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Para-Differential Operators in Spaces of Triebel-Lizorkin and Besov Type 

T. RUNST 

In dieser Arbeit beschäftigen wir uns mit Regularitatsuntersuchungen von Losungen nicht-
linearer partieller Differentialgleichungen in Räumen vom Besov- und Triebel-Lizorkin-Typ. 
Dabei werden Resultaté von J. M. Bony und Y. Meyer auf die bier untersuchten Raume aus-
gedehnt. 
B OTOR p660re MhZ HccjieAyeht peryjiflpHOCTb peweimtl 1IernaHeHbIx AH44epCHijiiajn.HblX - 
ypaBHeH}113 B qaCTHbIX.flpOM3nwulhIX B 1T0CTHCTBX Tsna Becoa ii Tpn6eJ!bJ1n30pKuHa. 
Mai o6o6I1aeM pe3yJmramI, noyesaie Ant. M. BoHu It I'I. Meepes, HanccJre)yeM}le 
HaMH npocTpaHcTBa. 
In this paper we study the regularity of solutions of non-linear partial differential equations 
in spaces of Besov. and Triebel-Lizorkin type. We extend results obtained by J. M. Bony and 
Y. Meyer to spaces considered here 

In this paper we study the regularity of solutions of nonlinear partial differential 
equations. Here we shall extend results of J. M. BONY [1] to Besov and Triebel 
Lizorkin spaces. J. M. BONY introduced in [1] the method of para-differential opera-
tors in order to prove some theorems about nonlinear partial differential equations. 
He considered solutions in generalized Sobolev. space H2 8 (s > 0) and in Holder 
spaces C, where s > 0 is not: an integer. In recent years, Y. MEYER extended the 
regularity results obtained by J. M. BONY to solutions in other classes of'functions 
spaces, cf. [3-5].	 -	 -. 
- In this paper we consider the Besov spaces B ,q and Triebel-Lizorkin spaces 

in the Euclidean n-space R5 In Chapter 1 we introduce these spaces, which contain 
many classical spaces as special cases. In the spaces F, q and B, q we study the regu- 
larity of solutions of nonlinear partial differential equations and extend the results 
of J. M. BONY and Y. MEYER. In order to prove our results we use the method of - 
dyadic decomposition and maximal functions, multiplication properties of Besov 
and Triebel-Lizorkin spaces and results with respect to the boundedness of pseudo- 
differential operator of the "exotic" class L. Applying the theory of para-diffe- 
rential operators introduced by J. M. BONY [1] and Y. MEYER [3-5], we are able 
to prove our regularity results. All immaterial positive numbers are denoted by ' c

 or c' etc. 

1. Besov and Triebel-Lizorkin spaces on II,, 

1.1. Definitions' 

-'	R denotes the n-dimensional real Euclidean space. S = S(R) is the Schwartz 

space of all complex infinitely differentiable rapidly decreasing functions on 
and 5' = S'(R 5 ) is the corresponding dual space of tempered distributions. Let J
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and J'l be the Fourier transform in 5' and its inverse, respectively. çc is the set 
of all systems	 S such that: 

supp	{y j 2k-1	JJ	2k+1}, k	1, 2,	 - 

(ii) For any nulti-index a there exists a constant c such that	
S. 

. I D k(x)I :5 c2 1",	k = 0, 1, 2, 

° denotes the set of all systems op € bc with 

(iii)E 9k(X) = 1 if x E R. 

It is easy to show, that 00 is not empty. We use the following usual abbreviations: - 

PIIJ-',IJ =( f lf(x) I Pdx\hIP if. 0 < p < •	 , 

IJ/ I L0,0 11	ess sup f(x)I (Lebesgue measure). 
•	 ,	 XER,, 

If {a(x) o is asquence of functions then*  

I N	 S 

JIak J lqll = ( ,' ja(x)J'1)	if '0 <q < 00, 
-	\k=o  

Ilak 11.11 = sup a(x),	 S	 S 

k 

II ak I lq(Lp)JJ =	II( . ) I LP 11 I 1qjj if 0 <p, q :!9 oo,	 . 

IN I Lp(lq)Ii = llakW I Q1 I LPII if • O <p < 00, 0 <	cc. 

After these preliminaries we can define the, spaces 

B ,q = B,.q (Rn) and F q = F,;q(R).  

Definition 1.1: Let _ cc <s<oo and o<qcc. 
(i) If 0 <p :E-, cc then  

B •q = B .q (Rn) • = f €8' I Il/ I B ,qIJ	 S	 • 

S	 := II28I[ 9k (.) Y/( . )] () I l(L,) < co for some 92 E O}. 

(ii) If 0 <p . < cc then  

	

- F q =Fs,q (Rn ) = U €S' I II! I F q	 - .. ,. 

