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Generalized Resolvents of an lsometrW Operator-.in a Pontrjagin Space 

P. SOBJONEN	 - 

• In dieser Arbeit weiden kontrahierende und verailgemeinerte Resolventeneines isometrischen 
'Operators im Pontrjagin-Raum untersucht. Der Definitionsbereich des Operators darf sogar. 
entartet sein. Die dann herzuleitenden Formein sind analog denjenigen àus dem nichtentarte-
ten Fall, die Werte des charaktcristischen Parameters sind aber jetzt lineare Relatiónen 
anstelle linearer Operatoren. 
B 3TOA pa6oTe 11CcJ1ey10TcH c+usMalouHe it o6o6ll.eH1Ii.Ie pe3oJuneHmI 1130MeTpwsecHoro 
oriepaTopa B npoc'rpaHcTBe HouTpruHa. 061acTb onpeeieun onepaopa MOCT öb!Tb 
BbIpos5eHHoft. BiiBeje1I1IbIe4opMyJ!u aHa3IoriI4HbI TCM n HCBhiOHIIIIOM cayae, ogisaio 
RaK 3HaqeHuH xapaFTepHcTHecKoro napaMeTpa BaicTynaloT 'renepb rnlHefiHble orHoweHila 
IMCTO jIuHeHHx onepaTopoB. 
In this paper the contràctive and generalized resolvents of an isometric operator in a Pontrjagin 

- space are studied. Especially, the domain of the operator is allowed to be degenerate. The 
resulting formulae°are analogous to the nondegenerate case, but the values of the character-
ising'parameter. are now linear relations instead of linear operators. 

Introduction	 - N	 - 
J	 --

As noticed in the introduction of [11] the studies of a canonical differential equation 
with an indefinite weight function may lead one to consider not only defined sym- 
metric operators but also non-densily defined symmetric operators or even linear 
relations in an indefinite inner product space. In this case it can happen that the 
defect spaces of the operator or linear relation under consideration are not necessarily 
non-degenerate. This in turn means that its Cayley transform, which in any , case 
is an isometric operator, has a degenerate domain. Thus in order to be able to use 
the usual method of investigating symmetric operators or relations via their Cayley 
transform one must first study isometric operators with degenrate domains.	- 

In this paper we characterize the generalized resolvents of s closed injective iso-
metric operator with equal defect numbers in a Pontrjagin space (for the terminology 
see below) In order to clarify this result let us recall the essence of Satz 4.1 from [6]: 

• If V is a-closed injective isometric operator with equal defect numbers and with non-
degenerate domain and range in a Pontrjagin space, then all generalized resolvents 
of V are given by the formula 

R(z) = (1 - zU) + P11,P(z) F,	 -	•.	'	(*) 

wher'e'  

P(z) = (I - E(z)) (i -- X(E(z))' (I - X());  
here Uis a given unitary extension of V in the original space, P is a certain operator-
valued function defined in Q(U) and X is the- characteristic function of V. The para- -

/
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meter E corresponding to the generalized' resolvent B is defined in the open unit 
disk Co of the complex plane C and its values are contractive operators in the defect 
space of V. Thus the value set of F is inside the operator unit ball in case of positive 
defect space and outside the ball in case of negative d'efect.space. 

If the defect space of the operator V degenerates the proof of the result mentioned 
above does not hold and furthermore (*) loses its meaning. In considering the for- - 
mula (*)'for the degenerate case it turned out that the values of the parameter F 
can be linear relations, i.e. "multi-valued" operators, and that a natural value set 
for-F is not the operator. unit ball but the right operator or linear relation half plane: 
E(z) is an accretive linear relation.. 

Thé modification of the characterizing parameter F in the formula (*) forced us 
to modify also the characteristic function X of the operator V. The substitute for X 
is so-called 0-function 0, which will be studied more closely elsewhere. After the 
above mentioned modifications it was found out that the basic formula (*) charac-
terising the generalized resolvents of the isometric operator V.holds also in the degen-
erate case bit instead of the function P in (*') one has now	 -S 

P(z) = (0(z) + E(z))'; 

see Theorem 3.6.: 
Although it would be possible to prove tIieabove;mentioned result directly along 

the same lines as in [6], we use here a different approach. We first characterize-in 
Chapter'l the cóhtractive and unitary extensions of an isometric, operator. With the' 
help of that result we prove in Chapter 2 another representation formula for the 
generalized' resolvents; see Theorem 2.1. Finally, in Chapter 3 we characterize in the 
'above mentioned way not only the generalized resolvents of an isometric operator 
but also contractive and unitary resolvents.  

