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Generalized Resolvents of an Isometric Operator-in &i‘l‘ontrjagin Space
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"P. SORJONEN

In dieser Arbeit werden kontrahierende und verallgemeinerte Resolventen eines isometrischen
’Operat,oi‘s'im Pontrjagin-Raum untersucht. Der Definitionsbereich des Operators darf sogar.
" entartet sein. Die dann herzuleitenden Formeln sind analog denjenigen aus dem nichtentarte-
ten Fall, die Werte des chnraktenstlschen Parameters sind aber jetzt lineare Relationen

anstelle linearer Operat,oren ) _ : N

B aroit pabore uccneu,ylo'rcn cikuMaoie ¥ 0606UeH e Pe30JILBEHTH H30METPHYECKOTO
omeparopa B mpocrpaHctee [lonTpAruxa. O6aacTh onpegeseHHs omepaTopa MoMeT OGBHITH
BEIPOAEHHOM. BriBenennbie OPMyJIsl. aHANOTHYHH TeM B HEBBIPOKAEHHOM CIyYae, OXHAKO
" KaK 3HA4YeHUsd XdPaKTEePUCTUYECKOTO napame'rpa Bmc'rynalo'r Tenepb JHMHeHHsle o'momemm

BMECTO AMHEHAHBIX ONepaToOpPoB. : . "

In thls paper the contractive and generalized resolvents of an isometric operator ina Pontrjagin
. space are studied. Especially, the domain of the operator is allowed to be degenerate. The
resulting formulae are analogous to the non-degencrate case, but the values of the character-
ising‘parameter. are now linear relations instead of linear operators. -

- .

N

.

Introduction - Co B

J
As notnced in the introduction of [11] the studies of a canomcal differential equatlon
with an indefinite weight function may lead one to consider not only defined sym-
metric operators but also non-densily defined symmetric operators or even linear.
relations in an indefinite inner product space. In this case it can happen that the
defect spaces of the ©operator or linear relation under consideration are not necessarily
non-degenerate. This in turn means that its Cayley transform, which in any, case
is an isometric operator, has a degenerate domain. Thus in order to be able to use
the usual method of investigating symmetric.operators or relations via their Cayley
transforms one must first study isometric operators with degenerate domains.

In this paper we characterize the generalized resolvents of a closed injective iso-
metric operator with equal defect numbers in a- Pontrjagin space (for the terminology
see below). In order to clarify this result let us recall the essence of Satz 4.1 from [6]:
If V is a-closed injective isometric operator with equal defect numbers and with non-
degenerate domain and range in a Pontrjagin space then all generalized resolvents
" of V are given by the formula

R = I = 207 4 TP T T

where *

P) = (I — E@) (I — X@)* E@)™ (I — X@); L3
here U'is a given unitary extension of ¥ in the original space, I' i a certain operator-
valued function defined in ¢(U) and X is'the characteristic function of V. The para-

,
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meter E correspondmg to the generalized- resolvent R is defined in the open unit
disk €, of the complex plane € and its values are contractive operators in the defect .
space of V. Thus the value set of E is inside the operator unit ball in case of positive’
defect space and outside the ball'in case of negative defect.space. . .

If the defect space of the operator V degenerates the proof of the result mentioned
above does not hold and furthermore (3f) loses its meaning. In considering the for- _
mula. (*) for_the degenerate case it turned out that the values of the parameter £
can be linear relations, i.e. “multi-valued” operators, and that a natural vélue set

“for-E is not the operator. unit ball but the right operator or linear relation half plane:
E(z)is an accretive linear relation..

" ‘The modification of the characterizing parameter E in the formula (3t) forced us'
to modify also the characteristic function X of the operator V. The substitute for X
is so-called ‘f-function 6, which will be studied more closely elsewhere. After the
. above mentioned modlflcatlons it 'was found out that the basic formula_ (*) charac-
“terising the generalized resolvents of the isometric operator ¥ holds also inthe dcgen-
erate case but instead of the functlon P in () one has now

P(z) = (6(2) + BE) - - | S

\

" see Theorem 3.6. . ' -
‘Although it would be possible to prove the above mentloned result djrectly along
the same lines as in [6], we use here a different approach. We first characterize.in
Chapter'1 the contractive and umtnry extensions of an isometric operator. With the '
help of that result we prove in Chapter 2 another representation formuls for the
- generalized resolvents; see Theorem 2.1. Finally, in Chapter 3 we characterize in the .
‘above mentioned way not only the generalized resolvents of an lsometrlc operat,or"
but also contractive and unitary resolvents. ‘
“This work was’initiated while the author was visiting the Techmcal University
‘Dresden.. The author wishes to thank professor H. LANGER for stimulating dlscus-
_sions. . : :

