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'On Duality and the \Iaxnnum Principle for Continuous “Linear Programming
Problems

F. TROLTZSCH ’ ’ .

In dieser Arbeit wird das Grinoldsche Maximumprinzip fir lineare stetige Optimierungspro-
bleme erweitert auf Fille, wo die bekannten Dualitidtssitze beim Beweis der Existenz einer
Optimalldsung des Dualproblems in den gebriuchlichen reflexiven L,-Riéumen versagen. Das
erweiterte Maximumprinzip wird dann zur Untersuchung eines. pambohschen Randsteuer-
problems benutzt bel dem Beschmnl\ungen an die Steuerung und an den Zustand gegeben

i

sind. ) ) . ,

B oo paGore mpunuun makciumyma  I'piunonbia A 3aa4y HEMPEPLIBHOIO JIHHENHOro
‘TPOrpaMMHPOBAHIA PACIIMPAETCA “HA CAyuyad, Tle WBBECTHHE TEOPEMB BONCTBCHHOCTH
HEeZOCTATOYHH JUUIA OKA3ATEJNbCTBA CYMIECTBOBAHHA OMTHMAABHOI'O PELIEHUA ABOICTBEHHOMH
npoGaemtt B “pedrexciBHHX npoctpancrsax Ly. .I1locne proro pacuimpenHsift NpHHUHT
MaKCHMyMa TI3MOJNb3YETCA AJA 13YyYeHHs npoﬁne\m ONTUMANBHOrO YHPABJICHKUA, OMHCHI-
BaeMoit mapabosinuecKkiiM ypaBHEHHEM, Te yNnpasieHne’ uencmye'r Ha rpaunuie, objgactu u
3aaHbl O'PAHNYCHIIA HA YIPABJICHUE 11 COCTOAHIIE. '

In this paper, the Grinold maximum principle for contmuous linear progmmmmg problems 1s
extended to the case where the known duality theorems do not ensure the existence of an
optimal solution of the dual problem in the usual reflexive L,-spaces. The extended maximum
principle is then applied to the investigation of a parabollc boundary control problem with
constraints-on the control and the state: - o B

1. Introduction” , . : L :

This paper is concerned with applications of duality theorems for continuous linear

" programs, thus it-contributes to a field of optimization theory where many interesting
results were found within the last fiftcen years. We mention only the basic investiga-
tions by LEvinsox [3], TyNpaLL [9], and GrixoLp [1], wluch have been continued
by many others. The reader may find a short blbllooraphy in the ‘author’s paper [6].
These 1nvest1gatlons were focused on the following palr of linear programs

anal problem:

T
fa(l)T z(t) dt = sup! o

0
subject to
. T .
B(t) =(t) < e(t) + [ K(t, 5) «(s) ds, o : (1.1)
() = 0 ’ ’ X

almost everywherc (a.e.) on [0, T], x() E L,0,T; R”) P €[1,00) (by T we shall
denote transposition). ) . :
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. Dual problein/

-
. ,'f() v(t)dt mf'

-0

'_ subject to

(t)’r v(t) 2 a(t + fK(s t)" v(s) ds,
v(t) 2 6
a.e. on[O T],v()EL(O T RM), 1/q+1/p—1

In this settmg, a(t) and c(t) are suitable vector- valued functions, and B(1), K(t, s)- ’
are matrix-valued. We will define them in the next section.
" Most of the authors supposed K(¢, s) to bé a continuous Volterra kernel (contmuous
on 0 <s=¢t=<7T and vanishing for s> t), whereas: the more general class (1.1)
with (weakly singular) Fredholm kernel was considered by the author [5]. i
The duality theory refers to the following main questions: Do the primal supremum
and the dual infimum’ coincide? (Without .assumptions we know only sup < inf.)
Do there exist optimal solutions to one or both of the two dual programs?
In 1970 GrINOLD (2] cstablished his two-level mazimum prmczple for continuous