'This work wasinitiated while the author was visiting the Technical University 
Dresden.. The author wishes to thank professor H. LA1'roEJ for stimulating discus-
sions.  

Notation and terminology,	'	 2 

We represent here briefly-the notation and terminology used in this paper. For more 
extensive information about the' results concerning Pontrjagin spaces we refer to 
[2] and [5].  

Throughout this paper denotes a n.-space or a'Pontrjagin space (with x negative' 
squares), that'is, is (complex) linear space equipped with a scalar product (indefi-' 
nite inner product) [. I ], which has x negative squares. The last property-means that 
the space admits a decomposition in an orthog'Onal direct sum = , [4] , 
where . with [. ] is a Hubert space and wjth —[. .] is ax-dimensional Hubert. 
space. Note that the Pontrjagin space is also a Hilbert space with respect to the 
inner product (I, g) -^ (/ I g):  

(fIg):,=[/,Ig+]--[/_Ig_}, 
All topological notions are to be understood with respect 'to the norm topology 
induced by this positive 'definite inner product.  

A vector / in the Pontrjagin space is called positive (negative, ne'utral), if [/ f] > 0-
(<0, = 0). An analogous definition, holds for a subst of . Orthogonality in ,' 
is defined in the usual way: vector's / and 'gin are orthogonal if [/ I g] = 0. The 
orthogonal companion of a subset 11.11 is denoted by
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In a Hubert space a subspace 9)1 is always 'orthocomplemented: 9)1 + 9)1 1 = 
In a Pontrjagin space this happens if and only, if the subspace is non-degenerate. 
This means that the -isotropic part 9)10 := 9)1 n 9Jl I of 9)1 is zero. In general case one 
can form the folowing decomposition for a degenerate subspace 9)1: 

=9J11[-i-]9J12[+] (9)10 ±9)13). 
Here 9Jl and 9)1 2 are subspaces with the properties 

9J10 [+1 9)1 =9)?,' 
The subspace 9)1 3 is skewly linked with 9)10, i. e. 9)13 fl 9)1° 1 = 9)1 3 1 n 9)10 = {O}; see 
[2: Theorem IX.2.5]. 

An operator V in the Pontrjagin space is called contractive if [VI I VI] [II I] 
for all/in the domain (V). The contractive operator V is isometric if the equality-
sign holds everywhere. An everywhere defined isometric operator V is called semi-
unitary, and unitary if in addition the range 91(V) is the whole space. 

If we extend a given operator V in the -space' to an operator U acting in a 
-space S extending , the extension U is called regular. Furthermore, U is said 

to be a dilation of V if V =PUk,,' where P is the orthogonal projector of A onto t. 
If the extension space R equals to the original space the extension is canonical. 

Let V be a closed injëctive isometric operator in the Pontrjagin spaêe . If a 
bounded operator Win is a contractive extension of V the mapping z --> '(I - z 
Z_' E e(W), is called a contractive resolvent of the operator V. Analogously one can 
define semiunitary and unitary resolverils of V. Furthermore, if a unitary operator U 
acting in an extension space 9 is a regular extension of V then the mapping z -+ .R(z):. 

R(z) := P(I — zU) h I,,	z E L(U'), 
is a (regular), generalized resolvent of the operator V. In case of a canonical unitary 
extension the generalized resolvent is also called canonical.	 - 

Along with the Pontrjagin space the product space 2 equipped with the natural 
structure inherited from is also a Pontrjagin space. A linear manifold of 2 is 
called a linear relation. Identifying. opérators with their graphs we see that ' a linear 
relation T is an oerator if and only if the image T(0) = (0). The set'T := (0) x T(0) 
is the multivalued part of T and T8 : = T n T is the operator part of T. Analogous 
to the operatdr case one can define notions like symmetric or contractive linear rela-
tion. Especially, a linear relation T is called accretive if Re (9 -1	0 for all (/, g) E T.
If the equality holds for all (/, g) E T, then T is said to be conservative. 

