poi sson’s ratio, — o'<—
Miom 1iel O 0y S )
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S EDen TO + o0 PO =0, L : T (8)
R 0] [»«p(t) - “ 7O — w(t)]
—te'(t) [;«;Te) — —((z)7 o (e) - w(e)] =0 for |ff=1.
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Using the construction of Schwarz’ reflection prmmple the holomorphic functions
@(2), p(z), D'(2), ¥(2), defined on the unit circle, relate to the holomorphic functlons

1 =1
?l\7) Y ek P (z) T(z) in the exterior of the unit circle. The boundary va-

lues of these functions are given by @ (i) = o(t), ..., ¥ (l) = Wt) With the piece-
wise analytic functions t : ¢ , ,

229’(2) [6 (zi) D'(2) + w'(2) W(z)]i for |2 <1 o
2= ;,(1) o | | - (t5a)
- _

0w (2) = () p(3] o ws

,

“-and -

,—:E(l)q;(z)—{—zw(l)tp(z)—}—zw(z)zp(z) for |z|.<1/

%20 (2) 7 (%) +2 w7 (é) +o @ (%) 7 (—lz—) for 2l > 1,

bhé' boundary conditions (14) are transformed to _ ‘
| Q-2 H=0, M- ®=0 ' | a8

Accordmg to (15a) and (15Db), the analytic functions .Ql(z) and £2,(z) have poles of
the order (p.— 2) and P— 1), respectively, at the origin and at mfxmty Thus, the
general solutlon of the jump problems (16) is given by

Q,(z) = (15b).

Q@) =R (i=1,2), | ' o an-
b, by -
R,(z); Z,,LZJF E =+ + -+ bo + bz bp-s2P~? + bypg2?72,

p-2

cCp1 , Cp- c - T ae &
= %’—2 T— ot Gzt Bt Gy,

with arbitrary complex constants b, I;,, Cx, 6;. Bearing in mind :(153,) and (15 b), one
obtains Q; (L) = Qi(z) (¢ = 1, 2). Consequently, we have E; (i)= R;(z), which
implies z - ‘ z

b =08 f=1..,p=2), &=§ (G=1..,p-1),

\

bo, co — real constants. ' : L (18)

" B. Further restrictions for the constants ¢;, b, can be deduced if we pay a,ttentlon _
to the connection between (15a) and (15 b) In order to establish these restrictions,
we consider the following Taylor expansions in the neighbourhood of the origin:.

9(z) = Kiz + Kp2' + -+ + K2? + 0(¢*)  (9(0) = 0),
- D(z) = &Ez_;- = (K, + 2Kz + --- + (0 + 1) Kpu2? + --+)
(1 — pgzP- 1 + (pq)z Zz(p 1) __ ) .
=K + 2Kz + - + (p — 1) K,,2P"2 4 p(K, —qK)zﬂ 1
+ [(p + 1) K4y — 2pgK,] 2P + O(2P*Y),
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.

@'(2) = 2K, + 6Kz + - + (p — 2) (p — 1) K,py2?™d
+ (p — 1) p(K, — qKy) 272 .

_ C+plp + 1) Ky — 2pgK,) 277t + O@%)  for p =3,
bu‘t, ) ‘ ) ’ \ . ’ o )
() = (2K, — 20K,) + 23K, — 4K, + 4¢°K\)z + O@) “for p=2.
. Comparmg the first coefﬁments of the Laurent expa.nsnons at the origin.on both sides
of (17 ) one gets the linear equations

(P + 2) gK,. | | = Cpos
(xp + 3) SIKa ' ' E '—;Icpra
o bp o+ (p— DI gKpn = * (19a)
' 2qK2 o ;." . ) ,‘ = bp_2 .
~ 6gK, * = b, ’

N - (p—z)(p—l)qul—b,, A
(x+1>K1+p(x+1)qK =c ‘

(19b) -
= — ) pg’Ky + (p — 1) Pqu = _bo,.
.y = 1) 9K, '
cp 1 = (xp + )q . ‘(19¢)
PP + 1) gKpoy = b — 2(L + pg® — pg?) Ko,
but in the case p = 2 the last equation must be substituted by _
(6qKy = 2q(1 — 2¢%) K, — 2(1 — 2¢°) K,. A IO - .. (19¢)
: . Ty B
Because the coefficients on the right-hand side of (19a) do not vanish, we can choose
arbitrary complex values for the (p — 2) constants K,, Ky, ..., K,_;. The coefficients

“of (19b) are real, and the determinant does not vanish. Therefore we can give the
_constants K, and K, arbitrary real values. The general solution of (19) is

o =(pFhga  (=12..,p=1),
bP—kF(k_l)kqak‘ (k=2:3,.~--’P"'1)»