- linear programs. The first-level, being of interest for our paper, is as follows: Suppose'
’that x“(t) and 2°(¢) are optlmal for (1. 1) and (1.2), respectively. Then

¢ T T
" max [a(t) + f K(s, t)T v°(s) ds] z -

-subjectto B L

r )
Blyz S c(t) + [ Kit, s) 2%(s) ds,
x> ',.0 ’ B -

. (x € R¥) is attained a.e. on [0, T'] by z = 2°(t). A'.similar version holds for the dual

problem (1.2). Clearly, the validity of the maximum principle is 1ntlmate]y lmked

. with the existence of a dual optimal solution v°(¢) for (1.2).

Although the duality theory has progressed very fast in Tecent years, it is often.

‘the existence of an optimal solution to the dual problem (1.2) which cannot be guar-
- anteed. Regard; as a typlca,l example, the simple problem

T .

fa(t)x(t)dt—suPV SR S
Lo ‘ P ¢ )N
. =c = z(t) — fk(t s x(s ofsSc _ng(t) =1,

a.e. on [0, T, where ¢, T > 0, a(-) € C[O T, and a continuous real function k(t, s)
on [0, T]x [0, T'] are given, and x(t) is ‘taken from. L2(0 T) This problem fits in
(1.1) by p = 2, N-__l M =3,

’ . : k(t, s)\ - '
1 ! K(t <t ¢
‘Bity=|—1), K¢t s=1\" ’s),, » = )y =|c¢
: 1) ' [y o . 1

O: * S>t,

. N = .
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“The dual problem is therefore . . TN

S [ovy(t) + cvalt) + wy(t)) dt = inf!, . L
0 . . . . -

. ST : (14
Bilt) — wot) + v5lt) Z alt) + [ ks, 0) (vr(s) — vals) ds, 4
. 4 v :

w) 20, i=1,23,

a.e. on [0, T], where v(t) = (vl(t), vyt 'vs(t))"' is taken from L,(0, T; R") Usmg the
theory of [1] it is easy to prove that an optlmal solution of (l 3) eXJsts ‘and that
(1.3), (1.4) admit the same optlmal values, 1.e. max = inf. It is not clear, however,
" whether an optimal solution exists in (1.4). The known duality theorems by Grinold,
Levinson and Tyndall do not apply, as B, K and ¢ contain components with dlfferent

. signs.

The difficulties arising from the treatment of problems l)ke (l 1) are caused by the
fact. that z(t) occurs under an-integral as well as outside.the vntegral as a ,,free term®,

_ thus the space for defining the inequality constraints of (1.1) must be as large as that

for z(t). Consequently, the well-known Slater-conditions cannot be.applied to gua-
rantee the solvability of (1:2), if z(t) is defined in the usual L,-spaces with 1 < p.< c0. a
Therefore, one could use a decomposition procedure separatmg integrals and free terms
‘of z(t) in order to overcome the obstacles for proving the existence of a dual Gptimal
solution and to establish a sa,tlsfactory maximum principle for op’mmal solutlons of
(L.1),

We will pursue this idea and its consequcnces in this paper. " Ouf approach will
not lead to entirely new duality results. To a certain extent, our theory is equlvalent "
to the investigation of the problem in the unusual dual ‘space L0, T; RM)y* How-
ever, the decomposition trick enables us to avoid the use'of this space completely,
thus this idea seems to be intéresting in its own right.

As a result, we will obtain a useful generalization of the Grinold maximum prin-
ciple for problems where the known duality theorems fail to ensure the existence

-of a dual optimal solution. The maximum principle was successfully applied by the
author to the numerical solution of a parabolic boundary control problem {see [7]).
In Section 4 we shall mvcstlgate analogously a more genetal boundary control problem
by the extended maximum principle, in order to charactcrlzc optlmal controls ‘as
precnsely as p0851ble , . \

2 The maximum principle

At first, we introduce some notations: If Xisa Ba.nach space, then we shall denote
by L. (0 T; X), C[0,T; X], or NBV[O T, X] ‘the spaces of functions on [0, 7'] with’
valucs in X which are p-times 1ntegrable continuous, ‘or of bounded variation and
vamshmg at ¢t = 0 (normalization condition), respectively: R¥ is the Euclidean
N-dimensional space: (column-vectors) and R¥*¥ that of real M X N-matrices. By
||, we shall indicate thenorm of L,(0, T'). If f € X*,'the dual'space to X, then we shall
write (f, z) for.the value of f applled to £ € X. All other notatlons w1]l become

+ clear from the context.