1. Contractive extensions of aim isometric operator 

The aim of this chapter is to' characterize contractive operator extensions of a given 
isometric operator in a Pontrjagin space. We start by proving their existence. For 
this the following result is useful:  

Proposition 1.1: A bounded operator 6n a Pontrjagin space is contractive if and 
only i/it has a regular unitary dilation. 

Proof: Let W be  bounded operator on a n,-space . If W is contractive, it has 
a regular unitary dilation; see [10: Satz 4.51. Conversely, let U be a regultr dilation 
of W, i.e., U is aunitary operator on a -space R ' extending	and W . = 
where P denotes the orthogonal projector of Pf onto . Then	- 

[ TI IW/]=[U/lU/]—[(I—P)U/.IU/][/I/] 
for all in ,, because the orthogonal companion of in S is positive definite I 

35 Analysis BC. 4, Heft 0 (1085)
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	Proposition 1.2: A closed infective isometric operz1or in a ionlrjagin space admits 
regular unitary extensions. 

•P roof: Let V be a closed injective isometric operator in a x,,-space . By [5: § 9] 
we can suppose that V is 'maximal, i.e., dim 1Z (V) = 0, for instance. Choose an 
infinite-dimensional 'Hilbert 'Space-	with dim i	dim (V), and form the 
t,,-space S :=	In this space the defect numbers of V are equal and conse-



quently V admits unitary extensions there; see [5: § 9] I 

By combining the two previous propositions we see that every closed injective 
isometric operator in aPontrjagin space has, bounded contractive operator exten-
sions. Below we shall characterize them. First; a useful lemma. 

Lmma 1.3: Let W be a contractive operator in a Pontrjagin space. If [WI0 I W10] 
[to Ito] or to in Z (W), then [Wi0 I WI]	[to I/ifor all fin Z (W) 

The proof is the same as in the definite case; see [12: Lemma 1.1] I 
Let V be, a closed injective isometric 6perator in a Pontrjagin spice t). The domain 
(V) of V induces a decomposition of the whole space:

(1.1) 

see [2: Theorem TX.2.5]. Here Zo:= D(V)9 'is the isotropic part of Z (V), 1Z, is a 
neñtral subspace skewly linked with and i and I2 are orthocomplemented 
subspaces such that,  

(V) = ZI[-i-] o,	(17)1 = ¶ 2[+}o. 
Setting	:= R(V)° = V( 0) and 91 1 := V( 1 ) we'getan analogous decomposition 

=911	112 [+1 (flo'+ 913)  

with the 'components having similar properties to those above. In the following, we 
keep these decompositions fixed.  

Theorem 1.4'Lèt V be a closed infective isometric operator in a Pontrjagin space 
With the decompositions (11) and (1.2). 

If W E B(), is a contractive . extension of V, then there exists 'an operator W' , with 
the properties  

• '' (i) W' is closed and contractive, 'its domain is '2	1Z, 	its range is in RI 
(ii) the inequality 

2Re[VfoI W'1]+[W'1 IW'1]2Re[toIf]+[tIt]  

holds for all to in ZO and fin (W');	 - 
(iii) W = V -- W'. 
Conversely, if an operator W' satisfies (i) and (ii), 'then the formula in (iii) defines a 

contractive extension W E B() of V.	 •	-, 
For the pro'of of the first part, define W' as the restriction of	to 2 [±] 

By using Lemma 1:3 it is easy to see that this W' has the desired properties. For the 
converse,'nbte that V 4- W' is closed by [7: Lemma 4.1]. The verification of the other 

, claims is a straightforward'calculation I - 

Remarks: 10 If is obvious that basically the same result also holds for not neces- 
'sarilyeverywhere defined closed contractive extensions. Thus Theorem 1.4 extends 
[12: Lemma 1.2] to Pontrjagin spaces and [5: , 9.21 to contactiveextensions.
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2° For a non-degenerate domain (V) the sum V ± W' . is orthogonal; but-this 
is not necessarily true for a degenerate domain. For example, take a basis {e1 , e2} 

• ' of C2 and make C2 a Pontrjaginspace by defining 

- O,ifj+k, 
-	. [e1 I ek] :=	1, if j =k  

—1, if j=.k=2. 
• Define further V and W' as the identity operator of (e 1 + e2) and (e 1 - e2), resp. 

