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Weighted Inequalities' for Vector-Valued Anisotropic Maximal Functions 

V. Koiusiivrtj and J. RAKOSNIK 

Die, anisotrope Maximalfunktion wird hier mit Hilfe einer éinparametrigen Familie von Qua- 
dern (statt Wurfeln) definiert. Für vektorwertige anisotrope Maximalfánktionen werden 
gewichtete Ungleichungen vom sclwachen und starken Typ bewiesen. Die Ungleichung vom - 
starken Typ wird dann zum Beweis der Stetigkeit des anisotropen Maximaloperators' in ge-
wichteten 'Rau men mit gemischter Norm benutzt.	 . 

AuhI3oTponhIaH MaIcMMa.ubuan 4yHFc[1H onpejeJIaeTcn 3Cb 'iepea oJHouapaMeTp1aIecHoe 
ceMetcTBo napaJu1eJieuBneos BMeCro }cy60B. Jii BexTopHoaHanbIx anu30TponHaIx 
MaxdHMaJIbHbIx 4yiixit1 AoitamiBalOTCHBeCOBLie uepaneca cia6oro u CfJIbHOrO TIlnOB. 
HepaBelicTno CIIJIbHOr0 TFlna HCnOJlb3yeTCn B HOHije Upil noHa3aTejmcTBe He ripe phIBHocTIl 
auu30Tponnoro MaicdilMaJiaHoro onepaopa B BecoBbIx npocrpancTnax Co cMeIuaHHbIMn 
HOpMaMH. 

i The anisotropic maximal function is defthed by means of one-parametric parallelepipeds 
instead of cubes. For vector-valued anisotropic maximal functions there are proved weak 'and 
strong type weighted inequalities. The strong type inequality is then utilised in the proof of 

-' an anisotropic weighted mixed norm maximal inequality. 

S	 'S 

1. Introduction 

I.A. Let R',be the Euclidean space of points x = (x 1 , ..., x 5 ), R+?i be the set of all 
points y = (, ..., y,) with y, > 0, i = 1, . .-., n. By a weight function (shortly a 
weight) we shall mean a non-negative measurable function w: -- R1. The weight 
w generates a measurey,, given by 

Itwe = f w(x) dx,	e	R' measurable.	 (1.1) 

The Lebesguc measure of e will be denoted by jej.	
- 

For a weight w and 1 p < co we define the weighted Lebesgue space L P as the 
st of all measurable functions /: Wi —+ RI with the norm	 S 

= R-
If(x )I w(x) dx)"P < _.  

1.2. Let ;= (x 1 , ..., x 5 ) be a fixed point in R,". For x E R" and t €R' we define 

E( X,	= {z € i: 1z1 - x11	-- ti,.	i.= 1, ..., n}	 S 

and
E = {E(x, t) X . E ]III , t € R'}.
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• 1.3. To each measurable. function /: R' -	we adjoin the anisotropic maximal 
junction	 ,. 

21'I/(x) = sup E(x, t)L' f 'I/(z )I dz.	 (1.2) 
1>0	 E(x.1)	-. 

• f a =	a,,, then M/ is the classical Hardy-Littlewood maximal function. 
- 1.4. Let (Y, 8, v) be a a-finite measure space and T be a a-algebra of Lebesgue meas-
urable sets in R". On the a-algebra -T/ x S we define the measure;. as the product of 
the Lebesgue measure and ofv. For . a' 2-measurable funtion f: R" . x Y R1 we 

define thee vector-valued anisotropic maximal function - 
•1W 1 f(x, y) = sup .I E (x , t)' f If(z , y)J dz,''	x 	R',	y € Y.	(1.3) 

1>0	 E(X,1) 

1.5. In [11] (see also [5]) there is given a characterization of those positive functions w 
• for which the classical Hardy-Littlewood maximal function is bounded operator in 

L,. In [7] the well known theorem of *Hardy and Littlewoód on LP boundcdness of 
maximal 'functions was generalized for 1 0-valued functions Sin the unweightèd case. 
This result was extended in [2] for functions with values in the sjaces 170 - and L° 
with'mixed norms. For L°-valued functions the first author obtaihed in [9] a full 
description of the weighted Lebesgue spaces in which the . Hardy-Littlewood maximal 
function is a bounded operator. .For 1°-valued functions similar result was derived 

S

	

	 independently in [1]. The weighted weak type inequality for 1 1 -valued Hardy-Little. 
wood maximal functions was established earlier in [8]. 

In this note there iire proved weighted weak - and strong type inequalities for a, 
S	veetor-valuéd anisotropic maximal function. The main ideas follow the first author's 

paper [9]. At the end an application of the strong type inequality to the weighted 
:.'

 
mixed norm norm maximal inequality is shown.	