In order to complete the definition of the. prlmal problem (1.1), we introduce
integers N = 1, M = 1, real numbers T' > 0, p € [1, o0), and define ¢ by 1/p + 1/q
= 1. We -suppose that a(-) € L0, T:RY), c(-) € Lo (0 T, RM), .and B(-) € Ly

x (0, T, RMXN) are glven Moreover, we suppose that a measurable funct,xon K{(t, s):
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-,

10, T] X [0, T} — RAMX¥ ig glven such that the integral operator
) > f K(-, $) z(s) ds

is a contmuous mappmg from L,,(O T, R” ) into C[O T; RM], and that its adjoint
operator, bemg a mapping from NBV[O T; RM™] 1nt0 Lq(O T; R¥), has the form

y(-) > f K(s, ) dy(s).
- - 0 . .

Here we used the notation

T - M T
J 207 dy(ty:= X" [ 2it) dyt).

0 i=1 0

This property holds, if K(t, s) is continuous on [0, 7'] X [0, T'] or continuous on 0 < s
<t =T and vanishing on 0 <t < s < T (Volterra kernel). Further kernels are
discussed in [5]. Now the primal problem is well defined. In our approach, the dual
problem will admlt anothcr form than (1.2) (see Section 3). .

Our mveshgatmns will be based on the following two assumptions: -
’ (A 1) If 2(") € Lo(0, T';RM) is given, then any solution z(-) € L,(0, T'; R¥) of
B(tyx(t) < 2(t), =z(t)=0 a.e. on [0, 7], :
is bounded and measurable on [0, T'. :
(A2) (Slater-condition): There are 6 >0 and x(t) = 0 from L (0, T; R¥) such that
the strong inequality .

4

BMﬂo<()-A"+fK«ﬂuo

\

holds a.e. on [0, T], where 4, is the M-vector w ith all entries oqual to o.

It should be mentioned that (A2) implies even the existence of 6 > 0 and: x(t)
which addltlonally satisfies Z(t) = Ay (take Z(t) := F(t) 4 ¢4y with € sufflclently
. small). Note that in the example (1.3) these assumptions are met!

For proving the duality theorem we shall apply the following statement, whlch is
adopted from [8], formu]ated for a linear constraint. .

Theorem 2.1: Let V and Z be real Banach spaces, C S V a convex closed set,
f: V — RL a continuously Frechét- dz//erentmble functional, and T V — Z a linear con-
tmuous operator. Suppose that v° s optimal for the problem

f(v) = min!, To=0, wveC, . . L A
. and that the regularity conditions o _ -
V=12 ‘ » | (2:2)
-and } . . o
T(@— 1% =0 forsome %€ intC . ‘ (2.3)

- are fulfilled. T'hen there isa Lagrange multiplier y € Z* such that

(f"(v")', v — v + (y, T(v — v°)) 2’0 forall veC. ’(2.4)
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- In the theorem, f'(2°) is the Frechét-derivative of f at v9. In what follows, we shall-
- assume that an optimal solution 2°(t) for the primal problem (1.1) exists. This holds
\ true, if the feasible set of (1.1) is bounded in the norm of L, (0, T;.R¥).
Now we shall prove a Lagrange multlpller rule, from whlch all other statements can
be casnly derived. _