= I28kY 1[c,k ( . ) T/()] (x) L(l)II < oo for some 99 €	} 

Here and in the following, we omit R in the notations for spaces, if they are 
•	defined on R.	-	 .	S	•	-
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1.2. Properties  

1.2.1 Basic p'operties	 - 

(i) SL* B, q	S', S * F .q -+ S, where	denotes the continuous imbedding. 
Proofs of (i) and all other in 1.2 listed results -may be found in [8-11]. 

(ii) Jfip E 00 , thenB 4O , equipped with the quasi-norm lit I B' is aquasi-Banach 
space (Banach space if 1 p, q cc). All the quasi-norms 11f I B7J 9' with q' E (J)O 

are equivalent to each other. The corresponding assertion is valid for the space .F0. 
(iii) If 0 <p < cc and 0 <q < cc, then S is dense in B and F1  respectively.


	

•	(iv) Thefollowing imbedding theorems hold. 
(a),If0<pco,0<qccthen 

B .min c p.q)	Fs 	B,msx( p.q ) .	 S 

: (b) IfO < ,p ^ cc (p <cc in the case	and 0< q0 ^:q1 ^ cc then
P. 

	

B3pq, -, B8pq, and	c ̂Fs pq	 - 

1.2.2 Relations to dassical spaces 

(i) Thefollowing relations to the classical Holder spaces C8 and Zygmund spaces e8


	

•	are valid: 
If 0 <s + integer, then 6 8 = C8 = B	and 
if s> 0, then 61, = 

(ii) If 1 <p <cc and 0 <s.+ integer, then W 8 denotes the Slobodeckij spaces 
and W,8 

If 1 <p < cc and m = 0, 1, 2, ..., then W' denotes the classical Sobolev.spaces 
and W," = IIi" (W,° = Lu); i.e., the Sobolev spaces are special Lebesgue spaces. 

(iii) Furthermore, if —cc <s < cc' and 1 <p < cc, then H 8 = F 2, i.e. all 
these spaces are special cases of thç spaces B q and 

1.2.3 Thibedding theorems	/	 • -' 

'In-this ubsection we describe imbeddings for different metrics. 
S - (i) Let 0< 0 p 1 cc,0<qcc and —cc.<s 1 s0<cc.Wehave 

- B80 q - B g if 
3o	si — -a'.	•	 - 

	

•	Let0<p0<p1<cc,0<q,rcc and _co<8 i <8o<cO.Wehave	S 

•	 -	F q F.r	if	
S -
	 •	••	

- 

(ii) Using	8, if s> 0, and the just-mentioned inclusion it follows that 

B"-- 8 if s>0 O<p, q co. 

(iii)11, 1	p:!E^ccthen	
.•	 5 

•	B1 c4	-0 B, B 1	C B 000 , B 1	Cm 

(m=O,l,...),	 -	 0 0 

	

•	where.	 -	-	
S	 •	 -	

'•	 S 

Cm =/I]Y/E Cfoiall jal ^5m, II/lCm I! =	sup I D /I .< 
cc . 

S	
5	 sjm xER,,	 I 

S.	 S	 .,	 0	 1• 

S	

-,	

'I	
S	 5	 -
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Here D are classical derivatives and C = CO is the set of all bounded uniformly 
continuous functions/ on R with If I CjI = sup 
- (iv) Using (i) it follows 

F3	_Bs1 p,,q	p"pI -	p,.p,	 - 

ifO<p0 <Pi <00, —00 <Si < S <00,0 <q < 00, 80 --  8 1 -• 

	

Po	Pi 
(v)Let O<Po<P<fl i ;5oO, O<q;^;oo,—oo<s1 <s<s0 <oo and


	

n	n1	n S - - = 8 - - = a - -. Then (cf. [2]) 

	

Po	Pt	P. 

Fs , q - 

1.2.4 Maximal junctions and maximal inequalities 

In the following, we use the technique of cmaximal function in order to answer th e
 question whether B q or F, q is a (quasi-normed) algebra under pointwise multi- 

plication, in the case of B ,q it is also possible to modify the proof in [1]. Let q bean 
infinitely differentiable function in R \ 01 such that 

Slip (I xI' ± Ix!_ L ) Z ID(x)I = c, < 00.	 .	 (1) 
xER 0 \{O}	 IoL 

Here Lis a natural number, which value we shall choose later on. Let q3(x) = çv(2_x), 
k = 0, 1 1 ...  

Definit 5ion: ifa> 0,/ES', then the maximal function q,*/is given by


(*/) (x) = sup	 (x	Y)11 (x E It8 ; k= 0, 1,. 

We recall the maximal inequalities proved in a more general framework in [9]. 

Theorem: i) If 0 <p, q ^5 00, —00 <8 < 00, a> -, L> L8(s, p, q) = 
6n +n -+4+  -, then there exists a positive number c such that for all 99 with (1) and 

all /EB,,q p	 . 