Notation and terminology o ‘ ' S . o

X -

We represent here briefly-the notation and termmology used in thls paper For more
extensive information about the’ results concernmg Pontrjagin spaces we refer to |
. [2] and [5].
Throughout this pa,per o denotes a 7,-space.or a Pontryagm space (with x negatlve ‘
) squares), that’is, § is & (complex) linear space equipped with a scalar product (indefi-
nite inner product) [- | -], which has » mgatwe squares. The last property.means that’
the space § admits a decomposition in an orthogonal direct sum § = 9, [+] 9.,

where ©, with [- | -] is a Hilbért space and §_ with —[- | -]isa ‘x-dimensional Hilbert -
space Note that the Pontrjagin space 9 is also a Hllbert space with respect to the'
inner product (f, g) — (/| g) \

(10 = Ue 1 gah— - 10y faigs € Ds.

All topologlcal notions are to be understood with respect ‘to the norm topology
induced by this positive definite inner product. :

A vector f in the Pontrjagin space  is called positive (negative, neutral), if [f | f] > 0» ~
(< 0, = 0). An analogous definition, holds for a subsét of 9. Orthogonality in §°
is defined in the usual way: vectors f and g.in § are orthogonal if [f|g] = 0. The -
orthogonal compamon of a subset EJR is denoted by M.
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In a Hilbert space a subspace M is always ‘orthocomplemented: M + M* = 9.
In a Pontrjagin space this happens if and only if the subspace is non-degenerate.
This means that the isotropic part MO := M n ML of M is zero. In general case one
can form the following decomposition for a degenerate subspace I :

9 = Mu[+] Dl +] (M0 + My).
Here 9, and 9, are subspaces with the properties -
e [—i—]?))ll =M, " MO[+]IM, =M*. .
The subspace M, is skewly linked thh MO, i.e. My n S)Jl“ Myt MO = {0}; see
[2: Theorem 1X.2.5].

An operator ¥ in the Pontrjagin space § is called contractive if [Vf | Vi) < [f|[] -
for all f in the domain (V). The contractive operator V is isometric if ‘the equallty-
sign holds everywhere. An everywhere defined isometric operator V is called semi-
unitary, and umta,ry if in addition the range (V) is the whole space.

If we extend a given operator V in the T.-space "D to an operator U a.ctmg ina
7;-space & extending §, the extension U is called regular. Furthermore, U is said
to be a dilation of V if V = PU|y, where P is the orthogonal pI‘O]eCt}OI‘ of § onto §.
If the extension space § equals to the original space 9 the extension is canonical.

Let V. be a closed injéctive isometric operator in the Pontrjagm space . If a
bounded operator Win 9 is a contractive extension of ¥V the mappingz —'(I — zW)~1,

z71 € o(W), is called a contractive resolvent of the operator V. Analogously one can
define semzumtary and unatary resolvents of V. Furthermore, if a umtary operator U
acting in an extension space R is a regular extension of ¥V then_ the mapping z — R(z): .

R(z) =PI — zU) g, z €U, -

is a (regular)-generalized resolvent of the operator V. In case of a canonical unltary )
-extension the generalized resolvent is also called canonical. .
Along with the Pontrjagin space the product space $? equipped with the natural
structure inherited from  is also a Pontrjagin space. A linear manifold of §? is
~ called a linear relatzon Identifying opérators with their graphs we see that a linear
" relation 7' is an operator if and only if the image T(O) {0}. The set T : = {0} X T'(0)
is the multivalued part of T and T,:= T n'T4 is the operator part of T. Analogous
to the operator case one can define notions like symmetric or contractive linear rela-
tion. Especially, a linear relation 7' is called accretive if Re [g-] f] = O for all (/,g) € T.
If the equallby holds for all (f, g) € T, then T is sald to be conservative.

N

1. Contractive extensions of an isometric operator - -

The aim of this chapter is to’ charactenae contractive operator extensions of a given
isometric operator in a Pontrjagm space. We start by proving their existence. For
- this the following result is useful: .

Pro posnblon 1.1: 4 bounded opemtor on a Pontryagm spa,ce 18 contractive if and
only if it has a regular unitary dilation.