S 
S	 -	 -	

S	 \•	 S	 S 

2. Auxiliary notions and assertions	 ',	 •	-	 S 

2.1.7he class A(a). Let E be the set defined in Section 1.2. If 1 <p < cc, the class 
•	A(E) consists of all weights win R' for which there exists.such a positive constant c, 
S that for any E = E(x, t) E F  

	

/	 1	' \p-1	 •	S 

• ( I E I -1 f w(z) d,)  IEI	f W.	1(Z) dz')	^ c' .	 .	(21) 
\•	 /\	E 

• 
s	 The function w is said to be of the clas A, (E) if there exfst-s such a constant c> 0, 

• that	 ,	,	 •	•	 --	 'S 

M(w) (x) < cw(z)' ae. in J'3 ,	•	' •	 S •	• - -
	 (2.2) 

where M is defined by -(1.2). Remind, two properties of functions frqm the class 
A(E): If w € A(E), I < p < cc, then there exists Po such that 1 < Po < p, and 
w E.'A,,(E); in addition w € A,,(E) for arbitrary p > p. The second property is a • 

simple corolla'ry of the Holder inequality, and the first was'proved in [10]. There was . 

also stated the following assertion.	•	 -	 S , ,	

, 

2.2. Proposition: Let' 1 <p < cc,and F be given in Section-.1.2. Then there exists 
•	 a constant c> 0, independent of /,such that	• -	 S 

f[Mf()]P w(x) dx < c  /(x)I P is(x) dx	• ,	 •,	S	 - 

R-

if and only if w € A(E).	-	 'S •:	 •	
•
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2.3. Lemma: For a measurable /unction / we define  

= sup E'f I/(z)I dz,	x E , R,	 (2.3) 

where the supremum is taken over all B E E 'which contain x.	 - 
It holds.  

M/(x) :E^ M/(x)	211/ MAX),	 - S	 (2.4) 

where I=xj+..,.±aand - 

y = mm	 ,	
(2.5)

Proof: The first inequality is trivial. Now, suppose tlat .x E E(u, t) E E. This 

-. means that 1 xi - u	t',i = 1, 2, ..., n, and for y E E(u, t) we have 

•	y, - Xi I	l y i — ,u I + 1xi	ujj  

where t'	2 1vt, y defined by (2.5). Consequently y E E(x, t'). i.e: E(u, t)	E(x, 1'), 
•	and, moreover, I'E(x, t')I	(2t) = 2I IE(x, t)I. Hence	 ' •-	 . / 

E(u, t )1' 111(z ) AE(x, t ')I' f j/(z)j dz,	. 
•	 E(u,t)	 , E(X.H  

• -

	 and so the, second inequality '(2.3) holds I 

	

We recall two covering lemmas which we utilize later.	 -. 

2.4. Lemma [4: Section 3.6]: Let / E P(R") and s > 0. Then there exist a number 
o >'l (depending only on a from Section . 1.2) and a sequence of non-overlapping 

parallelepipeds R,, j € N.such that  

s < 1R1L1 I l/(x)I dx ^ (2ao) 1 ' 8,	j E N,	 -	(2.6) 
R5 

'	I/(x)I	s a.e. in R \ U R,,	-	 -	(2:7),

and for any j € N there exist .U, V € E so that  
•	

,	 V1R	U1 and J U I J = ao'I V1l .	•.	 ,	 •,.
	 (2.8) 

2.5. Lemma ([6]): Let  be -a bounded set in. 1V, and let /or any xE D there be give a 
parallelepiped R(x) with the centre x. Suppose that for-each two points il , x2 € D the 

•	pà'allelepipeds 11(x 1 ) and .R(x2 ) are comparable, i.e. one of 11(x 1 ) and (x 1 — x2) ± 11(x2) 
• 5ontains the other.	'	 ,	. 
• , Then from {R(x): x € D} a sequence {R5} can be selected such that  

•	D=UR1 , -	 -	-	'	(2.9) 

•	 Zfl,(X)n,	x€D,	 ,	S 	 (2.10) 

where the number O n depends only on the dimension n.	 0 ,	 •	 S

2.6 In this section we shall prove an anisotropic version of the lemma by C. FEFFEu. 
MA adn E; M. STTN [7]:
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Lemma: Let 1 <'p < cc and /, g E L10 (R) be non-negative functions. Then 
there exists a constant c > 0 independent of / and g, such that 

[M/(x)]P g(x) dx	
R.

1) Mg(x) dx. 
R. 