0	 II29,/I lq(Lp)II	CC II! I B,QlI. 

Here c9 has the meaning o/(1).	- 

(ii) I/O <p < oo 0 <q 00, —00 <81< oc, a> .
	

and L > LF(s,,q) 
6n -	 m in (p, q) 

 = I s I + n + 4 +	, then there exists a positive number c such that for all 
mm (p;q)  

99 with (1) and all / E 

-	II23k*f I Lp (lq )i	CC	/ I F Ij .	-	
1• 

- Here c has the meaning of (1). ,
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2. Multiplication properties, the first example of linearization  
of nonlinear problenii  

In our further considerations, we use essentially the fact that the spaces Fs and'• 
B3 M are a (quasi-normed) algebra under pointwise multiplication if the numbers 
S, p, 'q 'are chosen suitably, i.e.;	 - 

either O<p'c,d<q^co, ands> !! ^  

B ,q . Bjq r,. B q	if	• 
or ' 0<p:5:oo, 0<q^1, ands= 

• either O<p<oo,O<q oo, and* 8>-
•	

Fs c, if	 '	 p 

•	 or	O<p	,0<q:5,00, and :s=—. 
—	 Sop . 

Proofs of these' assertions and references may be•found in [11: p. 145-146] and in, 
[2]. In the following, we shall apply essentially the treatment given in [10]. 

The purpose of this section is to give a natural approach to the theory of "par-
multiplication" introduced by J M. BONY [1]. Let {(x)}-0 E 00. We may assume 

• — that k(x) = o (2_ kx) if k = 1,2,.... If / and arefunctions in B q and F ,q , respec-
tively (the values of s, p and q we shall choose later), then we put 

•	bfr =Y 1 Yg, .	 ck. 	9 — 
1
9,k-11	(k	0; 1, ..).	• 

- We assume temporary that Yg has a compact support. In that case allthe sums 
below are finite.	 - 

Using	9k(x)	1, x E R, we have	•	
0 

	

0	 0	 •	 5	 0 

g(x) = Ebk(x), — /(x)	.E.Ck(x).	0	 0	

• S' =O	 0	 S' k=O ' •	 , 

If k = 1, 2, ..., then holds  

0	

[Y197Y(9/)] (x) =f P'- 1910 (y) (g/) (x — y) dy, 
R. 

= 2k0f (57190) (2ky) (g/) (x — y) dy 

(Yo) (y)bj(x — 2y) c1 (x — 2y) dy.	(1) 

'The intersection of the supports of, k and Y(b5c1 ),	 S 

[Y(bc,)]	 f (Yb5 ) (y) (cTc,) (x — y) dy, 

is empty if the non-negative integers I and j do not belong to one of the following 
•	three cases:	 • 

• 0	

-• • 
0 

(l)L-3<^If,-L+3and)=O, ,L+3, 

36 Analysis Bd. 4, Heft 0(1985)	 0	 - 

0	 0	
.
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(ii)l=0,...,k±3 and k.-3:E^:,:!E^k+3, 
(iii)l>k+3,j>k+3 and l—jI<3, 

i.e., in the sum in (1) there are of interest only values of j and 1 given by (i— (iii): 
CO	00 

We use the following composition of 	g(x) =Ecj(x)E b,(x): - 

•	 / . g = T1g + Tgf .+ R(/, g), (2) 
where 

•	Tfg= E c1 b5 , -	Tg/=	b,c1 ,	.R(f,g)=	' b,c1. 
-	 l<j-3	-	 j<1-3	 1-11<3 

Therefore,	it will be sufficient to consider the following three model cases 
•	(k=1,2,.;.): 

Case 1:' 

•	 (x) = E f (3_1) (y) b1 (x — 2y) ck(x - 2_ 1y) dy, 
•	 j=OR,	 - 

--	 (x) is equivalent to [cT 1 kc(Tg1)] (x). 

Case 2:	 •	 • 

ak" (x) = Z 
f (-1) (y) bk(x — 2 ky) c1 (x - 2y) dy, 

1=OR. 

'k	(x) is equivalent to [J 192T(Tfg)] (x). 

Case 3: •'	 -• 

•	Ek" (x) =Z f (Y- 19,o) (y) b 1 (x — 2_ ky) c1 (x - 2_ ky) dy, 
•	 l=kR,,	 •	 S 

Ek"-(x) is equivalent to [J_1q,(R(/ 
• g))] (x).	 • S 

Let	 • 

•	 supjj
yj	

••	

•	 •

(:3) 

and	 •	 S	 • 
c(x — y)l c,*(x) (4) 

j,ER,, 1 +	2iy0.	• 

be the maximal functions. We assunie a1 > 0,a2 > -	if / E B q and a2 >	
• 

if t E F3p.q . if	•	 S	 • p	 mm (p, q) 

c=f I(') (y)I (1 ± IyI)°dy, •	 -	 • 
R. 

then we have by [10] •	 S 

Ic' 
•	 ILk	(x)I :E^CCk*(X)2bj*(X), (5) 

-	S	 •	 •	 S 

k	 iS 

•	•	JL'k	(x)I	cbk*(x)EcL *(x), (6) •	 1=0	 •	 •

• Irk" (xI	2( 1	)(+)b*(x)c*(x)	. (7) 
i=k	

S
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By (5) we have 
2k8	(x)	c2!cack*(x) tb,* I 11 (L00 )IJ.	 (8) 

