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A Theory of Quantum Meashremept Based on the CCR Algebra L+(%)

D. A. DusiN and J. SOTELO-CAMPos"?)

’
/

Ausgehend von der Observablen- A]gebra L*(%) fur einen Raum % vom Typ g wnrd eine
‘quantenmechanische MeBtheorie ausgearbeitet. Diese geht auf die Theorie von Davies und
Lewis zuriick, wird aber hier fir unbeschrankte symmetrische Opemtorcn mit einem gemein-
samen-dichten Definitionsbereich und ohne Emschrankung an das Spektrum aufgebaut..

I/l(,xuzm u3 anreru Habmwogaemux LH¥) ana HpOCTpaHC’I‘Ba % Ttuna & paspabaTnBaeTcH
' KBAHTOBO-MEXAaHMYECKAaA TeopuAa M3MmepeHHsA. Ito Teopusa Bocxognt kK [etiBuc u Jlyuc,
. ONHAKO ANANTHPYETCA 3lECh K, HEOrPAHUYEHHBIM CHMMETPUYECKHM onepa'ropaw ¢ obmen
MJIOTHOI o6.nac'rb|o onpenenemm n Oe3 orpaHUYEHHA HA CNIEKTP.

Starting from L*(%) as the algebra of observables, % a space of type #, a theory of quantum
measurement is devised. It is based on the theory of Davies and Lewis, but adapted to un-
_ bounded symmetric operators defined on a common dense domain and no restriction on the
- spectra.

Introduction

The original von Neumann formulation of quantum measurement theory is based
on two special circumstances: the pure states of the system constitute a Hilbert
space, and the observables are self-adjoint operators with purely discrete spectra.
Although von Neumann discussed the measurement of operators with continuous
spectra, he based this on an approximation scheme which is less than satisfactory.
We take the position that the states of the system must take finite values on all -
the observables, and the set of observables must include all the operators of physical
"interest, e.g., the position, momentum, and energy. In order that this be so, it turns
out that the pure states of the system must comprise a topological vector space
dense in the Hilbert space of the system. Following the work of RosERrTS [28; 29],
KRISTENSEI\ MEesLBO, and THUE-PoULSEN [2] and others, we take the pure states
to constitute a space % of type . The observables are taken to be the maximal’
—algebra of operators mapping % to itself; L*(%). Th;s means that we must develop
a’ measurement theory for L*(%).

- Davies and LEwrs [23—25] have developed a theory of measurements for bounded
symmetric operators with general spectra. Using an approximation to the position. -
: operator, Davies has shown how this theory can be used for certain unbounded °
operators by constructing instruments for approximate position measurements [23].
For a connexion between these operational ideas and sta,tlst,rcal decision theory, see

the work of HoLEVo [26, 27].
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This leaves open the qucstlon of a theory along the llnes of Davies and Lewis,
but adapted to L*(%). The problem is this. Instruments for measurements’ must
“transform states on L*(?!?) to states. A further difficulty comes from the fact that
L*(%).is not. complete -in its natural topology. 'Its completion is the space of distri-
butlons %’ % %'. This places a further restriction on the definition of instrument:
“they must be the transpose of a map taking L+(%) to itself. We call these Iatter maps
expectatlons.

Each instrument defines a umquc obscrvable through a spectral representation
by a positive operator-valued measure under which % is stable. The observable so
defined serves as an approximation to certain other observables. The instrument in
question then provxdcs measurements for these associated observables, but providing
less than maximum information. This phenomenon occurs in [24].

As is to be expected, strong repeatability is not generally possible. Somewhat sur-
’prlsmgly, the composition of two instruments, corresponding to successive measure-
ments, is not an instrument. This is not as bad as it seems, as the compose of two .’
instruments behaves perfectly ‘well on product sets A X 4, which could be taken '
to be all that is necessary,operationally. ' . -

The paper is organized as follows. In Section 2 we discuss the formalism of Quantum
Mechanics. Here we introduce our space of wave functions, algebra of observables,
and states. We also quote a number of results concerning this triple; as well as proving