Proof: Let W be a bounded operator on a 7,-space §. If W is contractive, it has
a regular unitary dilation; see [10: Satz 4.5]. Conversely, let U be a regular dllatlon
of W, i.c.; U is a‘unitary operator on a m,-space § extending § and W PU|g,
where P denotes the orthogonal projector of § onto $. Then )

(W WA=[U/1UA={d-P)ULIUSf] = /171

for all.f in o, because the orthogonal compamon of § in & is positive definite '
. \ ) .

35 Analysis Bd. 4, Heft 6 (1985)

N . . ‘ . -



~

. contractive extensw‘n WeB(©) of V.

Y N . ‘s
546  P.SORJONEN °

"~ Proposition 1.2: 4 closed. myectwe isometric operalor in a Pontr]agm space admits
regqular unitary exlensions. .

Proof: Let V be a closed injective isometric operator in a x,- space 9.By[56:§ 9]
“we can suppose that V is-maximal, i.e., dim D(V)* = 0, for instance. Choose an

infinite-dimensional ‘Hilbert space @& w1th dim @ = dim R(V)L, and form the .

7.-space §:=H @D @. In this space the defect numbers of ¥ are equal and conse-
quently V admits unitary extensnons there; see [5: §9] L
1
By combining the two prev10us propositions we see that every closed injective
.isometric operator in a Pontrjagin space has bounded contractive operator exben-
sions. Below we shall characterize them. First; a uscful lemma.

N

" Lemma 1.3: Let W be a conlmctwe operator in.a Ptmtryagm space. I f [Wfe | Wil.
= o'l fo] for fo in DW), then [Wio | Wf) = [fo | f) for all { in D(W).

The proof is the 'same as in the definite casc; see [12: Lemma 1.1} ]
-Let ¥ be a closed injective isometric Gperator in a Pontrjagin space 9. The domain
D(V) of ¥ induces a decomposntxon of the whole space:

S0 =D (1D (1 (@0 + Do) : ‘, B¢ B))

v

see [2 "Theorem 1X.2. 5]. Here ®,: =DV is. the lsotroplc part of D), D; is a

neutral subspace skewly linked with D, and D, and SDZ are orthocomplemented -

aubspaces such-that N N /

@(V) D, [+] SDO» . sD(V)J‘ = SD2 H‘] (Do

. -'-Set’oing Ro:= ER(V)° = V(‘Do) and R, := V(‘D ) we get an analogous decomposntlon

o= m1[+]m2[+](mo+m3) PR S (1.2)

with the components havmg s1m11a,r properties to those- above. In the followmg we
keep these decompositions fixed. o

Theorem.1.4:Let V be a closed myectwe zsometrw operator un a Pontrjagin space &)
with the dccom/posztwns (1:1) and (1.2).
If W € B(D).2s a contractive. extension of V, then there exzsés ‘an operator W wuh
the properlzes ’
(1) W’ 28 closed and contmctwe zts domain, is SDZ [+]D; and its range 8 1 ER,
(11) the mequaluy

2Re[V/o| W'/]“}‘[WflWf]$2Re[fo|/]+[f|f] o (1.3).

holds /or all fo m SDO and f.an 59 W s
(i) W=V -}- w. o
Conversely, ©f an operator W' satisfies. (1) and (ii), then the /ormula wn (iii) de/znes a-

1

For the proof of the first part, define W' as the restriction of W, to D [+] SDa
By using Lemma 1:3 it is easy to see that this W’ has the desired properties. For the
converse, note that ¥ + W' is closed by [7: Lemma 4.1]. The verification of the other
_claims is a straightforward" calculation ¥ - .

Remarks: 1° It is obvious that basically the same result also holds for not neces-
'sarily everywhere defined closed contractive extensions. Thus Theorem 1.4 extends

{12: Lemma 1. 2] to Pontrjagin spaces and [5: §9 2] to contactive'extensions.

1

\
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2° For a-non-dggenemté-domain ;D(V) the sum V 4 W' is‘orthogo'nal; but-this
is not necessarily true for a degenerate domain. For example, take a basis {e,, e, o
of €* and make C? a Pontrjagin'space by defining : !

~ ‘. O, _lf 7# k, ' , . ..'
lejled:=1 1, if j=k=1,
! . ' ]

" Defin€ further ¥V and W'-as the identity operator of (e, + e,) and (¢, — e,), resp.