If -00 <s < oo, 0 <p, q ^ oo, then we get by Theorem 1.2.4 

II2	(x) I lq(Lp)II	C / I B,qII jig I B1, 1 11.	 (9) 

Remark 1: We 'assumed above that 'Tg hasa compact support. In [10] it was 
shown that (8) is true for arbitrary functions g, i.e., we have 

11211	(x) I lq(Lp)II	C J/ J 8,.qII	Jig I .B 01 II.	. 
Since this estimate is symmetric, we obtain also 

112	''' (x) I lq(Lp )II	C h g I B,.q II	It .B 0,1 II.	. 

Applying now the imbedding 

Bpq L9.	1o.i	B 000 if	> .!,	
..	 (10)


we have proved  

	

Theorem 1: Let O<p,q 00 and s>-!!..Then.	 . . 

III	I B .qII	C II! I	II	ll	I B .qlI	 . 

and	.	 .	.-. 

IITgI I.B,II	, c gj B ll 11/ Bqjj. 

Remark 2: We recall that 6 8 = B3 with s> 0. Therefore, the above assertion 
holds also in the case of Holder-Zygmund spaces. 

In the following we shall estimate R(/, g) if fTg has a compact support (cf. [10]). 
• If e, and e' are arbitrary positive numbers with e' <e, then we have 

2k8 IZk'"(x)I	
-	 S	 S 

C' 20 0 +8) bt *(x) 218- Ci*(X) 

C' 112imax(0a+a,+e_8) b' I 100(L,)II 


/00	 \I/q 

	

x E 2U_/Q2i8Qci*(x))	(modification if q =00).	 (11) 

Choosing,, a2 and s is an appropriate way, itis possible that	+ 
+ a2 <s and, for small positive e, max (0, a 1 + a2 + e s) = 0. Therefore; we 
obtain by(11)-  

11218 L'k" (x) I q('p)Il	c Jg I ..8 0.c 1I ' If I B ,Q II .	•	 (12) 

If either  E	>0 or  E B q with s> -fl-, (12) and (10) show 

I12 8 +	L'k	(x) I lq (Lp )JI	C h g I	II Ill I B7,QII 
and.	 •	 .	 s.. 

112 L'k	(x) I lq (Lp )II	c hg .B3	.Il/ BQI!. 

36*	.	 ...	 .	.	 - 

I
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Remark 3: The same argument as in [10] yields that (12) is true for arbitrary 
g E B q and. g € 6P. 

•	 We have proved 
•	 Theorem 2:Let 0 < p, q oo and s>	Then 

11 11 (1, g) I B' ,,'ll	c g I B ,qll II! I 
and for;g E 6 e , o > Ø•	 S 

IIR(/ g) B'/ll	c lu I 'ell	lu I BII 
Remark 4: If p = q = oo, it follows by 8 = B$..,,, for s> 0.0 0 

II R (/, g) I	3±Qj	c J ig	°lI	Ill 16811 S 

Now we can obtain results related to [1: Théorème 2.51. 

• Theorem 3: Let O<p, q:^,- co. 

(i) Let/E 8 andgE, 8 > 0,> 0. Then 

/.u=T+Tpt+R(f,g). 
with . 

•	 R(/, g)	^S-c lit F 'll	hg g'Q11 

(ii) Let / € B q and g € B , s >	t >	Then 

•	t.gT+'Tgt+ RU, g) 
•	with

IIR(t, g) I B t ' 1 '	C If I B,,q hI	lu I-1.qlh 
Proof: (i) follows from Theorem 1 and 2. 
(li)' By (2) we have R(/, g) = / .g - T1g - Rg/. Now, (11) with 0 < C ' < E yields 

	

12k(8(1P) Xk	(x) I l(L)ii	- 

^ C, ' 2'—" 
+a,+ _8_t + n IP)b i *(x) 218_l_lc)ct*(x)  

112iTax (0.o , + a +.t_8_ -tI/P)b,*(x) I	 col(L) 
•  IN 

	

x I	21Q8_((1Qc,*(x)	. 

\z=k 

	

Because of a1 > 0, a2 > -fl-, s > -f-, t >	and for small positive e, it ispossible 


that max (0, a1 + a2 ± C - s - t + n/p) = 0. Therefore; we obtain 

-;	hl2k(8±t_	" (x) 1(L)hI	c Ilu lBi• lit I B. 