~

’ . - . (203) |
¢ = (x + 1) (&, + pga,), .
bo=(p—1) pq(fqal + a,); . !
K' = @ (i =1,.., p)’ .
. (20b)
‘ p(p+1)qu+1—b — 2(1 + pg* — P¢’) @, A
where @, ..., Gp-y are arbitrary complex constants and a,, a, arbltra,ry real ones.
For p =2 the last.equation must. be substituted by .
o 6gKy =2q(1 — 2¢%)a, — 2(1 — 2g%) . - e (201
.Let ‘@, p be holomorphic solutions of (14). Then the existence of such complex
@y, ...,a;, and real a,, a, is necessary for which the constants c;, b; and ‘the first

(p + 1) Taylor coefficients K; of ¢ satisfy the relations (20a), (20 b) Henceforth,
the constants ¢;, b; are chosen in the sequel in accordance with (20a).
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- § 5 The complex di’fférexltial cquation for th'e,functior_l @

A Taking‘into.acco'unt p'(2) = '(2) ¥(z), we have for [z[‘< 1

) e
and : i . . ,‘_ . . T . Ca . °

:‘«V_, 1\ 1 ’ - ) . .

o ()8 o) L orae o

’

leferentlatmg (2lb) and subtractmg (21a) one obtains the differential equation

- (y—l)@() ()+xQ(Z)¢(z) H(z) T ¢ >

with : - ‘ .

S z By(z)\' - . Ri(2)

Q) = 2 W) ' ()“ (zw (z)) - 20(2)
or ) B . . . A S

, b QR 1 : ‘ T o0
_ .9’4(2) + 0@ tp(Z).~ < @) H(,Z) S (22')
with S '
_®
® — 1"

The singularities of the linear differential equation (22) result from the poles and
-zeros of the functions @ and H. Because of 0 < |g| << 1/p;the zeros of @(z) have simple
multiplicity and are located at the (p — 1) complex roots z,, .. -2zp_y Of (—pq). The',
. only pole of the functions Q(z) and H(z) is 2, =0. In thls pomt we get thc followmg
Laurent’s series:’ )

S| z”‘l-i—pq-'pq

. R ' .

S Q) = T T T pgr T o +"('1—P?92)?+0(1) fos P23,

T . S ) . - , (23a);

"2q 1 S O e o
Q) = 5+ (1 —4¢7) 5 — 2(1 - 4¢°) — + O(1) ‘for p=2  (23D)

and ... : , ' s o '
Lo "Ri(z)  PY b, )

R S R bt 0w,

'(Rz( ))'___. "Zwl (P‘*‘l—-k)cpk Y T qcp—l

20'(2) Pok+z : 22

+ o(1).

t k=1 '
: Bearmg in mind the last two formulas and the relations ("Oa) one obtains by simple
calculations the Laurent’s expansion - c : .

S
H(z) =—):pq[p—Z+ Dx+ 0 —

22

X[(k+1)(1—?’92)a1+7"1(7‘+?’“p] : b . )
— 21— 2 (0 = ) gEp — 2pgteal + O). (24)

’

N
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At flrst we consider the differential equatlon (22') in the z- plane with non- mtersectmg

—_——

branch cuts ‘along the lines zooo 2,00, ..., 25,00, We define certain’ one-valued
_branches of the functions Qz), Qzy~ v such that @(z)~ Q(z)~! = @(2)~! holds.
Thus, the coefficients in (22') are. well-defined holomorphic functions within the

unit circle with branch cuts. Consequently, in this domain we get the general solu-
tion of (22’ ) by .

'-.()—CQ(

25) |

C — arbltrary complex const&nt

as a one-parameter famlly of analytic functlons defmed in the umt cnrcle with branch
cuts [1]. - . . \ . :

B. Obviously, the function q)(z) of (25) cannot be ‘holornorphic in the case O’ %+ 0,
for the function @(z)~’ has smgularltles at. the points z, ..., z,, because of » > 0.
Now we consider the integral in (25). By virtue of (23), we have

Q) = e (Bi(0) = (p) + 0)

with a~regula,r power series P, (z). Similarly, in consequence of (23) and (é4) one_gets

= Q(z)'—i H(z) = 2~ P+ R, (2) (‘B : ) S S
CIf we assume additionally that (p + 1)»is not.an mtegcr then we can deduce
Q(Z fQ(z YT1H(2) dz = 2%B4(2) (SE ) =% 0) L : .

‘(Thls 1mplles that the mtegra] term -of (25) is holomorphlc in a sufﬁcnently small )
neighbourhood of the orlgm Analogously, we have in the neighbourhood of z; -

(i=1,...,p—1)
L Q@) —(z—z.)-'amz—z) (‘340)#0), .
QT HE) = (- Ble — ) (W(0) +0).