.some new results we need for the sequel. In Section 3 we define expectations and
Instruments in our model. We prove that instruments are bounded Radon measures’
"in. the sense of THOoMAS [39], that every instrument defines a unique observable,.
and we determine which observables can be measured. In Section 4 we consider
+ composition and conditioning for instruments.’In Section 5 we construct a family
of instruments to measure @, and gimilar families for P and H. We also prove that
these instruments compose to instruments. In Section 6 we summaru.e, our results
through an informal discussion of thé measuring process.
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gratefully acknowledges his appreciation to the Open Umvers1ty for its help and
support, and the award of a postgraduate studentship. The other (D.A.D.) wishes
to thank the members of the Naturwissenschaftlich-Theoretisches Zentrum of ‘Karl-
Marx-Universitdt in Leipzig for their. hospitality and discussions concerning this
work. In particular, he wishes to thank G. LassNER, G. A. LassNER, K. SCHMUDGEN,
and A. UELMANN. He also wishes to thank C. TrapanI for discussions clarlfymg the

- mterpretatlon of this scheme

2. Formalism of quantum mechanics S ' ‘ ‘
The' essence of nonrelativistic quantum mechanics is the canonical commutation
relations. If we demand that the space of pure states, %, carries a representation of

these relations, that the canonical operators be continuous linear operators on %,
then up to some technical condmons W is determined.

Defmltlon 2.1: The space %/{t] of wave 'functions for a system with d degrees
of freedom is the maximal locally convex space such that

(a) ther¢ exists a t-continuous scalar product, (,) on %. The completion of ¥
‘wi_th respect to this scalar product is a separable Hilbert space ©; i
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(b) there exist d pairs (bj, b;*)12j=4 of contmuous hnear operators ma,ppmg Y to
-itself, adjoint with respéct to the scalar product

bif gy =(ib*ey  (Vhgew;1<j<d), . (21)
and satisfying the canonical commutation relations (CCR) o ]
bib* =6 (I1sj, k=<d) = o X )

strongly on %, other eommutat:ors vanishing;
(c) the topology t is determined by the seminorms

flefl (veer@), S 2.3)

where

L"(‘W) (a € L(®): a* € L(‘W)}, ’ . (2.4)-

and L(%) is the set of all lmear maps from ¥ to 1tse1f Here [}-]] is the norm asso-
ciated with ( Y

(d) there-is a vector .Qo €W, norma.llzed by |].Qol| =1, satlsfylng the Fock- CooL
condition

50, =0 (1=j<ad). L ' @25)

(e) Let %, be the linear manijfold of all vectors in % sat,lsfymg the Fock- Cook
condition. Then PW, is dense in v, where & is the algebra. of all polynomlals in the .
{b,, b; * (1 sis d)}. In addition, ‘ZW is 1rredu01ble if £Qq is dense in,®. -~ .

Thls choice of system was analyzed by KBISTE‘TSEN  MEeJsLBo, and THUE-POULSEI\
[2], who called irreducible wave function spaces spaces of type 4, for reasons which
will be immediately apparent. With’ regard to their analysis, note our condition of
maximality and our choice of topology. Most of .our results hold for more general-
spaces, but. we. shall not claborate on this possibility.

Proposmlon 2.2: (a) Bvery wave function space may be decomqoosed into the t-com-
. pletion of a countable locally convex dzrect sum of trreducible spaces: .

W =TV, o N ‘ (2.6)
LBl : L '

" (b) Any irreductble wave /unctwn space W 7s tvs- zsomorphw to Schwartz’s space B
J’ 4 = F(R9) wuh its usual Frechet topolog y. Defining

M= X by, X

)] follow;s' that ) L
' W = DeM) = m Dom (M%). Lo .29
The topology t is delermmed, by the semmorms’ .

/- Wy =IM2fl  (p 2 0). , (2.10)

Proof The decomposition is effect by choosing an orthonormal basis {Q2,:n = 1}

for the subspace {f: Mf = 0. Define %, to be the t-completion of £2,, That #, is

. an irreducible wave function space is clear. For details and a proof that the lcd’sof
‘the @, is W, see [1: § 4.4]. Theisomorphism of an irreducible % with ¢ is shown

. . . , . . Ty
AR - : ' .
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in [1: $4.10% 2]. The identification of #¢ with D®(M) is due to SmMox [3: V.3
App.; 4], and is known as the N-representation. The topological result, that the-

_usual topology on &4 is equivalcnt to the topology t, is a‘result of the closed graph

theorem applied to L*(%), in view of the fact that t is the coarsest locally convex N
topology with respect to which every a € L*(%) is continuous 8 : :

In what follows we shall abbreviate L*(‘ZW) to A, and write « ~»> a* for the restric-
tion of the $-adjoint to 2.
Let us remark that t is generally known as the graph topology Thls is beca.use

of the followmg mequalmes for all @ 6 A and allfe W,

el << A + llafit < ll2- 1""(a’a + D /Il : L @)

/

Co rollary 2.3: An trreducible wave function space; W[t], <s nuclear and Frechet..