	

Again by the imbedding theorem (10) we get (ii) I	 S	 • 

•	 S

 

Remark 5: Let; either p =q ='2orp =q = oo. Then B2=H28andB	8 c,.	_ 

= C for 0 <s = integer. Therefore,. our Theorem 3 implies the results obtained 

	

by J. M. BONY in [1].	 •	 -	 •• 

- 
S	 Reniark 6: By Theorem 3 we get for u E, lo > 0, 
•	 • = u . u 

= 
Tu + 'J'u ± R(u, u) = T2 u + R(u, u) 

A. 

j	-	•	 •
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with R(u,u)E 012e. Analogously, it is possible to show that- for U E ee, > 0, 0(u) 
= TG'( U )U ± r with r EQ and 0 is a polynomial in u with G(0) =.O, of. [1: p. 227]. 
In 'Chapter 3 we shall extend -this assertion to arbitrary C°°-functions G with G(0) '_—_ 0 
(C = C00(R) denotes the set of all infinitely differentiable fdnctidns on Re). 

In the first part of this chapter we have éonsidered spaces of Besov type. From 
now on we shall be concerned with the' spaces F, q. We use the methods described 
in .[2] and in [10]..-As above we restrict ourselves th the three model cases. Hers we 
must take in our consideration, that the conditions of Theorem 1.2.4 (ii) oxe ful 

filled, ife choose a> .	. By(8)wehave	 .
min (p,q)  
12k8	' (x) I Lp(lq)lI	c II2Ck*(x) I Lp(lq)I	I	iII .	 (13) 

.Theorem 4: Let O<p<oo,O<q	 oands> —.Then	- 

IT0! I F ,II	c jjg I	It I 
and	 - 

JITfg I F qII	c II! I F .qII 110 I	 . 

Proof: We have s> -fl-.
 

By using the imbedding 1.2.3 (i) and (iv) it follows that 

F q c— B and by (13)	 S 

lIT0! I F Il	C II	I F Il •Il/ I 1 .qII	.	
. 

The same arguments with respect to the support of g (cf. Remark 3) yield the first.	-' 
assertion. Since our estimates are symmetric, we obtain also the second case .1 

In order to show an estimate of R(f, g) we use the methods introduced in [2]. 

• 'Theoiem5: Let 0<p<oo,0<q g-,co and s>-.Then -	.	 p 

IIR (I, g) I F,.q II	c g F7,II Il/I Ep.qII 

and for g E ee, > 0,  

II R(f, g) , l ^ C IIg I	II! I.qI	 .
P-q
'Proof: By [2: 3.31 we have  

2k8 fl" (x) I L(1)II	c Ill I F II . Il I B" 11	 (14) 

if 0 <p, r < oo, 0 < q oo and > n (min 	1. By . using the imbed- 
ding 1.2.3..(v) we get	.	 n (p, 1)	/ 

B'2  

Hence, (14) yields	 .	 .	 . 

IIR(f, 7) I .FII ;5 c jjg I F , Q II . p ITF qIL	.	 . 

By means of the procedure described in the proof of Theorem 2 we obtain the second 
result I  

We are now in a position to carry over' the results in Theorem 3 and the results 
obtained by J-. M. BONY [1: Théorème 2.5], respectively, to the spaces Fq.
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Theorem 6: Let O<p<oo,O<q^Soo, 8>,t>-,/EF0 and gEF. 
Then ' 

f.g=Tjg+Tg/-J-R(f,g) 

	

-	with	 - 
II R(t, g) I II ^ c 18p,qII h g I F,4!I. 

The proof is analog to that one of Theorem 3 1 

3. A second example of linearization -. 

As' mentioned in Remark 2.6, we shall extend Theorem 2.3 and Theorem 2.6 to 
arbitrary C°°-functions 0 with 0(0) = 0. The purpose of this section is to prove an 
extension of results obtained by Y. MEYER [3-5] and J. M. BONY [1] to F ,q and 
B,q. 
Theorem 1: Lee 

either 0 <p, q < co and s> max( 'fl-, 
n (min \p 	(p,q, 1) 

or	0<p<o,q=ooands>-

and G € C°(R) with 0(0) = 0. Tien 0: F' .q * F, ,q defined by 0:	0(f) is bounded. 

Remark 1 Because of H 8 =F ,2 and
 (min(2 l) 

i) =0, /if 1 <p<oo. 
Theorem 1 implies the result obtained by Y. MEYER in [4: Thèoréme 1]. 

	

•	Proof of Theorem 1: Step 1: We use the decomposition method with respect 

to 0(f), cf. [3-5]. Let op E c0 (R),	) ^ 0 for all E R;,() = 1, if 
= 0, if II > 1. Now we define as usually for.f € F and k = 0, 1, 

Se(i)	c92 
(P, 

T-1	
21 

'17-/ and :L k (f) = Sk+i(f)	S(f).	 (1) 

Hence, we have	-	 - 

supp Y k(f)	{j 2k- 1	I <-^ 2'}, 

f S0 (f) +	+. +	(f) + ... and  

/k+1 := Sk+i(f)	o(f)+	+ Lk(f).	-	(2)


Moreover, we use the following representation formula: 

0(f) =G(/) ± 0(1) — G(f) •+ ... + 0(fk+i) — 0(1k)	- 
Notice that 0(0) = 0 and / = S0 (/). Hence, it is easy to show an estimate of 0(10). 