Then they satisfy the condition of Theorem 1.4 but they are not orthogonal. 
30 If the domain'j(V) is non-degenerate, then the inequality (1.3) is 'equivalent 

to W' being . contractive. In the general case,' being. contractive or' even isometric 
does not imply the inequality (1.3). 'For example, let the Pontrjagin space and the 
Operator V be as- in 20; and define W'(e 1 - e2 ) := e1 + e2 . Then W' is isometric, and 
(1.3) is equivalent to the condition Re [/0 If] 0 for all/0 in ZO and] in (W').. 
But Re [e 1 +.e2 1 e 2 - e 1 ] < 0; consequently (1.3) is not true and the operator- 
V ± W' is not contractive.	,	,	-	•	'I 

Corollary 1.5: In the correspondence W W' given by Theorem 1.4 ' W is semi- 
unitary if and only if W' has the properties  (i) W" is isometric with the domain 2 [1]	'	 • 

(ii)Re[V/0 j W'f] =Rc[/!/]-for all /o in 0 and f in ( W') .	. 
Furthermore, W is unitary if and only if- W' has the properties (i), (ii) and 

2." Generalized resOlvent.s of an isometric operator  

Let V be a closed injective isometric operator in a Pontrjagin space and let -R be 
a (regular) generalized resolvent of V, i.e.  

.R(z)= P(I — zU)'J	' (z € e(U)),  
where U is. a . regular unitaryextension of V. in an ex'tension space ft and P is the 
orthogonal projector of P1 onto . Then B has the following properties; se [6: § 41: 

1. B is rneromorphic outside the init circle;  
2. R(z) has a bounded inverse for almost all z in the interior CO of the unit circle, 

i.e., for all z in C with the possible exception of a countable set which does not have 
any cluster points in CO;  

3. R(z) =='I - R(11), z € (U) \ {0}  
•	The last property , implies that we usually need only to consider the case when z isinC.	,	 • 

The following result extends [3: Theorem 3] to Pontrjaginsacè. 
Theore m  2. 1: Let V be a closed infective isometric operator in ' a Pontrjagin space 

with the ddcompositions (1.1) and '(1.2) A mapping R is a regular generalized *resolvent 
o/,V if and only if it has a representation ' '	 - • 
-'	R(z) = {1 -, z[V + (z)]} 1	.	'	. • •

	(2.1) 
• for almost all z in C O , where 0 is meromorphic in C O and iwlomorphic in zerO with values 

•	 •	 ''-• 

•	2Re[Vf	(z)f] + [(z)/I(z)fJ ;S 2Re[ff] +[f I fl	. 
•	for all /oin 1Z, and/in 2 [iI	 . . 

35*
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Proof: 10 Let R be a regulargeneralized resolvent of V. Then the mapping 

W(z) := z" 1 (I - R(z)_ 1) for almost all zTin Co, - 
has the following properties (see [6: Lemma 4.1] and [8: Lemma 2.31: 

.1. W is ineromorphic in C0; 
2. W is holomorphic in zero;	 - 
3. W(z) (E B()) is contractive for almost all z in C; 

- 4; W(z) extends V and W(t)l extends. V' for almost all z in Co. 
By Theoreni 1.4 there exists a mapping (z) E B( 2 [4-] ; 91,"-) such tIat 
W(z) = V + (z). Using the definition and the properties, of W it is easy to see 
that R has the representation (2.1) and 0 has the desired properties. 

20 In order to prose the converse we must construct an extension space 
and a unitary extension U of V such that the corresponding generalized, resolvent R 
equals the mapping z i-* 8(z), 

8(z) := {I - z[V + b(z)]}',	 -	 (2.2) 

for all z in an open set in C. This can be done in a similar way a& in [6: § 4.5]. So it 
•	is enough to give an outline of the proof.	 - 

Let '11O Cobe an open neighbourhood of zero, symmetric with respect to the 
'real axis and such that 8(z) exists as a bounded operator for all z in 2to• Extend S 
to the set ?I.:'— {z I liz E ?11 by setting 8(z) := I - 8(11). We fise the notation 
21 := 2% u 21,, and W(z) := V + i(z) so that 8(z) = [I - zW(z)]'. 

Define.a kernel H: U x 7 --> B() by	 . 
K(z,):= (i—Y'(8(z) 4-8(e) —I)	(z,E U) 

Then this kernel has the representation' 

-

	

	 K(z, ) = K 1 (z, .) + 8(z)" 8(4)	(z, C 6 21),	•,	,	(2.3)

where K 1 has the following forri: 

K 1 (z, ) = S(z)' - W(zYW() 8(
	(z, E 21); 

K, (z, ) = $(z) W(z)—W(1f
	8(11	(z € 

K, (z, )	
S(1) W(1/)W(/) -	S(1/	, € U).  