: 7Ience it is barreléd, bornological, Mackey, Montel, reflexive, and separable. Its strong

dual consequently, 18 nuclear. DX and complete, barreled, bornological, Mackey, Monlel,

* reflexive, and separable. W possesses an unconditional basis, the well knoun Ilermite-

functions, {2,: v € N9}, In Gel /and’s sense,

W= W] _ R (2.14)

constitules a rigged triple. .

Proof: The isomorphism % a #¢ implies that % is nuclear and Frechet. The
list of topological properties then’follows from.standard results in. tvs theory, cf.
[5: 33.2, 36.3, 56.14], [6: I1.8.1, IV.5.7, IV.6.6], and [7: 4.3.3, 4.4.10, 4.4.12]. The
Hermite functlons are used to construct the tvs isomorphism between % and the
sequence space »9: if f = Y ¢,2, is an clement of , then /€ % if and only if

: (c)E.“’[l 41b1d] ] v

"In equation (2 3) we introduced L*(?f/) and, as noted below Prop. 2.2, we sha-ll'
write !

A =L (), - ey

0

~ . For terminological purposes only; we shall refer to A as our algebra of observables,

and all clements of 4 as observables. There is no implication 6f physical measurabi-
lity implied. Those clements of 4 which can be measured in our scheme, we, shall
refer to as physical observables. Hereafter we shall assume % to'be irreducible unless

~ otherwise stated. The more general case then follows by countable direct sums.

Powekgs [8] has introduced a notion-of self-adjointness for algebra of unbounded
operators, and A4 satisfies the Tequirements. S

Proposition 2.4: A is a complex winital *-algebra which s closed and. self- ad;mnt
in the sense of Powers: respectively

" w =,ﬂ Dom (a) = ﬂ Dom (a,*). ) . (2.16)

“Proof: The second condition 1mplles the first. The sccond condition follows .
because W([t] ~ »¢ 91 @

In what follows we shall use the following more or less standard notation. if 4
is an ordered vector spa.ce, L(F) is the set of all lincar maps & — K, and L (%) the
subset of all positivity- preservmg maps. If £ is a tvs as well, £(E) is the subsct of
L(¥) consisting of all continuous maps on £ and_ £, (E) is the subsct of all positivity- .
prescrvmg contmuous maps Similarly for L(E, F),L(E,F), L (E, F) and _‘f+(E . .

A}
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We shall have reasons to consider several topologies on . The first, which we
introduce now, generalizes the uniform topology for bounded operators, and was
. first introduced by LassxEr [10, 11].

~ Proposition 2.5: Let u be the topology o/ um/ormly bounded comergence nduced
on A jrom .Y’(?!?[t], W'(t']), i.e., generated by the seminorms (Y bounded A = W(t))

el = sup {Kef, I: g € M. . : (2.17)

Equipped with this topology, A 18 a topological *-algebra, i.e., the trvolution is con-
tinuous and the product 8 separately continuous, as well as A[u] bemg a lopologzcal
“vector space.