	

•	Moreover, we have	S	 - 

G(/k+ ,)— q(f) =mkk(f),	mk:= fG'(fk + tk(f))dt.	
/	

(3) 

Th6 operator . L: S(R) S(R) defined by 
• S	 _	 S	 • •	•	L(q) = 	m, L(g)	 •	 ..	 (4)


k=0 
• is linear... - -

I
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Step 2: We show that the above operator L is a ps6udo-differe9tial operator of 

the "exotic" class L°11 if / €	s.> -fl-. As usual we say that a function o(x, ) - 
€ C(R x R,,) belongs to S, m E R, 0	5 :!9 1, if-for each multi-index 
and fi there exists a positive constant c ' such that 

DDflo(x,	5 cp(l + 11)m11+61 

holds for all x and in R. If a € then the corresponding pseudodifferential 
operators a(x, D) is said to be in class L'6. Here, the pseudodifferential operator 
a(x, D) with symbol a is defined, as usual, by

 
a(x,D)/(x) =f ea(x,	Tf()d, 

'V 

x € R8; 
Rn 

At first,, we observe that the symbol a of L defined by (4) is given by 
•	

V	 a(x;Y=rne(x)J(2k),	 /	 '(5 

Hence, wehave to prove that -	 - 

IDD Pa(x, )I	c,#(1+	
V	 V	 -	 - 	

(6) 

holds for each multi-index and ft . , From F -+ 	L ifs> -fl-, cf. 1.2.3, it 

	

Aq	00,1 

follows that Il/k I L,,lI:5^ c. Hence we have '	
p 

II D /k I L ll ^5 c2 1 and IIDG'(/k) I L.11	c2kI5I .	'	 V 

(3) yields	 V	 V 

•	 lIDX5mk(x) I LII :!9 cp'2 I .	 V 

From the last estimate and the properties of the functions W follows that a E S 
and a(x,D) ELI.1.	

V	 + 

Step 3: We prove the boundedness of pseudodifferential operators of class L?

inTriebel-Lizorkin spaces F. The following'result was obtained in [7: Theorem 1] 
by the author: '	 V	 V	 V 

VLet 0<p<V 00, o<q 00 and	 V 

either 's > n
(mi n	 - 1 and q < oo V	

'	 V 

 (p,q, 1) 

	

n	 V	 - 

or	s> —	and5q=oo.  

If T. € LO, , ,, then T: F q — F,. This assertion completes our proof I 

The counterpart of Theorem 1 is	 V	 V	 V	

V 

V	 Theorem 2: Let 0 <p, q 00,8 > max( n
P
., (	

1	
—'1VandG € C(R) - 

V	 V	

\min(p,1). 
with G(0) = 0, Then 0: B,,q —* B" , defined by 0:	0(1) is bounded. 

V 

pq 

Proof: We use the above methods and a result obtained in [-7: Theorem 4) con-




cerning the boundcdness Of operators of class LO, 1 in Besov spaces B ,q • V	

V, V
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Remark 2: Theorem 3 and 4 in [7] was obtained for general pseudodifferential. 
operators. of classL? 1 , i.e. no restrictions on tle structure of the symbol a.' Those 

'results are contained in	 .	..	 S. 

•1
 

Theorem 3:(i) Let O<p<co,O<q:!E^pcand	. 

(mm (p, q 1) - i) if q < cc 

-	 if q=oo 

1/ a 'E S, —cc <m <- cc,- then the corresponding. pseudodi/férential operator. 
T = a(x, D) is bounded from pm into E7,q  p,q

(ii) Let 0<p,g^5 . cc and s>n(_
•	1)	 I/aES1, —oc -<m<1.

 then the corresponding pseudodi//erential openitor T = a(x, D) is bounded from B  
into B'pq 

For the p'roof cf. [7] U	
S	

=	S 

Remark 3: Theorem 3 is an extension of results discovered by Y. MEYER [3-5]. 

•	The theorems presented in. this chapter are fundamental for our further consider-
ations.  

Remark 4: Beéause of F 2 = H, .1 <p < cc, Theorem 3 is valid for s> 0. p. 

The assertion is false, if s= 0, of. [4].	.	. . 
Remark 5: Pseudodifferential- operators of class Sn6 acting in Triebel-Iiorkin P. 

spaces Fl ,, was considered by L. PArvARINTA . [6] and other authors.	S	 , 

Remark 6: Let -r-> 0 and TE Lj. 
(i) If 0 <p < cc, 0 <q cc, s satisfies the conditioiis of Theorem 1,-then 

•	
. T:	 F	for all t	- r.  

(ii) if 0 <p, q :5: cc, s satisfi,es the conditions of Theorem 2, 'then 
•	

S	

:- 

T: B' , -4	for all t > s — r,	 . 

T is smoothing of order r.	 .	S 

- 4. Para-products of J. M Bony, a third example of linearization 

4.1. Para-products  

The calculus of para-products was introduced, by J. M. BONY in [1].
.5'. 