Then they satisfy the condition of Theorem 1.4 but they are not orthogonal. |

3° If the domain (V) is non-degenerate, then the inequality (1.3) is equivalent -
to W' being contractive. In the genersl case, being.contractive or- even isometric
does not imply the inequality (1.3). For example, lct the Pontrjagin space and the .
operator V be as'in 2%, and define W'(e, — ¢,) := ¢, + ¢,. Then W' is isometric, and .
(1.3) is equivalent to the condition Re [/, | /] 2 0 for all'f, in Dy and f in D(W'). .-
But Re[e, +.¢, ] e, —e] < 0; consequently (1.3) is not true and the olpera.tfor' -
V + W' is not contractive. ' : ' s . -

Corollary 1.5:In the correspondence W <> W' given-by Theorem 1.4’ W is semi-
unitary if and only if W’ has the properties L c

(i) W' is 2sometric with the domain D, [F]1 D5 - ! . N

(ii) Re [Vfo | W'f]1 = Re [f5| f]for all fo in Dy and fin D(W"). L

Furthermore, W is unitary if and only if~ W' has the properties (i), (ii) -and
ROF) + R = Ryt L

g . [
;-

2." Generalized resolvents of an isometric operator T -

Let V be a closed injectix}e isometric operator in a Pontrjagin space O and let R be
a (regular) generalized resolvent of ¥, i.e. ' '
R(z)=P(I —2U)g -(z€0(U")), _ . ,

where U is.a regular unitary’extension of V. in an ex/t'ension'space ® and P is the
orthogonal projector of & onto §. Then R has the following properties; see [6: § 4]:

I. R is meromorphic outside the unit circle; ° , R
.. 2. R(2) has a bounded inverse for almost all z in the interior G, of the unit circle,
i.e., for all z in €, with the possible exception of a countable set which does not have
any cluster points in Cy; . . : T

3. R(z) =1 — R(1/z)*, z € o(U*) \ {0}. 4 . .

The last property implies that we usually need only to consider the case when z

is in Cq. . . ) . s
The following result extends [3: Theorem 3] to Pontrjagin’spaces.

" Theo rem 2.1: Let V be a closed injective isométric operator in a Pontrjagin space [3)
with the decompositions (1.1) and (1.2): 4 mapping R vs a reqular generalized resolvent
of .V if and only-if it has a representation - ) -

Riz) ={I —2[V $ D2}t~ - ° T @

. for almost all z 1n Cy, where d 7s meromorphic in Cy and holomorphic in zerd with values
m B(D, [+]Dy; RL), and S~

2Re[Vo| P(2) /1 + [P() /| P(2) /] < 2Re[fo | f] + [/ I

N

for ;zll v/_o'z'jn Dy and f in D, [+] D;.

35%
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Proof 19 Let R be a regular generallzed resolvent of V. Then the mappmg

Tz W (2),

B W(z):= z“(I — Rz} for almosb all 2in C,, -
has the following properties (see [6: Lemma 4.1} and [8: Lemma 2.3]:A
-1. W is meromorphic in_Cy; : y :
V2. Wis holomorphlc in zero; o

3. W(z) (€ B(D)) is contractive for almost all z in Co;
- 4. W(2) extends V and W(z)+ extends. V-1 for almost all z in C,.

By~ Theorem 1.4 thcre exists .4 mapping @(z) € B(D; [+] Ds; R L) such tflatj'

W(z) =V + ®(2). Using the definition and the properties: of W it is easy to see
that R has the representation (2.1) and @ has the desired properties. a

20 In order to prove the conyerse we must construct an extension space § = 9
and & unitary extension U of V- such that the correspondmg generalized resolvent R
equals the mappmg z > 8(z),

S@) = {I — 2V + D)), - - e ' (22)

for all z in an open set in Cy. This can be done in a similar way as'in [6: §4.5). So it
is enough to give an outline of the proof.

Let ’llo — C, be an open neighbourhood of zero, symmetric with respect to the

‘real axis and such that S(z) exists as a bounded operator for all z in %,. Extend §
to the set U, {z| 1]z € Uy} by setting 8(z) := I — 8(1/2)*. -We use the notatlon
U:=Uyu 'll and W(z):= V + ®(2) so that S(z) (I — =W

- Define.a kernel H:U X'l( — B(9) by :

K t)im (1— 2 (S £ 80 — 1) (meelty. o
Then bhis kernel has the representation : ) .
Ked) =K@ +8@ 80 @iew, (23

where K, has the following form:

Kl(z, c) — 2CS(2)+ I_M(_C_) S(C)‘b

K ) = a8 T WU sujey e, ¢ et
Kife, ) =502 o PO~ sy et etta).