As a tvs, A[u] is incomplete. Its completion is W'[t'] Q W'[t'), the completed pro-
jective tensor product Hence u is nuclear. )
The topology u is determined through M by means o/ tke equu,alent /amzly of semi-
norms

llalle == {llp(M) a<P(M Ill . (2.18)
where ][I 1| 2s the operator norm on B(9), and ¢ runs through the space

{g:R* >R gus bounded contmuous, and sup, lx" :L)| < (k = O)]
- (2.19)
The fol]owmg subscts of A are 1mportant in the sequel

Definition 2.6: An‘element a € A is said to be synmetnc or hermitian, if a* = a.
The set of all hermitian elements of 4 is dencted by 4. An element a € Ayis said
to be positive if, for all f € W,

@/, f) 20, o : T (2.20)
and then we ivrite a = 0. The set of all positive clements in 4y -is denoted by «4,. |

PI‘OpOSlthrl 2.7: (a) (Ah 18 a real vector subspace of A.
. (b) A, 1s a proper cone and determines a partial order in Ay, with respect to which
Ay ¥s an ordered vector space: a =b z// «—beEA, and a = b iffa =band b = «.
(¢) A, ts @ normal cone tn A, which is generating.
. (d) The order topology on A, g, is given explicitly through the semanorms

~ exa) =sup {Kaf, N[af, f):f € W) (xeA), - ' (2.21a)

where ¢[0'= + o0 and 0/0 =0, ¢ € R+ Let N, = A be the subset on which o, vs finite;
o s the inductive lymit topology:

 Afe] =lim ind H o] - ‘ o (2.21b)

. zeAL
Then o = u and so A[u] s bornological.

Proof: (a) Set a = a, + a,, with a, = (¢ + a*)/2 and 4, = (¢ — a*)/2.
(b) Clearly A, is a wedge. If a, —a € A,; then (af, /) = 0 for all f € %. Choosing .
[ = «fi.+ Bf, leads to {af,g) = O for all f,'qg € %; hence « =0, and A, is a cone.
(c) For all a € A, set a = a, — ¢y, with 4a, = (1 + «)? and 4a, = (I — «)?, so
that 4, is generating: Ay = A, — A,. For normality, see [12: 4.1]. (d) The p-topo- -
~logy was introduced in [13]. Since each g, is an order unit norm, g is'the order

b4

topology [6]. That ¢ = u was shown by ScEMUDGEN [14:'Cor. 2 to Th. 1] 8

" Now states are positive fllncbioﬁals (c.f. below) and the collapse of a wave packet,
being a-map from states to states, requires the notion of a positivity-preserving map.

\
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Proposition 2.8: Every positive linear map F € L.(A[u)) ¥s continuous and
o-norm decrea,smg /or all a€d, alxedA,, _

orlFl@)] = (0. - 2 : (2.22)
Hence Ly (A) = L (A). . ' : ' o
- For a proof, see [13] 1

From an abstract point of view, the set { 2 aita;ia; €A, n = 1} is a more natural
159€n

cone for A than is 4, For: applications to quantum measurement theory, however, .
only £, is needed; hence we have an unambxguous use of the term positive.. In the
mathematlcal literature, what we call p0s1t1ve is rlght]y called strongly positive, as
_ the above cone is always a subset of «,. .

Let us consider next the dual of 4 and its structure We start with some defi-
nitions. . N

Definition 2.9: (a) The dual of o{[u], writteh A’', is the set of all continuous
linear functionals ¢: A4 —; €. A functional ¢ is said to be hermitian if, for all-a € A4,

pa) = pla®); - - - (2.23)

the set of all hermitian functionals is denoted by «,’. A functional ¢ is said to be
postlvve if, foralla € u€+, S -

@(a) = 0; . . . (229
: the set of all positive functlona.ls is denoted by A’ A state @ is a, positive functional

whlch is normahzed by

o) =1; . . 2.25)
" “the set of states is denoted by E(A), or simply E. '
" (b) The following subsets of B(9) are important. )

J(A) = {t € B(): for all a € A, ta, t*a are nuclear); (2.26)

the set J(cA)y, of self adjoint elements of 8((4) and the set 8(:/&)+ of posmve elements
of J(A). For brevity we often ertc I, S, and J..

The next proposmon makes preclse the statement that all states are “denSIty
matrices”

Proposntlon 2.10: (a) 8‘ Sy + 13 and 8+ 78 genemtzng for 8,. S — u+ = .
. We have, further, that :

t € Ssmplies 8, t*: 9 — W o : 2.27)
“(b) A linear functional on A 15 continuous if and only if it vs of the form \
pla) =tr (@) (Va€d) '. . L (2.28)

" for some t € J. Such fum;twnals are.said to be normdl. Moreover, ¢ € A, if and only
tf t € .. Hence, the trace determmes an tsomorphism between A, and S, Ay’ and Shs
and A’ and J.
() If p € E, and q)(a) = tr (ta), then . ] ) ‘
tr() =1, ) ‘ (2.29)

/and t is sard to be a density matriz.
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' (d) The trace is cyclic: for alla € A, t € Jy .
tr ({a) = tr (at). ) ‘ _ . (230)
For a proof see [15—19] 1

In [15] ScEMUDGEN pomts out that the character é,: / -> f(z) is aposmve func-
tionial on B[L?(0, 1)] which i is not a trace: not all states on B(9), are normal.