Definition 1: Let u, v  8'. Then the Para-product w = Tv is defined by 

W ='	
' Sk_2(U) k(V) 

Remark 1: J. M. BONY denoted the 'para-product by w = t(u, v). Comparing 
.this definition with Chapter 2, we obtain that the operator of para-multiplication is 
essentially the OperatOr Tv in the theory of multiplication algebras. Hence, we -. 
denote the para-product by the same symbol.  

'5'	 .
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Theorem 1 Let 0 <p < co, 0 <q ^5 00,8> 8, 

'1	1 
max (—. n  nI	—lfl i/ q<c0 

8F.
p	\niln(p,q,i)	/1 

	

—	 ..,,	 -	(1) 
n	-	 - 

q=o. 
P 

We put 8 =sF + r, r > 0. Then for each / E	and 0 E COO (R) with 0(0) = 0 
Pq 

we have
0 (1) = TG '(f)/ ± g ,	 .	I 

where g E F q , s' = 8F + 2r.  P. 

Remark 2: Because' of F 2 = H, 1 <p.< 00, S	Theorem,1 yields the 

result obtained by Y. MEYER [3;-5]. 0(0) = 0 is.a necessary condition. By 1.2.1 (i) 
S + Fp.q	8'. If 0(x) = a, a + 0, then 0(f) E S holds not for general j E S. In 
this case g belongs locally to F Q .	 - 

Proof of Theorem 1: We use the ' mapping/ properties of pseudodifferential 
'operators obtained in Chapter 3 and the methods of [4: Th6or6me,4]. 

	

Step 1: By Chapter 3 we get the linearization	S 

where L E LI1 with the symbol 

•	c(x,	 W(2) 
k=O

	 '	

0 

and	

mk(x) =f O(/ + t k (/))dt,	/k = Sk(/) 

By 1.2.3 we have	•'	 S 

	

L	_	 .	 (2) 

and hence G'(/) E . Evidently, Ta E LO, with the symbol  

(a E L fixed).  

Step 2: We prove L(/) - TG. (f)f = (x, D)/, where o. E Sj. It is sufficient to 
show that  

• .	
'	 IIDm (x) - ! Sk2(a) L II ;5 ca2kkI.	 .	(3) 

Here a = G'(/) E	mk as above. Using now imbedding (2), 
then 

(3) follows by

'the methods in [4: Prop. 2].  

Step 3: Applying now Theoem 3.3(i), we obtain Theorem 1 I 

e mark. 3: g(x, D) is smoothing of order r, cf. Remark 34. Using Theorem 3.3 (ii), 
it is not hard to prove	 S	 •	 S	 - 

Theorem 2: LetO <p,q .00,8> 8B • 

(Tn 5 
sA:=
 max	 ,flI	- lii.	•	 0	 -	 (4) \min (p, 1)	//	

0•	 •	 '.	 S
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We put 8 = 5B + r, r> 0. Then for each / E	and 0 € C/R) with 0(0) = 0 we 
have G(/) = J G(f)/ ± g, where q E	s' = S + 2r.	 - 

The following theorem generalizes Theorem 1 and 2. We use the concept of locali-
zation and micro-localization. 

Definition 2: A function /(x) is locally of class B, q (F q) at the point x = 
if P/ € B •q (F8p,q ) for any Cm-function W(x) not vanishing at x0 and supported in a 
sufficiently small neighborhood of x0. 

A function /(x) is locally of class B, q(F, q), i f 9'! € .B jq(F jq ) for any function 
!P(x) E Co- . Here C0 = C0 (R) is the set of all complex-valued infinitely differ-
entiable functions with compact support in R. 

Definition 3: Let W(x) be the function fromthe first part of the preceding defi-
nition. We say f(x) is micro-locally of class B •q (F q ) at the point (x, ) = (x0, ) in 
the cotangent space if the Fourier transform of I-'/ is equal to the Fourier transform 
of  B ,q (F ,q ) function in a canonical neighborhood of s (i.e., Ij near PP 

Theorem 3:(i) Let O<p<oo,0<q;^;oo,s>s and ssr,r>0.J/ 
/j € F,, (j.= i ..., rn) and 0 = G(x, X i , ..., X,,,) € C11 %X Rm), then 

G(x, /, .. , Irn) =	 TOG	

/ 

+ g, 

where g belongs local to	s'	s + 2r.

.(ii)LetO<p,q^co,s>sBands=sB+r,r>0.J//jEBq(j_1,...,m) 

and 0 G(x, Xi , ..., Xm) € C°°(R X Rm), then 

G(x, /j , .. , Im) =	T	/ + g,  

where g belongs local to	s' = 8B + 2r. 

Remark 4: Theorem 3 generalizes results of J. M. BONY [1] and Y. MEYER [3-5] 
to B8p,q and	In the following, 81 and 8B are defined by (1) and (4), respectively. 