To verify thee, put K 1 (z,) := K(z, ) - S(z) 8(e), use the definitions of K and s, 
' and calculate; cf. [6: pp. 393-394]. The same method as in the proof of Lemma 2.7 

in [8] yields the result that K 1 is a' positive definite kernel. Now one can easily prove 
that the b-kernel K has as many negative squares as the inner product of .' 

By [10: Satz 3.31 there exists a Pontrjagin space ' extending such that. K is 
the reproducing kernel of this space, i.e., 

[/(z)-l u] = [/ I K(. , z) u]	(I E ', u €	, z € 21). • 
This space ' is the completion of the space £, 'hieh consists of all mappings 

21 -* with a representation	I	 S 

/ 	
K(., zk ) Uk	(Zk € U, u € 

k=1
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the inner product of 3 is given by the formula 

Z [K(zj,zk)ukIu]. 

With the aid of the mapping u	K( . , O)u we can reard	as 'a. subspace of 
Define

:= {(i K (. 2k) u, k( 2k).- K(. , 0)1 iLk) Zk + o}; 

then U is a linear relation in ', and a straightforward calculation shows that it is 
isometric. As lim K( . , z) u = u and lim K( . , z) u = 0, it follows that U is densely 

2-300 

defined and the range is also dense. Consequently, U must be an operator; see [11: 
Proposition 2.1.2]. By [2: Theorem IX.3.1] we can continue'U so that it becomes a 
unitary operator on '. 

To prove that U extends V one must show the relation	- - 
lim z'[K( . , z) - K(. , 0)] u	Vu. 
z-+O 

For this one can use the relations V	S(z) V - S(z) and (see [6: p. 396]) 
Vu = limz_1(S(z) -I) u	(u E (V));	 5. 

To finish the proof we must show the relation ., 

P(I - zU)' u = S(z) u	(z E ?t, u E ),	 (2.4) 
where P is the orthogonal projector of ' onto ,. It is easy to see that the mapping 
(z ,C) i-* K(z, 0) is the reproducing kernel of . Consequently, the projector P has 
the form

PK( . , z) u = K(0, z) u = S(z) u	(z E '14, u E );	. . 
see [10: Satz 2.7]. This together with the definition of U gives (2.4) 1 

From this theorem and Cor'ollary 1.5 we get	 S 

Corollary 2.2: Let the assumptions of of Theorem 2.1 be satisfied. A regular generalized 
resolvent R of V is canonical if and only if the corresponding mapping 0 is independent, 
of z, -and 0,': =  Ji(z) has the properties 

(i) 0 is isometric;	
S 

(ii) J1 (0) + 910 =911'; 
(iii) Re [Vf0 1 1 0J] = Re [f0 1/] for all f0 in IZO and in Z2 

3. Contractive resolvents of an isometric operator 

Lt V he a closed injective isometric operator in a Pontrjagin space . The aim of 
this chapter is to characterize the contractive resolvents of V. As corollaries we get 
characterizations for semiunitary and. unitary resolvents. Finally, we achieve a 
representation 'theorem for the generalized resolvents of V. Note that Theorem 1.4 
implies immediately one such characterization: A mapping R is a contractive or 
(semi)unitary resolvent of V if and only if it has a representation 

, 
R(z) = [1 - z(V + W')]-',	S
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where W' has the properties mentioned in Theorem 1.4 or in Corollary 1.5, resp. 
We shall use Theorem 1.4 in order to get another characterization which is more in 
the spirit of - [6: Satz 4.1]. 

Throughout this chapter we suppose that the defect numbers of the operator 'V 
are equal, i.e., dim (V) I = dim 91fl. Furthermore, we keep the decompositions 
(1.1) and (1.2) fixed. We use the notation R. :=J1(J - zV) and := Let P0 
denote the projector of onto'(V) 1 along Z,[-4-- ] Z,. Then P0 '-is the projector 
of	onto Z2 , [+ 1	along (V); thus (V) and Z2 [4_] Z, form a dual pair
with respect to [. 