Théorem 2.2: Let 2°(t) be optzmal for (1. 1),aml suppose that the assumptions (A1),
* (A2) are satisfied. Then there is a vectorvalued. function y(t) from NBV [0, T} RM]'
(henceforth called Lagrange multiplier) such that the pair (x“(t), z°(t)) . ¢

A

zo(t) :; f K(t, ) x°(s) ds, .
0 .

isa solution to the linear p'rogmmming‘ problem
T T A T - o .
f_ [a(t) + f K(s, )7 dy(s)]T z(t) dt — f 2(t)T dy(t) = max! (2.5)
0. -0 . b . ' .
subject to )

B(t)y z(t) < ¢(t) + z(t), x(t) =60 ae.on [0,T], o ‘b-\ o (2.6)
' 2(-) € Loo(0, T'; RN) 2(-) € 0[0 T' R¥].

Proof: In order to apply Theorem 2.1, we erte the prlmal problem (1. 1) in° the
equlvalent decomposcd form

T , T

' fa,(t)T x(t) d't'= max! fK(t s) :c(s) ds -~ z(t) 6 on TO T] . LN B o
L0 : ' . E
. . B x(t)—z()gc() a.e. on [0 T], @D
oy = 0. ' '

I 'Accordmg to (A 1) and the assumption on K(t s) we can assume :c( ) € Loo (0,‘ T; R¥),

L2 € C[0, T'; R¥). Now we define ’ . / '

V:= L«(0, 1"RN)><Z Z:= C[O,‘T;RM],
denote the elements of V by v(t) (z(t), z(t)), and introducé

. T N : ' N
/(v ) f(—a(t) x(t) dt, (Tv(-)) (t) := f K(t, s) z(s) ds — z(¢),
C:= { ( ) eV | B(t) z(t) — z(t) < c(t) z(t)" 2 0 a. e\ on [O T]}
In this way, the problem (2. 7) becomes equnvalent to (2 1), and v°(t (x"(t), 20(¢ ))
solves (2 1). Accordmg to (A‘)), a, pzur v(t):= (x(t + edy, z(t)) w1th z(t) : f K, s) -

(:c(s) + eAA) ds belongs to the interior of C and sa.tlsfles the regularlty condltlon,
(2.3). This was the reason for regarding z(t) as a functxon of L(0,T; R¥), as in
L0, T; R¥) the mterlor of C would be empty. Moreover, condition (2. 2) is fulfilled

. (the equatlon Tv = z is solved by v = (8, z)) Thus Theorem 2.1 yields the existence :

34 Analysis Bd. 4, Heft 6 (1985) ’ : ) ..
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of y(t) from Z* = NBV[0, T: R¥] such that

T ' :
[ (—ae)T (z()) — z) dt
s A _
T[T ' o T S
+f[fmzs@ —ﬁ)”&—M”—@Mﬂ(MHQO m&
.fc.n; all (x() -2(- )) € C. Finally, we multlply (2.8) by (—1), put y(t) := —J(t), and

_ change the order of integration (here we need the second assumption on K(t, s)) so

that (2.8) takes the form .

' ) o ' T ! T . : , ’

S [a(t) + [ K(s,0)" dy(s)*] (x(t) — 2°(0) dt — [ [2(t) — 2°(1)}7 dy(t) < O
, ; T

0 o

~ for all (x( ), 2(- )) €C, being cqui\;alent w&th (2.5), (2.6) 8

' Dlscussmg this result we obtain several useful conclusions.

Corol]ary 1 (maxzmum prmmple) Under the assumptzons of Theorem 2.2 s

T ©oqr B
max [a(t) + f K(s, )7 dy(s)] x
0 _ :

subject to ; ’ : , o A : i
o T .