To verlfy these put K,(z )= K(z,{) — S(2)* S(¢), use the definitions of K and §,
and calculate; cf. [6: pp. 393—394]. The same method as in the proof of Lemma 2.7
in [8] yields the result that X, is a° positive definite kernel. Now one can easily prove
that the - -kernel K has as many negative squares as the inner product of . -

By [10: Satz 3.3] there exists a 1’0ntr]agm space ' extending © such that K is
the reproducing kernel of this space, i.e.,

V@) wl =1 K(, 2wl (f€9, uE&),zE'lf)

This space 9’ is" the completion of the space £, whlch consists of all mappings
fr U = .b th,h a representation L.

f =ké‘:1 K(,z) u (2 €U, w € 9);

{

,/.
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te

the inner product of ¢ is given By the formula
[/l/l3= Z [K(zi: z)w | ).

With the aid of the mapping u > K(., O)u we can regard O as'a subspace of S;;)
Define

U = {(kél Kl 2w, kgzk'l[K(', Zk) - AK(-, 0)] ﬁk) 2z %:0};

then U is a linear relation in §’, and a ‘straightforward calculation shows that it is
isometric. As lim K(-,2) u = u and llm K( z2)u =0, 1t follows that U is densely

z—0 .
defined and the range is also dense. Consequently, U must be an operator; see [11:
Proposition 2.1.2). By [2: Theorem 1X.3.1] we can continue' U so that it becomes a
unitary operator on $’.
+ To prove that U extends V one must show the relatlon RN
lim z‘l[K( z) — K., 0)] u="Vu.
20

-

For this one can use the relations V S(z)+ vV — Z8(z)* and (see [6: p 396])
Vu = llm z“(S(z) —Nu  (ue SD(V)) , .

"To fihish the proof we must show the relatlon - 4
(I—zU)“u— S(z) u (z€U, wed), - ‘ (2.4)

where P i ig the ort,hogonal projector of 9 onto 9. It is easy to see that the mapping

(2,0) — K(z, 0)'is the reproducmg kernel of 9. Consequently, the pro;ector P has

the form
. o

K(,z)u =K(@0,z)u = S(z)u (ze?lo,ueb)
see [10 Satz 2. 7]. This together with the definition of U gives (2. 4) ]

From this theorem and Corollary 1.5 we get

Corollary 2.2: Let the assumqotw'rw of Theorem 2.1 be satvsfied. A regular genemlzzed
~ resolvent R of V s canonical if and only if the corresponding mappmg D s mdepende’nt .
© of z,.and @, := D(z) has the properties

(i) @, is isomelric; -
(ii) R(D,) + Ro = R, *
(iii) Re [V, | @f] = Re (/o /] for all f, m EDO and [ in D, [+] Ds.

3. Contractive resolvents of an isometric operator

Let vV be a closed injective 1sometrlc operator in a Pontrjagin space . The aim of
this chapter is to characterize the contractive resolvents of V. As corollaries we get,
characterizations for semiunitary and.unitary resolvents. Finally, we achieve a
representation theorem for the generalized resolvents of V. Note that Theorem 1.4
implies immediately one such characterization: A mapping R is a contractive or
E '(seml)umtary resolvent of ¥ if and only if it has a representation
Riz)={I —=z(V + W)]‘

!
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where W' has the properties mentioned in Theorem 1.4 or. in Corollary 1.5, resp.
We shall use Theorem 1.4 in order to get another charactermatlon which is more in
the spirit of [6: Satz 4.1]. )

: Throughout this chapter we suppose that the defect numbers of the opera,tor ¥
‘are equal, i.e., dim D(V)L = dim R(V)L. Furthermore, we keep the decompositions
(1.1) and (1. 2) fixed. We use the rotation R, := ‘RUI —2V) and N, := R; L. Let P,
denote the projector of § onto D(V)+ along D, [+] D,. Then Py*-is the projector

of  onto D, [+]D; along SD(V) thus (V)L and D, [+]D; form a dual pair
. Wwith respect to [ | *].