Therefore one gets +

/

QO [ Quar-1 1) ds = e — 2
. |

N

- in a neighbourhood of the points z; (¢ = 1, p — 1). For that reason, the solution
(25) is holomorphic in the unit circle if and only if C =0, prowded that v(p + 1) is
not an integer. Introducmg the notation

LTy = @y, Ty = Gy, r3 = Rea,, 'r4l=' Imaz,..;,rzp;3=Reap_2,

Topz = Ima,_,, - l 4' '

“the choice of p&ranleters ' ‘
o on=dp G=12,0.,%p-2) S (26)

corresponds to (2p — 2) linearly independent (in ‘the real sense) holomorphic solu-'
tions @;(z) (t = 1,2, ..:, 2p — 2) of (25).
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]

. N _ ’ .
§ 6 Regularity of 4

" In accordance with (21b), wé\deﬁne the functions N

: 1 1 , , '
‘/’i(z)\ = zw’(z){ 20(z) — ; @’ (z) pi(z) — 2w (%) q’ii(z)} 27y
G=1,2 .., 20 —2), '

which are felated to the holomorphic functions ¢, (¢ =1, 2p — 2).In this fonilula
we understand by’ R,P(z) the function R,(z) with parameters (26). Since the @
* solve the differential equation (22), the i are also solutions of (21a)
R,\9(2)
220'(z)

.

()¢m+wm

We have still to check whether the functions ; are holomorphlc in the unit circle.
At first sight one realizes that the only singularity of y; can be placed in the origin.
Furthermore, it is easily seen that y; is holomorphic within a neighbourhood of the ’
origin if and only if the first (p - 1) coefficients K,9, . K"’+l of the Taylor expan-
sion of the functions ¢; satlsfy the relations .

KW =aq, . KD =a, ' . s
) (28)
p(p+1)qK"’;—b1—2(l+pq —pqe)ag C

with parameters (26). In order to check these conditions, we consider an arbltrary ;
holomorphlc solution ¢ of (22). Let the Taylor series at the origin be

®(2) = K,z + Kp2? + -+ Kp2P*t 4+ O(2r+?).
.Using (23), one obtains by éimple ‘calculations _
(x — 1) Q(2) (P'(Z) + %Q'(2) ¢(2)

p—1

K .
.=—Z palx(p — 1+ 1) +1] =7

pglx + p)Kp +-(x+ 1) (1 — p%?) K,

22
BECE V7 e Ty oL NP 294)
. z : = :
bu(t‘v
= DQE ) + @ )
=—M%+n———mw+mm+w+nu—mn&w—f@%r

- {6qK3 + 2(1.— 4¢°) K, — 2¢(1 — 44?) Kl}'—z— for p=2.

" Consequently, the holomorphic solution ¢ of (22) fulfills in every case the conditions
(28). For proof: the expansions (24) and (29a) (or (29b), respectively) must be com-
pared, taking into consideration the parameter choice (20a),(20b) ((20b’)). Hence
we obtain with the parameters (26) the (2p — 2) linearly independent solutions
@i(2), wi(z) (1 = 1,2,3,..., 2p — 2) of the boundary value problem (14).

, -
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Because the problem (14) is equivalent to the homogeneous boundary value
problem (1), (2) (with g = 0), we get the followmg interesting result:

Let D be the domain to which the unit circle is mapped oon/ormally by w(2) =z
+ g2 (p = 2,0 < |q| < L/p). Then the homogeneous problem (1), (2) permits exactly
(2p — 2) lmearlg/ mdependent solutions.

This result shows that the considered boundary value problem responds extremly ,
" sensible to a variation of the underlying domain. This is remarkable w1th respect to
the simultaneous valldlty of Fredholm’s theorems

§7 Remarks

The result of §6 holds true for every 0 < |g| < ; If ¢ converges to O then the

considered domain D lies in an arbltrarlly small vicinity of the unit circle. Thus, for
every positive integer # and in an arbitrary vicinity of the unit circle there exists
such a domain for which-the homogeneous problem (1), (2) permits at least = linearly .
independent solutions. Finally, we consider the borderline case of the unit circle
_itself. Here the’considerations of §§ 4—6 can be repeated with w(z) = z. The complex
boundary value problem is .

- 1 —

.td) (&) + 2@ — -t— ) — 7 ® =0,

. L
= 90) + 9 0) +tp(t) — xtpll) — §0 — 7 pO =0 for 1l = 1.

: 2 : .
Its solution depends‘on the number 2y = _xl In every case we get the solution
x — S :

o) = Cz, . (x)=0 (C — real constant).

These functions generate a radialsymmetric dlsplacements field. If 2v is an integer,
" then one obtains addmonally 2 lmea,rly mdependent solutlons which are the func-
tions ' e . .

P(z) = 0122', p(z) = —Cylx + 2v) 2%2. ) .

- . - . 2 ‘

1
We havev2u = 2 + 1 2 - in t,he case- of plane deformation, but 2v =1 4

1 —o0

1 \

for generahzed plane stress. Provided that Poisson’s ratio ¢ 1s restrlcted by Y1 S0
1 D ST |

< 5 the number 9y can assumé the integer values 4,5, 6, ... (for o= T o= -f«}_’

o= %, ...) for plane deformation, but only the intéger value 2v = 4 for ¢ = i

in the case of generalized plane stress.

w
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