C Btz = .c(t) fKUﬂﬁU r=0,

z € R¥, is achieved a.e. on [O T} by x = 2°(¢). ‘

Proof: This follows easﬂy from Theorem 2.2 after keeping z(t) = 2°(t) = f K(t,'s)
X z%(s) ds fixed 1 - o

Corol]ary 2: The entries y,(t) oo Yar(t) of the Lagfrange multiplier y(t) of (2.5) are

monotone non-decreasing on {0, T]. ,

Proof It follows from Theorem 2.2 that (x°(l z°(t)) must achieve the (flmte)
maxxmum value in (2.5). In partlcular (a:“(t) (¢ )) must be ,,better'* than all pairs
T

(20(2), 2°(¢) + 2(2) )w1th 2(t) = 0. This can only hold sz(t =0 1mphesf )T dy(t) =0,
and this yields i in turn the corollary 1 : :

- Thus y(¢) belongs to the dual cone PM of the conc Py of non-negative functlons
of C[0, T; R, . o . e

Corollary 3 (complementar y slackness prmczple) Suppose that there are an open
‘mterval (a;0) & (0, 7),6 >0, and j € {1, ..., M} such that

wmﬂmL<Gm+megwm&)—é

o ’ ) 0. . : j
kolds a.e. on (a; b) for an optimal solution 2(t) of the przmal problem. Then y,(t) = Jl(a)
holds.on (a, b) for the j-th component of the functwn y(t) in (2.5). - i p

Proof: Assume that the corollary is not true. Then, by Corollary 2, there is an
e > 0 such that yi(a + &) < y;(b — ¢). We can construct a continuous functlon Z;(1)

~



-. a greater value in (2.5) than (x"(t) z°(t)) contradicting Theorem 2.2 1
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on [0, T] such that z(t) = z°(t) on [0,T]\ (a,b), z (t) — 0 S E(l) =z (t) on
(a,a + e)u (b — ¢, b)and Zj(t) =z °(t) —oonfd + ¢ b — e] It is easy to show that
T

N EZ0 dy, t) < f %) dy,(t)
0

Now take z,(t) = z,°(t g, 2 (t) = z;(t). Then (2%(¢), 2(t)) satisfies (2.6) but achleves

\

Toillustrate the theory, we shall now apply the first two corollaries to the - example

" (1.3): Here the. assumption (A1) is trivially true, as B(f) z(f) < 2(t), z(¢) = 0, where

2(t) = (z,(t), ), za(t))T, implies 0 < z(¢) < z5(t). The Slater-condition (A2) is satis-

- fied by Z(t) = 0. Thus the Corollaries 1 and 2 ensure the existence of non-decreasing
“functions y,(¢), Ys(t), ys(t) from NBV [0, T'] such that an optimal solution 29(¢) of the

prlmal problem (1.3) is almost everywhere on [0, T'] the solutlon of

A_ma,x_l:a(t)' + f k(s, ) d(y:(s) — y2(s)):l z o . . (29)

subject t'o B

—c+fk(t s)x"( )dsSx<c+fk(t s):c"(s)ds

OSx<1 . : - )
t

° It should be noted that y,(¢). refers to the upper bound z(t) < ¢ + f k(t 8) x(s) ds of

the mtegral constramts, Yo(2) refers to the correspondmg lower bound and ys(t) to
the constramt x(t) = 1. : . “

‘% 'I‘he dual problem

Naturally, our approach does not lead to a dual problem in the form (l 2) The
function %(¢) must be-the optimal solution of another type of problems. Under the
a.ddltlonal aseumptlon of continuity of -B(t) and c(t) we can 'show that the’ Larrra,nge

multnpller 1/(t) is' the optlmal solution of the dual problem ,

o
"f.c(z)r dy_(t) — ‘min!

! ]

Su’bject to - o . ’ N S : |
a ' T . o
fB(t)T dj f( + [ K(s, z)T dy(s )) dt € Py*, B
0 : 0 S
b . J( ) € P/‘ll ) .

where we denote’ by PA+ the dual cone to the non- ncgatlve cone Py of cro, T R¥ ]
thus Py*+-consists of the non-decrcasing functions of NB Vio, T; R¥]. '
It is easy to see that the derivative v(t): = y '(¢) is an'optimal solution of the- dua]

.(1.2), if7y(¢) is additionally absolutely continuous with derivative' in Lg[0, T'; RM].