Pro pOSlthn 2.1 1: The extreme states of the convex set E are of the form

pl@) =tr(Pa), (@€d) _ . (231a) -
- where P, 18 the orthogonal proyectwn onto the vector f € . ' ‘
Py =@hi Gew). - 7 (@3Lb)

Hence, the. pomts of W are in one-to-one correspo'ndence with. the pure states.
i

Proof: Let ¢ € A, and ¢ = ¢, + @, with corresponding densmy operators g, 9;, 92
Defines = o — o, — 02,50 that o is trace class and tr (oa) = 0, all @ € . Considering -
all rank one operators in gives (of, g) = 0, for all f, g € &, and so ¢ =0,

Suppose now that g is the projection on 'the subspace spanned by f € ¥. Then ¢
vanishes on the orthogonal complement; by positivity, so do ¢, and g,, whence ¢
is extreme. Conversely, if g is not a one dimensional prOJectlon as a density matnx-'
it can be decomposed into two or more projections, and is not extreme 1

- Hereafter we shall identify & with «': For notational purposes, if ¢ € A is a linear
functional, we shall write g(a) = tr (¢a), and so ¢ € ¥ = B(P) as above.
Our measurement theory requires an analysis of the topological structure of -

* " (A, A’) as a dual pair. We start by proving duality, a.nd then we introduce a number

of important topologies for the pair.

Lemma 2,12: [A, A, ()] 15 a dual pazr where ' : .
(a3 t) = tr ( ta) , : —_— ' o (232)
That is to say, : ’ ’ '

{a; t) —— 0 forallt€ A implies a. = 0

2.33
{a; t) =0 foralla€A 1.mplws t=0: (2:33)

Proof: We only prove the first condition. Let (a; t) = 0 for all ¢, in partlcular
for ¢,(f) = (f,ag) g, dll g € W. Then {a;ty). = |ag||2 andsoa =01 "

‘Definition 2.13: The coarsest locally convex bopology on ‘compatible with the
above duality is denoted (A, A') =-0; similarly for o(A’, A) = o* on A’

. The strong topologies with respect to the above duality are denoted by (A4, A') =
- and B(A', A) = B*, on A and A’ respectively. The strong topologles are definéd by
the seminormis

L Bia e Sll}:) {lp@)l: p € A}, - all v;'eakly bounded N = A', 23
B*: ¢ ~>sup {|p(a)l: a C A}, -all weakly bounded o/ = A. (2:34)

The finest loca,lly convex topologies on A, A&’ compatible with ‘the duallty are the -
:Mackey topologies t(A, A£') = v and 7(A', A) = T* respectwely

The structure of A'[f*] will be uséful in our theory of measurement The followmg \ A
ls the pertinent result .
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Proposltlon 2.14: (a) For the.above- de/med lopologzes, A
cESUELTER on A;

v

(2.35) °
o¥ < 1:* = ﬂ on' A'.
Hence 8 7s not genemlly compatzble with the dualuy, although ﬂ* 18. i
(b) The /ollowmg tvs zsomorphzsms hold : ‘
A ~ D[ W(t] ~ F(R¥), ‘ (2.36)
lhe last-with its usual topology. The B*-topology may be déscribed by the norms
lHellls = IIIM"@M"I’I . =0y, : L (237
where pla) = tr(da) and 1] 2s the operator norm on B(9). Hence A’ [B*] ?s a nuclear

Frechet lmc *-algebra. It is barreled, bomologlcal complete, Mackez/ ﬂ* == t¥), Montel,
reflexive, and separable.

(¢) The real subspace Ay'[Bn*] vs nuclear and Frechet, and so enjoys the above topo-
logical properties. Here pp* = p* } AAy' :

(d) Let F € Li.(A); then F s u- contmuous and its tmnsposc Ftef, (A [B*]) exusts
and vs f*-continuous. .