Let U be a fixed canonical unitary extenion of V and W (E B()) an arbitrary 
contractive extension of V; denote by R0 and R the corresponding resolvents' of 'U 
and W.	 - 

Lemma 3.1: 1 0 R(z) maps 91(V) homeomorphicallyonto )l 112 (11z E 
2° R(z)i maps (V) honaeomorphically onto 9Z .z (liz E e(W)). - 
30 i(R(z) - Ro(z)) c 9l 11 (1/z E 0 (W) n (U)). 

40 l(R(z) —Ro(z))	R. (liz € e(W) .n e(U)).	 - 

The proof is a stra)ghtfórward caliulation; cf. [6: § 4] and [8] I 

In 'order to get. the :desired characterization of R we consider the. difference 
(l/z€(W)n(U))	 -	 -	- 

R(z) R0 (z) = —zR(z) U(I - U'4 .W) R0(z) 

- -	 R()' P0(I zU) U'{I '- zW} U(I - U W) P0'4R0(z)

= R0()' P0 {(1 - U W) (Ro(z) -- i) 

-	+ (I + U JV)}(I -	W) P0R0(z); 

see Lemma 3.1. Define  
S:=(I— U.W)l,;  

then S € B( 2 [,-j--]	; ¶(V) 1 ), and a simple calculation shows that 

	

±.UW)vi =-p0 + (Sui_' ±I)	 - 

Note that 5-1 is not necessarily-an operator but a linear relation; for theealeulus 
of linear relations, see [1, 4, 11]. Define temporarily 

- T:= [(I - U+ W) (Ro(Z+ ) - -- i) + -}'(I-± U+W)]; 
then	 -	

•1	 - 
T-18 = {s_ SP 0+- 	-+ -- (I -+ U+W)I(V)i]} 

-	= {P + R (z)	 ±(	
)} - i 

- Thus	 -	-	 ' 

R(z) = 1 0 (z) + R0()	o(Ro(z). '
	 Z( V)i 

+ p0+ (s-i - -- i)} ' P0 R0 (z)	 (3.1)
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We can express the representation (3.1) in a more transparent form. For this, 
let _i with (. .) be a fixed Hubert space of dimension equal to dini (V)1. Takea. 
bijective operator F from B((i; ¶(V)).. As(V) L and Z2[4_]Z3 are, in duality, F 
has an adjint Fe (E B(	[+] , Z:, ; Q3)):  

(re/I u)= [/ I I'u]	(/E Z2[-4-]Z 3 , u E c.).	 (3.2) 
Note that if in (3.2) the vector / is running ' through ., i.e., we consider F as a map-
ping into , then we.' get . another adjoint F (E B(; )) for - which r+.= 

Define r, ': '= U(U — zI) F (E B((; ))_for z in 0(U); then, by Lemma 3.1, 
= R(--) P0r maps hoineomorphically onto '9?i,z; and F 4 = 

for z' in e(U). To find a substitute for the characteristic function of V we define 

0(z) := Fep0+ (Ro (z) — -- i) F	(E B(0))	.	. 

and call ita 0-/unction of V. Define further  

E= pep0+ (_1 -- 1  F = F {[(I - UW)k, + I-' — -- F. (3.3) 

This E is a closed linear relation in 0. In addition it' is accretive Re (v u) ^ 0 
for all (u, v) in E. To see this; take an arb itrary (u, v) from E and put / : = 1 + -- Pu, 
where h is'such that (Pu h) is in	- -- I and Fh = v then 

•R(vIu)Re[hIFu]=Re[/_S/IS/]  

={[/I/]_[w/I WI] ± 'Re ([tlu/]_[u/I W/)]} O 

From 'the definitions of S and Eit follows easily that E ±- FF= FeS1F, 

which in turn implies that the inverse of the linear relation E + .- F'Fexists as a 
bounded operator on 3. For the sake of brevity, we call an -accretive linear relation F 

•	with F. Lf -- F4) E B() a F-accretive linear relation in 95. Note that in the case 
FF = I, i.e., in the case that (V)' is positive definite, F is F-accretive if and only 
if it is maximal accretive.' The proof of this fact follows the same lines ag the proof 
of Theorem 3.4 in [4]; instáed of the Cay1e t'ransforniatión one should use the 
"Möbius transformation"	.	•	 .	 .	 .	 . - 

1t(E):= {(+-u,v - -u)j (U,. V ) EB}  

which gives a bijective torrespondence between acretive linearelatións and con- 
tractive operators.	 .	.	 . . 