We will not show that'y y(¢) solves indeed (3.1). The proof can be denved_ for mstance,
from Theorem 2.2 and the observation that the subset of all v(-) = (a(- )) €eC

34*
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~ . .

wit_}i continuous part z(¢) is dense in C (the latter follows with some effort from Lusin’s

- theorem). Note that the objective functional of (3.1) is defined only for continuous

~ ¢(t). If ¢(¢) is not continuous, then all considerations are more difficult. The'main task’
of this'paper is, however, to generalize and to apply the Grinold maximum principle
rather than to establish a satisfactory duality theory. Therefore, we will not further
consider.the problem of-duality and refer to a recenit paper by PAPAGEORGIOU [4],

’

where similar questions are investigated.

/
R X Applicatibn fq-a-parabolic:-boundary control problem - A B
In this section we consider the.problém_ o ot - i'\ o
[ (T, 2) — 2(z))? do = min! (4.1)
0 . . - ' : B o :
subject A.to the parabolic initial-boundary value problem
wt, ) = wealt, 2) ' on (0,71x(0,1) * - ! ) .
“w(0,z) =0 - on(0,1), T ’ - .
0,2)=0 ) o, 1, A N el
w,(t, 0) = 0" ) . on (0,T], . .

wilt, 1) = ofult) — wlt, D] on (O0,T)

-(the‘éﬁbscripts _mfiicate deriv“a'tives'with réspe_cﬁ tot and z) and to the constraints
S ) —we, D ¢ ae.on [0,71, o (43)
Lo uty<1  aeon [0,T), - o " (44)

. where we.take the control u(t) from L (0, T') and define the corresponding state w(t, x)
from C([0, T x [0, 1)) as generalized solution of (4.1) by the expression (4.5) below. In
_ this'setting T > 0, ¢ > 0, « > 0, and 2(:) € L,(0,.1) are given. -
.. If this problem is viewed as a heating process, then u(t) is a time-dependent heating..
~law,w(t,-x) is the temperaturc within an infinite plate of thickness one, and the state- .
constraint. (4.3) is imposed in order to, bound thermal stresses occuring in the plate. ,
-In what follows, we shall denote by u°(t) an. optimal control for (4.1)—(4.4), and .
wO(¢, ) is the corresponding state. We define the gencralized sphition w(t, x)of (4.2) by .

1~ t v

U ultz) = o [ G 13t —syuls)ds, o (45)
. - 0 . , . v‘ ~ '-‘ - , ! .
" where G is the Green fu{lction . SRR ) - \

Gl £5t) = 5 Nyt 008 (oa) cos (caf) eXp (—C:%0),
r, 6t) = 2 | |

[

and 0 < ¢ < ¢ < ... are the non-negative-solutions to ztanz =, N,:=1/2"
4 sin (2¢,)/4cq. I u(t) is continuous, then w(t, x) is.a classical solution of (4.2), but
we need the extension to bounded and measurable controls %(¢): It can be shown that
by '(4.5) a linear continuous transformation from L,(0, T') into C([0, T [0, 17) is
defined, if p > 2 (see [8: Section 5)). Now we take.p > 2 fixed, regard u(t) formally,

v -~
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‘ as a functxon of L,(0, T), and mtroduce an operator S: L,,(O T) - L2(0 1) by o
- (Su(- )) (#):= w(T,z). h
_In this way, the control problem admits the form
/(u) ISy — :f.{l:,2 = min!

subject to (4.3), (4 4). Now we obtain from the well- known tirst order necessary
-optimality conditions (apply Theorem 2.1 to f as defined above, 7' = 6, and C des-
cribed by (4:3), (4.4)) that u°(f) must be optimal for the linear continuous programm-
ing problem /

’

T
fa(t) u(t) dt = max!,
0~ . N

i

B

u(-) € L,,(O,‘T), where

. N . 1 .
Coall) = — 2 N, 1 cos (c,). exp (—c,, (T — 1)) [ (Su® —"2) () cos (cqz) dz,
N . 0 L ) N

n=1

-

k(t, 5):= aG(1, 1; z;s)