Let U be a fixed canonical unitary extensmn of ¥V and W (€ B(D)) an arbltrary

contractive extension of ¥V ;.denote by R, and R the correspondmg resolvents' of U
and W ‘ -

.Lem ma 3.1: 1° R(z) maps §)1(V)1 homeomorphically onto Ny, (I/z € Q(W))
2% R(z)* maps D(V)* homeomorphically onto N: (l/z € Q(W))
3° R(R(z) — Ro(2)) <= 921/: (1z € o(W) n o(D)).
40 %(R (2) — Ro(2)) > R. (1/z € o(W) n o(D)). .
- The proof is a straightforward calculatlon cf. [6: §4] and [8] ]

In ‘order to get- the ‘desired cha.ra.cberua,tlon of R we conSIder the. dlfference
: (l/zeg(W)ng U)) :

R(z) — Ro(z) = —zR(z) U(I - U+ )Ro(z') o
= Ry(z"Y)* Py(I —»zU) U-YI > zW} U(I — U*W) Py* Ry(2)
BN = ry P u = 0w (R < 1)

) -1 .
. 3 T+ U W)} (I — U*W) Py*Ro2);
. see Lemma 3.1. Define * o ' )
. — I — U Winyin;
then S € B(‘Dz [r—}—] Ds; SD(V)*) and a sunple ca,lculatxon shows that

<

' '—S M+ U+W)S)(V)1 —Po (S’ ‘——I)

Note that $-1 is not necessarily-an operator but a linear relation; for the_calculus
of linear relations, see [1, 4, 11] Define temporarily

-

T —[(I—U*W)(Ro(z) 1 ) 4—(I—I—U+W)]

. 2L’
then ' » , J o . -1
T-18 = {S-l [SPO (Ro(z) —_— I) ? (I ¥ U*W)I@(V)L]} .
A Dyt _ .
. P.+'R‘(z)'—.i-1 4 prfsr Lol '
) i _ 0 L0 2 m(V)l - 0~ X 2 .
. Thus S . : ,

R(z) = Ro(z) + Ro(z_l)+ Po {Po+’ (Ro(z) — ? I) —

~

+ Pyt (S-l - —24)}— Py* Ry(2):  , : N : (3.1)



-

’ ThlS Eisa closed hnear relation 1 in @. In addmon it is accretlve Re (v [ u) =0"'

_ which gives a bijective borrespondence between accretive Imear relations and con- -

~
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We can express the representabxon (3.1) in & more transparcnt form. For this,

| " let ® with (-] -) be a fixed Hilbert space of dimension equal to dim SD(V)* Take a .

\

¢

bijective operator I' from B(®; D(V)*). As'D(V)! and D, [+] D; are,in duality, I’
has an adjoint re (e B(D; [+] 5’33: @j)) . a < . o

(rof ) =1/|Tw] (€D [+]Dp v€®). - (32

Note that if in (3 2) the vector f is running through @, .e., we consider T as a map-
ping lnto 9, then we get another adjoint I'* (6 B(D; (5)) for which I'*.= I'®P,*.

Define I',:= U(U — 2zI)-1 T (€ B(®; )).for z in o(U); then, by Lemma 3.1,
Iy, = Ro(z 1+ POP maps homeomorphjca,lly onto .N,,,, and F-* = I'®Py* Ry(z)
for z71 in g(U) To find a substltute for the characteristic function of ¥V .we defme

'G(z) = rePo+ (Ro(z) - 1) r (e B_(@i))

“and call lt a 6- /unctwn of V Define further -

Y

E':= rep,* (s 1 —'—z)r r+ {[(1 - U*IV)|53,+Q,] 1 —%i} r. (33 .

for all (u, v) in E. To see thls, take an arbltra,ry (u v) from E a,nd put/ =h+ —Pu :
Where % is’such that (I'u, h) is in S‘ - = I and I'th = - v; then e

S Re(vlu) Re[hll’u] 'Reli/_—S/lS/]\ ‘ oo "

{[/ N =W I W+ 5 Re ([Wfl U/] - [Uf | Wf)]}
From 'the’ defmltxons of S and E’ 1t follows easxly that E + I’*.l1 I’@S 1r,

: . . . 1 : .
which in~ tum imphes that the mverse‘of the lmear rela.tlon E + —'I“I’ ex18bsa,sa

bounded operai;or on @. For the sake of brevity, we call anaccretive lmear relation E
-1

with —{- I’*I’ € B(®)a I‘-accretwe linear relation in @. Note that in the case

I'*I' =], i.e., in the case that D(V)+ is positive deflnlbe E is I"-accretive if and only "

if it is maximal accretive. The proof of this fact follows the same lines as the proof

of Theorem 3.4 in [4]; instaed of t,he Cayley t,ra.nsformatlon one should use. the
“Mobius transformation”