4.2. Para-differential operators 

Para-differential operators were recently introduced by J. M. BONY [1]. The theory 
of para-differential operators may be found in [1, 3-5j. - The theory is also applicable 
to the function sages considered here. The following definitions and properties 
may be found in the above quoted papers. 

• Definition 1: Let ,m E It, r > 0. Then Ar tm is the set of all symbols a = a(x, ) 
such that •	 -	 - 

(i) ) I KIII ;5 c(I -+-	)mI	 S 

for each multi-index a and 

(ii) !DDo(. , )I ^ c ,5 (1 + II)m_11+11_r 

for each multi-index with IJ > r and each multiindex a. 

Remark 1: It holds	Arm 8 1 . Here Ar° = Ar. We define the corre-




sponding operator class in the usual way and denote it by Op Artm.
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Definition 2: B, tm Ct Artm denotes the set of Al symbols a = a(x, ) such that 

(i) IIDa ( . , ) I•	^ c(1 +	f )mHI	 - 

and	 - 

(ii) for all fixed holds supp Y, ,cr ( x , ) c: 	I 
In [4] may be found the 'following facts: 

1. If L,deriotes the above defined operator with synibola(x, ) =E.rn(x) '(2) 
àndfEH58 =F 2,1 <p<oo,s=—+r,r.>0, then LEOpA,. 

Using the imbedding theorems in 1.2.3, we find L € Op A,, if / € 
where O<p<oo, O<qoo, s=s5. + r , >0 (0<p,q^5oo, s=sB±r, 
r> 0). 

2. If a E ', r >0, then the operator T0 : / —0 Tj belongs to Op A. It holds 

• T0 E Op Br if the para-product is defined by Z Sfr_6 (a)	(/). We have Op Ar = Op B, 
(mod r. - smoothing).	 k6	- 

• In Chapter 5 we shall describe micro-local regularity of solutions of nonlinear 
partial differential equations. There we use the following 

Lemma: Let (x0 ,	E It,, x R. \ (0) and a € Br, urn inf Ia(xo, 4)l > 0 Then 
there exist x-E Ar, T €	and z € C°° such that 

(a) (x0 ) = 1,4) =	) if	R0 and	1, (A) + 0, if  A0 and 

(b) r(x, D) 0 a(x, D) = (x) 4u(D) + e(x, D), where € 

Remark 2: A proof may be found in [3: Prop. 4].. (x) t(D) is said to be an 
operator of micro-localization, cf. [5]. We refer to Definition 2 and 3. 

5. Applications	 . 

Let N	1, n	1, 0 E C(R,, x RN) a function of variables X0 = (x 1 , ..., x,,) and 
X 1 , c.., X- and f: R,, .-. It a function of class Cm (m € N) satisfying	- 

G(x,f(x), ...,D/(x),..J.=0,	ja I :!z^m.	 •	(1)


We define  

p,(x, ) =	-	(x, f(x)....., 1)/(x), ...) (i. 

	

kI=m	 - 

Definition 1: A point (x0, ) € It,, xli .,, \ {OJ is said+ to be noncharacteristic

with respect to the solution f of (1),if Pm(Xo, ) + 0.	

5 

Theorem: (i) Let / € F be a solution of (1), s = vi + S + r, sF defined by 
4.1 1( 1 ), 0< p < oo, 0 <q ^ oo. Then / is micro-locally 1' at all/noncharacteristic 
points (x0, ) with respect to f.	

.	 S 

(ii) Let / € B, l , be a solution of (1), s = rn + 5B + r, where s R defined by 4.1/(4), 
0 < p, q	00. Then / is micro-locally B.at all noncharacterietic points (x0 , ) with 
respect to!.	

5	
5
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Proof: We use the method Of Y. MEYER in [3-5]. By Theorem 4.1.3(i) we obtain 

X, AX), ...,D/(x), ...),=	'J'ø	 'D/(x) ±gx), 

where g EF 2T . We put - 

- L(u) = TG	 U.  
-(X....DPf....)	 - 

By Theorem 4.1.1/Step 2, / is the solution of	 5 

•	
N	 1' 

	

' La' (DOI) = —g = e(x, D) /,	e E S. 

Denoting by L the operator  
N 
 LO 0 DO (J	./\)_m12,	 - 

then we have by means of the assertions in 4.2 L E Op B. Let a = (x, ) be the 
symbol of L. Then (ci. [5]) 

lini (a(x ) - 	= 0.	'•	 (2) 
II 

Hence, if Prn(xo, ) + 0, by (2) there exists r0 >: 0 such that 

a(x0 ;r 0 )	6 .> 0  for all r	r.	 (3) 

Using (3), we obtain that L satisfies the assumptions of Lemma 4.2 at all non-
characteristic, points (x0, ). Putting now 'h = (I - /)mI2 /, then we obtain 
L(h) = —q. According to Lemma 4.2, it follows o(x) 14D) h E	i.e., his micro-
locally of class F ! 2t and hence, / is micro-locally of class pr 

The proof of -(ii) is similarly. I	 - 
S	

'	 '	

:	 -	 •

'I 
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