This is formally the same linear programming prob]em as in our example (1.3), but
a(t) and k(t, s) are not continuous. We know, however, that a(t) is continuous on [0, T),
. boundeéd on [0, T] and that k(¢, s) is continuous for s < t with a weak singularity in
s = t. Therefore it can be checked that all assumptions imposed on ithe data of the
sprimal problem (1.1) are satisfied by the proble/m (4.6) for p > 2. On account of
. this, (4.6) can be treated completely analogous t6 (1.3). Thus, for u°(¢) the maximum

prmmple (2.9) miust hold. In.the next statement we shall app]y this maximum prin-

cxple ini_order to obtam a,\fa,r reaching characterlzatlon of optlmal controls.
./ ‘

’

Theorem 4.1: Suppose that f(w° T, z) =~ 2(x) )2 dx > 0, that (Al) (A2) are satzs-

fied, and w(t )zs piecewtse contmuous Then there cannot exist any mterval (a b) c [0, 7]
where

. . t A / L
. max (0, —c -{—f k(t, s) u'(s) ds) < u0(t) < 'min (l, ¢+ f.k(g, $) u%(s) ds)
0 : 0 o

. o . | - ‘ | . (4 7
-holds for all t.€ (a, b). \ ‘

(Precisely, we must say that u°( )is supposed tobea.e. equal toa plece\\ ise continuous

function).

Proof: Suppoée the contrary, i.e., (4.7) is satisfied on (a b). We canassume that
all items in (4.7) differ at least by & > 0, so that the inequalities are uniformly strict
on (a, b).

The optimal control must satisfy the maximum prmcuple (2.9) with certain functlons
J,(t) ¥2(¢), ys(t). By Coro]lary 3-and the note after (2.9) we find , '

() = 1(@), %:(t) = (@) on (a,b), - N Y

4 o : L
—¢ = ult)— [ k(t, s) u(s) ds < e 0 <1, ‘ . (4.6)

\
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while the maximum principle (2.9).asserts that (4.7) can only hold if

" oa(t) + f k(s, t) d(yl(s) — yz(g)) = O a.e.on (a, b).,

Accordmg to (4 8) and the series representatlons of a(t) and k(t, s), this amounts to

’

Z‘ exp (c,.zt) [ " 1a,, exp (—c,, (v,,, v°>

.n=1.

— N “‘oc,,zf exp (—c,,zs) dy(s)] =0
. o -
?on [a, b — ] with ¢ > 0 suff1c1enbly small, where we have introduced «, := cos ( ,,) .
Ty(8) 1= 1(8) — Ya(8), va(w) == cos (cuz), 0°(2):=w™T,x) —2(z). Hence, by the-
linear independence of the system {exp (c.2t)}, . - ;

T

(v,,,v)—zx,,fexp(c,, —s)dy ‘ n=1,2 .. | - (49)
b—e ‘ . .

We will show that (4.9) implies

n=1

L (¥, 00\2 = +oo ' , L ’ _ ' ‘(4.10,): .

" (contradicting v%(-) € L2(0,,1)),.unless'y(t) = y(a) on the whole interval [a, T']. Then,
however, we get (v,, »Y) = 0 from (4.9) foralla =1, 2, ... and hence v(z) = w*(7, z)
— 2(x) = 0 a.c.'on [0, T'], as the system {cos (c,x)} is complete in L,(0, 1). This is a
contradlctlon to the assumptions of the theorem; thus the statement must be
true.