Proof: Let .sbe an arbitrary positive number and m € N. We denote 
•	H8 ={x ER'3 : M/(x) > s} and R m = H8 n {x € R'3 : x] m}. 
For each x .E H 3 there exists E € E such that 

•	 •.	 IEI:'f/(z)dz > s.	•..	 (2.11)
E. 

Since the family {E: x € H811 satisfies the assumptions of Lemma 2.5, there is a 
• sequence of non-overlapping sets B, from this family, satisfying (2.9) and (2.10) 

where F, and He" stand for'R, and D, respectively. By the Holder inequality, and 
•	the estimate (2.11) we have	 S 

-	 f (x) dx	f g(x) dx(s' IE-' f /(z)dz)P 
jE1 

-	
s'P	iE1L f g(x) dxf /P(Z) Mg(z) dz 

-	 jEj	E5 

•
	(Ej j- '	

p-1 
x 	f [Mg(z)] P ' dz 
 E 

Since Jg(z) ZZ E1' f g(x) dx for all z € F,, by Lemma 2.3 we get 

I	 I	\p-1 
(IF1!-1 f [.2l'fg(z)] P'-'1 dz)	21 - 1/Y lEil -I f g(z) dz' 
\	E1	 /	 -	Ej'	I' 

and so by (2.10) 
Jg(x) dx • 2I31/YsPf /7'() Mg(x) dx.	 (2.12) 

Passing to the limit m --> cc and assuming that the right hand side does not depend on 
m we can write 118 instead of H81 in (2.12) and so we obtain the weak type (p, p) 
inequality for the operator M with respect to the measures /4Mg and p. It remains 
to use the Màrcinkiewicz interpolation theorem (see, e.g. [12]). 

• 3. Weak and strong type inequalities	 - 

3.1. We shall now proe the weak type inequality for the vector-valued anisotropic 
maximal operator M(1) defined in Section 1.4. This weak type inequality will be then 
used by the proof of the strong one. 

Lem ma:	p ^ t < cc, t > 1 and iv € A(E), then there exists a positive 
constant c such that  

U.E 
R": * ( f [M(1)1(x, y)]° dv\ 1/ > s 
'  

f (1 I/(x, y)1 6 dv\PI O w(x) dx  
/ 

for every s> 0 and every 2-measurable function /.	-
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Proof: Let s > 0 and' a )-measurable function f: R' x Y -+ R' be given (for the 
measure 2 see Section 1.4). Denote  

• N8(/) (x) = ( 1 /(x, Y)I° dv)' = fJ/(x, )11L0Y. 

By Lemma-24 there exist non-overlapping parallelepipeds R,' and parallelepipeds 
U,, V, € E such that relations (2.8) hold and, moreover, 

- -	s < jR1I -1 f N0(/) (x) di	(2x)1' S,	j € N,	 (3.2) 

N0(f)i(x)	s ,ale.in R' \ U R.	-	 (3.3) 

Put R =,ij R 1 , R' = W \ R, and for (x, y), E Rn x Y 

p(x, y) = f(x, i) XR'(X),	p(x, y),= f(x, y) — (x, y). 
One can easily observe.that	 - 

	

{x€ 1V: No(M(1)1) (x) > s}	Q1 + /-'Q2	0	 (3.4) 

where	 • 

,Q1= x € R: N& (M(1) ) (x) > f}, 
Q2= Ix E R": No(M(I)p)(x) > --}.,

 
Since w € A(E) and	p, it is w € A 6(E), and the Chebyshev inequality, the Fubini 
theorem and proposition in Section 2.2 yield 

U.QI 
5(--)ff 

[Mq(x y)j° dy. dv 

<cjs o f N08() (x) d1u,	c1s0 f N 0(/) (x) 

According to (3.3) we conclude that	 - 
•	

- iz Q1 :5 c18 f NP(/) (x) dy,	 (3.5) 
Rn / 

Nov, we shall estimate the second summand of (3.4). Let us introduce the step-
function	 0	 - 

	

I R11 f It(z , Y)I dz,	x € R1, 
R1 

	

10,	-	xER'.	•'	' 
With each U5 = E(x(i), t,) we associate the parallelepiped U =E(xi, i i ), where 

31Ivg1, y given by (2.5). We denote U = U U1 and U =W U. 

	

We shall show that	 j 

M(1) ?p(x, y)	d'M ) 7(x, y)	(x y) € U' x Y,  

• where  = 31I . Let x  U' and I E 11,'. Evidently x  E(x,.I) \ U. Put  = {j EN: 
fl,flE(x,t)	0). For 	Swehave	 - 

—.	(tç' + es '),	i ='l,°..., n;	 -	(3.7)-

\	 0
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Since x	U, there exists k, 1 :5.- k < n, such that	 .. 