(e) Let G € L (uih ); then G 1s Bn*-continuous. -

(f) The cone A.' 18 closed and normal in Ay,'[Bn*], (md has empty interior.

Proof: (a,) Everything is immediate from the defmmons save f* = t* which we
shall prove below. (b) See [19, 21}. (c) We need only prove A" Frechet, as nuclearity -
is clear. As J[B*] is complete and the involution is continuous, A4y’ is a closed sub-
space, hence Frechet: (d) The first part is Prop. 2.8. Thus F is ¢-continuous, implying
that F* exists and is ¢*-continuous [6: IV.2.1], and is obvnously positive. From [6:
1V.2.4] it follows that F! is f*-continuous. () As A’ [Bn*] is Frechet and Mackey,
and A, is genera.tlng, then every positive linear form is continuous [()] consequentlv
every linear map in L,(A4,’) is continuous [6]. (f) Let (0.) be a net in A, converging
to o € A’ in the ﬂh* -topology. Hence it is norm- convergent, whence g is positive, so
-0 € A,’, and so A, is closed. We show that £, 1s normal by usmg the norms (2.37).
For all ¢, y € £, and all indices n = 0,

e + il = sup {((® + 9) M/, M7)y: fe W, i) = g S
© Zsup((GMTfi MPf):f €W, Nl = 1) = Nl (2.38)

‘ As Ay'[Bn*] is non- -normable and ai+ is normal AL has no interior pomts [6: Ex. 10(c),

p. 252] 8

For later purposes we need the followmg techmcal results concerning. the order.
properties of A

" Lemma 2.15: Let (¢,)x be a monotamcally ncreasing sequence of hermitian func-
lzonals ®n € Ay', such that for allp =0, 1,2, .

lim,, @, (M??) < o0. : : (2 39.q) -
Then there exists a umque <p €Ay to whwh the sequence converges in the fp*-topology:,
Br*-lim, ¢, = @. ‘ : ' (2. ‘39 b)

, Proof Because of (2.39.a), {l(p,,(M2”)| n = 1} is a rcal Cauchy sequence for each

p=1l Introducing the sngnum function

( [+ 1f n=m,
=21 ifn<m, - »
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it follows that foralln,m =1, .
s(n, m) [@n — Pn] €A, and  s(n, m) [pn — Pn] (@) = |[Pn — @n] (@)].
We show that (@,)x is a f,*-Cauchy sequence: . : . ' N
lgn — @mllly = llls(m, m) (@ — Pmllll,
< tr (MPs(n, ™) [@n — #nl M?) = |gn(M?P) — " Pm (M27)].
The result now follows from the completeness of fn* 1

Corollary 2.16: Let (p,)x be an upper bounded, monotomcally increasing seguence
in Ay'. Then there exists a ¢ €Ay such thal Br*- llm,, @n = @; Mmoreover -
K =sup {pn:m = 1}

Using thls result and [6: Cor. 2, p. 224] ylelds the followmg

" -Proposition 2.17: &’ s monotone complete and fn* s compatible wuh the
A, -partial order. Hence Ay’ is monotone a-wm/plele

Recall that if ¢ € N is a state, the spectral theorem asserts the exnstence of an
orthonormal basis for 9, {e, € ¥W:n =1}, and a sequence {t, = O n = 1] of posna
“tive reals with ):t = 1 such that :

S ez

Here P; is the orthogonal prolectlon onto e,. The rela.tlon between this expansnon '
and the B*-topology is this.

Propos1t10n 2. 18 Using lhe notatwn above,

ﬂ*llm o— X tP] =0.
1Sjsn . .
Proof Let us abbreviate § — ' {;P; = ¢,. Now $, =0 and for all p > 0,
M?p,M? is nuclear. Hence 15jsn | ' S

1®alllp < tr (M”¢nM”) = tr($, M) = 2, 1 IIM”e,ll2

- \

and so the assertlon is true B8

Hereafter we shall write ¢ =.3(;P;, and the convcrgence is to be understood
_ either in trace or g*. T

In summary, the pure states of a quantum méchanical system with d degrees of
freedom constitute a maximal nuclear space %[t] of type J9. ¥ decomposes into
a countable sum of such spaces each of which is tvs isomorphic to #(R?). Such an
irreducible wave function space carries a cyclic representation of the CCRs and the
Fock-Cook condition is satlsfled

The algebra of observables is taken to be the complex unital *-algebra £ = L7 (%), -
‘equipped with one of a number of topologies: u, o, 7, or . It possesses a positive -
cone A, which is normal and generating for u, and u is the order topology. With
‘respect to u, A is a topological *-algebra.