. Jll(E)_f—{(v-{— u, v—%u)

(%, v) E.E},

tractive operators.
"The definitions given in thls chapter and formula (3.1) now imply the- represen- -
tation

(z)_Ro(z)+r,,,o(z)+E}-lr+ I R (34)

for a contractive resolvent R of V with a I’-accretlve lmear relatlon Ei in . F urther-
more, as is-aasy to see, this E is umquc ey

-
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In order to prove that every I'-accretive linear relation E in & defines a con-
tractive resolvent of .V by the formula (3.4) we use Theorem 1.4. For this, let &,
be the set of all I"accretive linear relations in @&, and denote by %, the set of all
those closed operators W': D, [+]D; —~ R,+ which satisfy the inequality (1.3).°

- We can define a bijective correspondence between the sets &o and ¥,. In fact, we =’

" have already seen that the mappmg .

A

\

P W > I {(1 _pewyr — L I} T, s (3.5)

cf (3 3); maps w., into_&,. Furthermore a stralghtforward but boring calculation
shows that the mapping .

v E»Ulg,w,—UI’(E’-k rwr) re S (3.6)

’ ma.ps é"o into %, and is the inverse of ¢.

So let E € &, be arbitrary. Then, by Theorem 1.4, the opera.bor W:=V'+ w(k).
(6 B(@)) is a contractive extension of V. The contractive resolvent induced by this
W has the representation (3.4) withan E’ € &,. But by the construction E' = (W |, + ;)

- = ¢p(1p(E)) E. Consequently, the correspondence R < E in (3.4) is bijective:

Thus-we have the following result.

Theorem 3.2: Let V be a closed znyectwe 1s0metric operdtér ina Pontrjagin space
with the defect numbers equal to n. Choose a Hilbert space’ & with dim® = n and a -
canonical unitary extension U of V Let 6 be,a 6-function of V and define.

1’,.: UU — 2T -~ (z€0(0),

where T'(€ B(®; D, []Dy) és bjective. The formula

R(z) = (I = 2U)} 4 T'ul0(2) + By T+ " (3.7)

gtves a bijective correspondence between the set. of all contractive resolvents R of V and
the set &, of all I‘-accretwe linear relations E in'®. .

- The proof of the converse part of this theorem needs the followmg observation:
Let E € i‘;o be arbitrary; then the inverse (0(2) + E)‘l is a bounded operator on &
forall zin a nelghbourhood of zero. To see this, we first decompose the lmear rela-
tion E': : - :
- BE= F(—DE’OO, . - (38)

where E .= {0} X E(0). is the multi- valued part of £ and E,:= =EQE, is the’

.opérator part of E; see [11:. Theorem 2.4]. One can show that E, is a closed accretive

operator in &, := @ © E(0); cf. [11: Lemma.28] Furthermore, by using the

' assumptxon E € &,, the decomposmon (3.8) and some calculations one sees that

(F + = QF“I‘]@,) is in B(®,); here Q ig the orbhogonal prOJector of @ onto @,.
Then the perturbation theory guarantees that the inverse of the operator '

A= (Es + —-QI“I‘I(»,) + zQI”Ro(Z) I's,

belongs to B(@i,) for sufficiently small z. But A E, + Q6(2)|s,, and [9 p- 137] now
implies the desired result

(B + 0() = {Es + Qe) " Q€ B((B) 1

2N
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Co roilary 3.3: Let the assumptions of Theorem 3.2 be salzs/z'ed A contractive
resolvent R of V is semiunitary if and only if the corresponding E in &, 1s conservatwe

Inaddition, Risa umtary resolvent if and only if E 13 conservative and R (E — = F*I’)
=@.

Proof: With the notatlon of. a conservative lmea.r relatlon one can. prove the
_ following facts®

, 1. Ein &, is conservative if and only if W’ := w(E) € W,, see (8.6), is isometric and

‘Re[V/o| Wl =Relfolf]  (fo€ Do, €D [+]Ds).

2. RW') + R, = B, * if and only if RU+W’) + D, = m,
3. RUUW') + Dy = D, ¢ if and only if I’*(?R(U*W )) =

4. I’*(ER(U*W ) = (F — = r+r)

These together with Corollary 1.5,imply the result 1

As noted above, the parameter E in (3 7) is generally a llnear rela.tlon We shall -
now investigate the case when E is an operator. For this, we need the followmg
extension of [13: Proposition 1.3.1].