The definitions given in this chapter and formula (3.1) now imply thèrepresen-
tation	 .	•	 - - 

R(z) = R0 z) + F11{0.(z) + E}' F	•	-	 •	 (3.4) 

for a contractive resolvent R of V with a F-accretive linear relation F in 0. Further-
more, as is . asy to see, this F istinique.	.	 . ,.
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In order to prove that every P-accretive linear relation B in 0 defines a con-
tractive resolvent of .V by the formula (3.4) we use Theorem 1.4. For this, let o 
be the set of all I'-accretive linear relations in , and denote by W0 the set of all 
those closed operators W': Z2 [4] ¶ 3 -- which satisfy the inequality (1.3). 
We can define a bijective correspondence between the sets 6 0 and Wo. In fact, we - 
have already seen that the mapping 

I' {(I - UW')-' --- (3.5) 

cf. (3.3), maps ?V 0 into - So. Furthermore, a straightforward but boring calculation 
shows that the mapping 

:E+UIn3 — ur(E+---r,r' re .	 (3.6) 

maps	into ?'0 and is the inverse of q,. 
So let B E So bearbitrary. Then, by Theorem 1.4, the operator W:= V-f- (E) 

(E B()) is a contractive extension of V. The contractive resolvent induced by this 
Whas the representation (3.4) with an YE No . But by the construction E'= 
= qp(E)) = B. Consequently, the correspondence B B in (3.4) is bijective 

Thus -we have the following result.  

Theorem 3.2: Let V be a dosed injective isometric operator in a Pontrjagin space 
with the defect numbers equal to n. Choose a Hubert space '03 with dim (3 = n and a 
canonical unitary extension U of V. Let 0 be a . 0-function of V and define. 

U(U - zI)' I' - (z € e(U)), 

where 'I' (€ B((i; 12 [-1--] ¶)3 )) is bijective. The formula 

R(z) = (1 — zU) + I'112{0(z) + E}' P	 (3.7) 

gives a bijective correspondence between the set of all contractive resolvents B of V and 
the set So of all P-accretive linear relations B in ®. 

• The' proof of the converse part of this theorem needs the following observation: 
Let BE No be arbitrary; then the inverse (0(z) + E) 1 is a bounded operator on J 
for 'all z in a neighbourhood of zero. To see this, we first decompose the linear rela-
tionE: •	 - B = E, e E,	 -	 '	 (3.8) 

•	where E,,-:= O) x E(0). is the multi-valued part of E and B8 := E E is the 
operator part of B; see [11 :,Theorem 2.4]. One can show that B3 is a closed accretive 
operator in 0 1 := e E(0); cf. [11: Lemma 2.81.' Furthermore, by using the 

• assumption B E So, the decomposition (3.8) and some calculations one sees that 

(B3 + -- QPPIc) is in B( 1 ); here Q is the orthogonal projector of ii onto ;l3. 

Then the perturbation theory guarantees that the inverse of the operator	- 

•	 A ?= (E,, +• -- QP+I'i() + zQI'1?0 (z) Pj, 

belongs to B(3 1 ) for sufficiently 'small z. But A = E8 + Q0(z)lo,, and [9: p. 137] now 
• -	implies the desired result: 

{E + 0(z)}_ 1 = { E3 + Q0(z)1 03j- 1 Q € B(i) I	'	 -
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Corollary 3.3: Let the assumptions of Theorem 3.2 be satisfied. A contractive 
resolvent B of V is semiunitary if and only if the corresponding B in So is conservative. 

In addition, R is a unitary resolvent if and only if  is conservative and M(B - -- FF 
=Qs. 

Priof: With the notation of, a conservative linear relation one can prove the 
following facts': 

1. Bin 60 is conservative if and only if W' := (E) E W0, see (3.6), is isometric and 

Re [ Vf01 W'1]=Re[f0 1/]	(/0E0, /E2[±]3). 

2. (W') + To = R1 if and only if 91(U+ W') + ¶o = T, '.	-. 
3. R(U W') + IZO =	if and only if r+((u+ W')) = ®.	- 

4. r(u+ w')) = 51 (B -	r+.i').	 . 

These together with Corollary 1.5imply the result I 

As noted above, the parameter B in (3.7) is generally a linear relation. We shall 
now investigate the case when B is an operator. For this, we need the following 
extension of [13: Proposition 1.3.1]. 