- 
x1,1 

> (3.8) 

From (3.7) and (3.8) we get t	> tç&. i.e. 
1<1	€S.	 .,	. (3.9) 

Hence, if z € U,, j E S, then by (3.7) and (3.9)	•.	 S 

I zi- Xj	Iz	_.1(j)f ._f.	14 j,	Xil . 

and so U j	E(x, ) for each j € 2. On the other hand obviously 3" IE(x, 1)1 
/pE(x,t)dnforeveryxE R" and t€ R, 1 . Thus for x€ U', y 	Y and t€ R,' we 
have	 . 

E(x, t)	f I(z,	)I dz 
=	

7 IE(x, t)'	f	jv(z, y)l dz	. 
E(X.t)	 jES	E(x.t)fl.R, 

-	 E(, t)I	I II(z , y) dz =	E(x t)	f	(z, y) dz 
jES	H1	 JES'	-	H1 

^d	IE(x 1)' fl(z y)dz	dJW(l)/(x y) 
EMI) . 

which yields (3.6).	 -	 . . 
•	Because of (3.6) we can write	- 

Q2	UuQ3,	 ..---- (3.10) 

here Q3 =	€ U	No(M(I)7) (x) > d	
..}	

So instead of	Q2 it suffices to esti 

'. niate	and	Q3. .. 
•	By the gencralized.Minkowski inequality and' (3.2) for x ER1  

-	(f /(x, j) dvV'° ,	R11-'f ( I f(z, y)I° dv\' / ° dz 
/	R,	\Y	•	 I. 

•	 = IR1 h fN0(/) (z) dz	()t	s 
•	

••	 /	 H1 

•
	

and so	 . 
N (7) (x) :!E^ (2)I10 0,	x ER,. _ (3.11) 

By a similar way as we obtained (3.5)'we derive from Proposition 2.2 and from (3.11) 
the estimate	•	-	•. 

•	
/LWQ3;5 c2sf N°(/) (x) dp	c3/2R	c3/U. (3.12) 

Thus, it remains to estimate the measure Of U. At first, suppose that p = 1. From 
.(3.2), (2.8) and (2.4) *e obtain	 .	. 

•	 U	s	f w(x) dx IR1J	f N8(/)(z) dz 
R5 

-	 ^ d 01Is	27 iUif w(x) dx f N0 (/) (z) dz .	• S	

• 

•	

-	 -S	
U5	 H1 

•	 •	
.	 27 5 .N(f) (z) Mw(z) dz-. •	 •	 S. 

R5 -	.	 •	J	 •	-	I
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and using the ccndition (2.2) we conclude that 

1uU	c48 1 f N0(/) (z) w(z) dz.	 '.	 (3.13) 
Rn 

Finally, if 1 <p < oo, by the use of (3.2), (2.8) and of Holder's inequality we get 

•	 jU ^ s'	f w(x) dx IR1L9 (f N0 (/) (z) dz\P 
•	 • .	

1 
•	 d'Pa01"tPs	IUJ:P f w(x) dx f N0P(/) (z) w(z) dz 

•	 1	 \p-1	 - 

(f wP'(z) dz	.	 S 

Since U, EE, the condition (2.1) yields 

15, cs- P f N8P(f) (z) dz.	 (3.14) 
R. 

The inequality (3.1) now follows from (3.4), 
1

(3.5), (3.10), (3.12), (3.13) and (3.14) I 

3.2. Theorem: Let 1 <p,e? < cc. Thereéxists a constant c > 0 such that the inequality 

(5 [M(l)/(x, y)]8 dv)PI w(x) dx	c  (5 I/(x, y) dv)P/° w(x) dx	(3.15) 
R  

holds for every 2-measurable function / if and only if to E A(E). 

3.3. Remark: Let us consider the isotropic case (a 1 = •.. = );In this case Theorem 
3.2 was proved by the first author [9]. Particularly, if -the measure  is concentrated in 
the natural numbers, an analogous result was obtained independently by K. F. 
ANDERSEN and RT. JOHN [1]. In the unweighted case (w(x) = . I) (3.5) is a special 
case of the maximal inequality proved by R. J. BAGEY [2]. 

3.4.'Proof of Theorem 32: At first we suppose that 1 '< p <t < cc. Let Po ' Pi 
be such that Po <p <Pi < 0 and w € A(E) n A,(E) (see Sctiàn 2.1). According • 

to Lemma 3.2 there exists c1 > 0 such that	 S 

•a{x E R: No(M(l)f) (x) > s} ;^s C ' s- P, f N8P(/) (x) w(x) dx,	i = 0, 1 
Rn 

for every 2-measurable function f . By the use of Marcinkiewicz's interpolation thêo. 
rem we obtain (3.15). 