Proposition 3.4: 4 contraction W(G B(@)) m a Pontryagm space @ and its
adjoint W* have the same tnvariant veclors..

\

Proof: As W in B(D) is contractlve W+ is also cont,ract,lve ‘se€ [6 Lemma 3.1].
By symmetrv it is enough to prove the inclusion R(W+ — I) = R(W — I). So let
fin R(W* —1I) and h in.§ be arbxtrary, and put g:=Wh —h (E ER W+ — I)).
Then

[W*(ZI + R | W, + W) STef + Rhlof + B

for all z in C which 1mplles 2 Re {z[f[ gl S [k | k] — [Wh | W*h] for all z in C.
" But this is possible.only if [f|g] = 0, i.e., /E RW+ — Lt =RW —1) 1

We call two extensions W, and W, of an operator V dw;omt if they agree only
in ®(V), i.e., W,f = W,f implies f is in D(V).

Corollary 3.5: Let the assumnons of Theorem 3.2 be satw/zed Then the /ollowmg
facts are equivalent: )

(i) Fisan operator; -
(ii) E ¥s densely defined; , : _

(iii) W and U are disjoint extensions of V; T

(iv) W+ and U* are disjoint extensions of V1.

Proof: Notice that (iii) is equivalent to R(I — U*W) = D(V), and (iv) is equiv-
alent to NI — W+0O) = D(V). Thus (iii) and (iv) are equivalent by Proposition
3.4. (applied to U*W). Furthermore, from the correspondence Eo W o W, see
(8.5), (3.6) and Theorem 1.4, we get that _

E©0) = I‘@(m(W' — U)) and TI(D(E) =R — U*W') =R — U*W).

The first formula implies the equivalence of (i) and (iii), the second the equivalence
of (ii) and (iv) § -

"Thus the multi-valuedness of E measures the disjointness of. the extensions W
and U in such a way that E(0) = {0} exactly when W and U are disjoint and
B(0) = @& éxactly when W = U. o ‘
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Using the theotems 1.4 and 3.2 we can now characterize the generalized resolvents
of an isometric operator in a way similar to [6: Satz 4.1]. For'this, denote by & the'

set of mappings E from C, into &, such that the function z (E(z) + = I“’I")
s meromorphlc in C, and holomorphlc in zero.’

Theo rem 3.6: Let the assumptwns of Theorem 3.2 be satisfied. Then the /ormula
 R(2) = ~ 2U) + I'ypf6(z) + B@I I (a0 2 € G (3.9)

<~ defines a bijective corresponderwe between the set of all reqular generalized ‘resolvents R
o/Vandtheseto/allEmé’ ,
Furthermore, R s cmwmoal if und only tf the corresponding E 18 wdependent of z,

Eo = E(O) us conservative and R (E > — 5 I’*I‘) @.

-\ Proof: Let % be t;he set of those’ ‘mappings @ from Co into %, which are mero-
. morphic in €, and holomorphic in zéro. Then the mapping ¢’: ¢'(®P) (2) 1= ¢p(d)(z))
see*(3.5), maps % bijectively onto &. Let R be a regular generalized resolvent of V.
"Thus there exist a Ponbrjagm space @ o 9 and a unitary opera.tor U >SVon§

" such that

R(z)—P(I—zU) o - (z€e(U™),

Where P is the orthogonal projector of ' onto §. Define W(z):= z“‘(l — R(z)‘ )
then W is meromorphic in C,, holomorphic in zero with values in B($) and W(z) is a
‘cont,ractlve extension of V. Thus we can appl} T heorem 3.2 to W (), C € D(W):

(I - zW({)) v=(I — 2U) + 1’,/:{ (2) + (L)} LT5+.

" This formula holds true for all z in €, such tha.t l/z € g(W(C)) n g(U) But as’ (C)'
is contractive, its spectrum outside the unit circle is finite, Consequently, for almost
all £ in Gy we can choose z = {. As R(z) = (I - zW(z)) 1 we get the representa,tlon
Defme D(z):= W(z)lg +Dp 2 E D(W); then, by the theorems 1 4 and 2 1,9 belongs
to . Furthermore from the proof of Theorem ‘% 2 we get

E(z) = ¢(W(2)Ip,+9,) =‘<P(¢(2)) = ¢'(?) (2),

i.e., E belongs to &. The converse part can be proved similarly. For the proof of the
rest, use Corollary 33 1 .

’/
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