Proposition 3.4: A contraction W (€ B()) in a Pontrjagin space	and its
ad joint W have the same invariant vectors. 

Proof: As W in B() is contractive, W is also contractive; see [6: Lemma 3.11. 
By symmetry it is enough to prove the inclusion 1(W - I) =1(W - I). So let 
/ in (W - I) and h in. be arbitrary, and put g:= Wh - h (E R(W— I)). 
Then	 . 

[W+(z/±h)lW(zf+h)][zf+hIzf+h] 

for all z in C, which implies 2 Re {z[f I g]}	[h hi - [WhI Wh] for all z in C.
But this is possible only if [f I g] = 0, i.e., / E 9R(W4 - 1) 1 = R(W - I) I 

We call two extensions W1 and W2 of an operator V disjoint if they agree only 
in (V), i.e., W1/ = W2f implies / is in ¶(V). 

Corollary 3.5: Let the assumptions of Theorem 3.2 be satisfied. Then the following 
facts are equivalent.	 . 

(i) B is an operator;	 - 
(ii) B is densely defined;	 - 

(iii) W and U are disjoint extensions of V; 
(iv) W and U are disjoint extensions of V1. 
Proof: Notice that (iii) is equivalent to 91(1 - U+ W) = (V), and (iv) is equiv-

alent to 91(1	WU) = (V). Thus (iii) and (iv) are equivalent by Proposition 
3.4. (applied to U+W). Furthermore,: from the correspondence B	W'++ W, see 
(3.5), (3.6) and Theorem 1.4, we get that 

B(0) = F(cJl(W' - U)) and r((E)) = 91(1 - UW') = 91(1 - UW). 

The first formula implies the equivalence of (i) and (iii), the second the equivalence 
of (ii) and (iv) I	- 

Thus the multi-valuedness of B measures the disjointness of. the extensions W 
and U in such a way that E(0) = {0} exactly when W and U are disjoint and 
E(0) = 03 exactly when W = U.
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Using the theorems 1.4 and 3.2 we Can now characterize the generalized resolvents 
of an isometric operator in a way similar to [6: Satz 4.1]. For this, denote by the' 
set of mappings F from C0 into So such that the function z -± (E(z) +-,- r+,r) 
is meromorphic in C. and holo'morphic in zero.'.	-	 / 

Theorem 3.6: Let the assumptions of Theorem 3.2 be satisfied. Then the formula 
R(z) =1(1	zU) + r11 {o() ± E(;)}' P	(a.a. z € CO )	 ( 3.9) 

defines a b'ijective correspondence between the set of all regular generalized resolvents R 
o/V and the set o/ all Ejn. 

Furthermore, B is canonical if and only if the corresponding F is independent of z, 
00 := B(0) ' is conservative and 91 (E - -- r+r) = 

Proof: Let ?€' be the set of those mappings 1 from C 0 into ?o which are mero-
morphic in Co and holomorphic in zero. Then t,he mapping q': '(ø) (z) := 
see '(3.5), maps 2' bijectively onto 6. Let B be a' regular generalized resolvent of V: 
Thus there exist a Pontrjagin space '	and a unitary operator U'	V on 
such that

11(z)' = P(I - zU')', - (z € o(U')), 
- where P is the orthogonal projector of ' onto . Define' W(z) := z"(I - R(4_1); 

then W is merorcirphic in CO3 holom'orphic in zero with values in B() and W(z) is a 
'contractive extension of V.-Thus we can apply Theorem 3.2 to W(), C € (W): 

•	(I - zW(C)) 1 = (I —zU)' + r112 {o(z) + E(C)}-'f. 

This formula holds true for all z in C0 such that - 1/Z € o(W()) n (U). But as 
is contractive, its spectrum outside the unit circle is finite. Conèquently, for almost 
all in C0 we can choose z = C. As 11(z) '=(I -. zW(z))'', we get the representation 
(3:9).  

Define (z) := W(z)I.±,, zE ' (W); then, by the theorems 1.4 and 2:1, 0 belongs 
to W. Furthermore, from the proof of Theorem 3.2 we get 

E (Z) = (w(z)I,+n,) =((z)) = 
i.e. F belongs to . The converse part can be proved similarly. For the proof of the 
'rest, use Corollary 3.3 I 
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