.Further, let 1 <<p < cc. According toSection 2.1 there exists Po' 1 <Po . < P 
such that w € A,(E). Choose , 1 <00 < pp'. We can consider two cases: 1 < 9 

and <1J< p; 
If I < :5^ 00 , then w € A j (E). We hve 

•	f ( f [M 1 1(x, y)]6 dv"PI° d4°IP = sup f ( f [M( Ax, y)]0 dv\ h(x) dx, 
R- Y/	J	 ftn\y	 /	S 

/	 (3.16) 

where the supremum is taken over all non-negative functions h: 11"	IU for which*- 

f

[h(x)] ° [w(x)] 
—° dx ^ 

-	.	I.
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Using the Fubmi theorem and Lemma 2.6 we can write 

(I [M(1)/(x, y)]° dv) h(x) dx =	( f [M(1)1(z, )] h(x) dx) dv 
- C, f (1 /(x, y)° dv) Mh(x) dx. 

Hence, by the Holder inequality \re obtain 

R 
(f [M (1)1(x, y)]° &  h(x) dx

P	 8 
is C2 ( f (f IAx, )I 8 dv' P1 ° w(x) dx'8iP( f [Mh(x)][w(xfl	dx) 

/	 /. \R"	-	- -	 /

(3:17) 

Sine w € A 18 (E), it is w° € A(E), and applying Lemma 2.6 to the second 
p-8 

integral on the right hand side of (3.17) we get 

f (1 [M l f(x, y)]8 dv\ h(x)
'
 dx	C3 ( f ( f /(x, y)I° dv\P/° w(x) dx\'IP. 

R- Y	 /	' 	 / 

The inequality (3.15) now follows from (3.16) and (3.18). 
Since, among other, we have just proved the inequality (3.15) for 9 = 00 and the 

inequality (3.15) with 0 = p is a simple consequence of the Fubini theorem and of 
Proposition 2.2, we can use the interpolation theorem for spaces with mixed norms 
(see, e.g. [31). By this way we obtain the inequality (3.15) for	< 9	p. 

• Thus we proved, that. the condition w E A(E) is sufficient for (3.15). 
Vice versa, if we consider functions / of the form /(x, y) = (x) (y), where the 

functions q,, ip satisfy' the conditions.' 
•	fNp(y)j'd >0,	fp(x)Pw(x)dx< ., 

Y	 It" 

then the necessity of the condition w . E A(E) follows from the corresponding 'assertion 
of Proposition 2.21 

4. Maximal inequality with mixed norms  

4.1.' We shall use Theorem 3.2 for the proof 'of an inequality for the anisotropic 
maximal function in spaces with mixed norms. 

Let EM , E 2 be families of one-parametric parallelepipeds in the spaces Rm , R', 
corresponding to the vectors £x(1) E R', a(2) E R', respectively (see Section 1.2). 
By* E we denote the family of all E = IEM x E(t) 4 E, M , i = 1, 2. Let us intro-
duce the maximal function 

M*/(x, y) = sup. I El _ I f /(u, z) du d, 

where the supremum is taken over all E , E E with the centre at (x, y) € R"1 xR'2. 
4.2. Theorem: Let 1 <pa, P2 < 00 and 'w 1 € A 1 (E( 1 )), i = i, 2:Th 

R (R 

[M*/(x , )]P w 1 (x) dx)P/P w2(y) dy 

C  (f l/(, y ) l' w1 (x) dx) P./P . w2(y) dy  

with c> 0 independent o//.	'	 .
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Proof: Let M(1)/ be the maximal function defined by (1.3) and 
M(2)/(x, y) = sup E(2)I1 f I/(x, z) dz, 

E(') 
where .the supremum is taken over all E( 2) EE 2 containing y. Then, obviously, 

M*/(x, y) ^S M(l)(M(2)/) (x, y),	(x, y) E Rm x R'.	 (4.1 
According to (4.1) atid Proposition 2.2 we have	 - 

f ( f [M/(x,'y)]P w 1 (x) dxP,IPi w2 (y) d?j 
R. R"'  

f. (1 [M(M/) (x, y)]P w1 (x) dx"' w2 (y) dy 
-	/ 

C  (1 [M(2)/(x, y)]P w1 (x) d)PJP w2 (y) dy. 

It remains 'to use Theorem 3.2 with Y = R n and y =	I	-	-' 
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