Therefore, we suppose fmally that y(t) is not 1dentlcally constant on [0 7, andf'
it remains to verify (4.10) in this-case.
As. ) and ¥, are monotone non- decreasmo', there exists.

to {supt | yx(t) = (a) A yz(t) = ya(a)}.
"We can assume that y,(¢) and Ya(t) are continuous from the right and introduce the
jump k= y(t) — y(to — 0) of y(t) in &,. Two cases can arise: -
a) ty = T Then k2 > 0, and (4.9) implies :

3 (v, 0O = Y,k = oo '
n=1 n=1 .
(since x, ~ (—] 1)? for n — o0), i.e. (4.10) holds.
b) ty < T: As u°(t) is piecewisc continuous, “there is an 7 >0 such 't.hat u%(¢) is

- continuous on (fy, £, + 27] (the point f, can be one of discontinuity). Therefore, one
of the two inequalities

. - ot . : ’
. —c f k(t, s) ud(s) ds < uo(t) < ¢ + [ k(t, s) u(s)ds, . (4.11)
o . S 0 = ‘ S
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saiy the left one, must be strict on (to, t + 29), if 7 is sufficiently small. Now, by
Corollary- 3, yg(t) remains constant on (ty, ty + 27], and we obtain in turn’ ,
X \ ‘s+'] -

I%M%@—wwwbﬂw@ﬂT—mM+IMN%W—QMMS

ti+2n
: +fwaW—swmm+fumww—sww> .
Lt tat29 o
If h 3= 0, then we choose % so small that Yyt + 77) - y,( <_ k{2 and find
r .
J zuMmW+myMW+aw»~°
b—e . : B .
If h = 0, then S : _ : -

-

fZMMww—%—m)um+m,mm+d%»»
In both cases, (4.10) is easily obtained. If the rlght mequahty of (4.11) is strict, then
the proof is analogous , .

Thus, if u®(t) is not too irregular, then [O T] can be divided into countably (or :
even finitely) many open intervals where one of the equations ul(t)= 0, »°(t) =1,
w0(t) — wO¢, 1) = —c, u®(t) — wO(¢, 1) = ¢ is fulfilled. These faci\:s can be used to
- construct a numerical method for the solutlon of (4. 1)—(4 4) along the lines of [7].

. _ C o, ' ‘
REFERENCES . . ' - e :

.

1] GBNOLD R.C.: COllt:llluOuS programming.°I: Lmear objectives. J. Math. Anal. App] 28

(1969), 32—51.

[2] GrixroLp, R. C.: Symmetnc duality for contmuous linear programs. STIAM J. App] Math

- 18 (1970), 84 —-97.

[3] LEvinson,.N.: A class of continuous linear programmmg problems J Math. Anal. Appl 16
(1966), 73 —83.

. [4] Papacrorciou, N.S.: A class of infinite dimen: 1onal linear progmmmmg problems J.,
-Math. Anal. Appl. 87 (1982), 228 —245.

[5] TréLTzscu, F.: Existenz- und Dualititsaussagen fiir lineare Optlmlerungsaufga.ben in
reflexiven Banachraumen. Math. Operationsforsch. Statist. 6 (1975), 901 —912. - »

. (6] TrovrTzscH, F.: Duality theorems. for a class of continuous linear programming problems

in a space of Bochner-integrable abstract functions. \Iath Operu.tlonsforsch Statist. Sér.

Optimization 11 (1980), 375 —388.

* [7] TroLTzscH, F.: The generalized bang-bang principle and the numerical solution of a para-
bolic boundary- control problem with constraints on the control and the state. ZAMM 64

s, (1984), 551—-556. }

-(8] TrouTzZSCH, F. : Optimality conditions for parabolic control problems and applications (Teub-
ner-Texte zur Mathematik: Bd. 62). Leipzig: BSB B. G. Teubner Verlagsgesellschaft 1984.

+[9] Tyx parL, W. F.: A duality theorem for a class of continuous lincar programming problems,
J. SIAM Math. 18 (1965), 644 —666.

Manuskripteingang: 05. 04. 1984
VERFASSER:

Dr: FreDI TROLTZSCH
Sektion Mathematik der Technischen Hochschule
DDR‘-Q'O‘IO Karl-Marx-Stadt, PSF 964 . .