The states are the normalized positive functionals on' 4. All states are tracial
{normal) and in the /3* topology, A4’ == % & % for irreducible %,
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-3. Expectations and instruments .
We assume that the reader is familiar with. von Neumann’s scheme for quantum-
measurements [22]. The following extract will suffice for our purposes. Let $ be
the systemic Hilbert space and a = ¥ «,P, a- bounded self- adjoint operator on §
with eigenvalues (x,: n = 1) and ort,hogonal one-dimensional projections (P,:n = 1)
onto the correspondmg eigenvectors.. A measurement of the observable 4 in the
' state @ will result in the occurrence of an eigenvalue of 4. These eigenvalues are the
only allowed values that can occur. If the eigenvalue «, is observed, the measure-
ment causes the colla,pse of the wave packet into the pure state represented by the
“density matrix’’ P,. This-occurs with a probability ¢(P,). The Davies-Lewis thcory .
[23—25] generalizes this scheme to symmetric operators with continuous spectra.
In turn, our definitions 3.2, 3.4 below generalize their theory so as to be compatlble
with the algebraic formulatlon we have adopted. In what follows we shall be using
" Naimark’s generallzatlon of spectral theory which we quote ina form useful to us.
‘As always,  is the systemic separable Hllbert space.

Proposxtlon 3.1: 4 generalized. spectral /amzly on 9 18 a one- pammeler famaily
{B,:t € R} of operators (0 < By < 1) satzsfymg

i) 9- hm J?, =0; o- dim B, =1, _ : . (3.1.&)"
t>— o0 t—+ 00 : o
(i) forallt.<s, B <P, : S o (3.1.b),
(i) ©lim By =B, o _ 3.1.c) -
. £—>+0 . . i

A posmze operator-valued measure on-9 1is a /amzly A: Bor (R} - B(9), where
Bor (R) is the set of all Borel subsets of R, and satisfying - - CT

(iv) BO)=0;, B®)=1, - | S (32e)

(v)  forall 4y =4y, - B(4)) < B(4d,), . S (3.2.b)

(sri) for every countable family of mutually dzs;omt Borel sets, {A i=1}, .
_ﬂ[ud]w‘—@jﬂl%;ﬂ(d)w," L | .,(3.20)

-

every w € 9. '

Then just as for projection-valued s'pectral families, every generalized spectral /amzlv/
deterr(nmes a positive operalor—valued measure ‘and coneersely The connezion zs Bty
= B((—o0, 1))

- Ifbisa closed symmelric operalor on .b, there emsts at least one generalized spectml
famzly {B(t): ¢ € R} such that ' .

(v;l) Dom (b) = {y) ft2<c§9(dt Yy, p) < oo} ’ R » (3.3.a)
,
(viii) for all y € Dom (b) and all ¢ € §, ‘ , .
by, p) = f z(J&(d:)_ v, 9, o o ,(3.3..b)
levle = | HA@ ). . 639

I fbs self adyomt tken the family s proyectwn-valued and unique. Moreover, equaluy
then kolds vn (3.3.a). See [33, 34]. :

'
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- For a fanilly of synmietnc operators, defined on a common dense domain, we
evidently require further conditions. Recall that every b € 4 can be written as a
linear combination of two symmetric operators: A = Ay + A

Drefinition 3.2: ,(@) An (/l-mea,sure is a generalu,ed spect,ral family {B(f): ¢ € R} '
on $ such that for all p €W, '

B p = by - ' S O e
R . o ‘
defines a symmetric operator b € Ay. The integral is meant in the Riemanh-Sbieltjes
sense, and converges in the - -topology. -

(b): An (A, W)-measure is an A-measure suoh that for a,ll 4¢€ Bor (R)

BNV V. : L ' (3.5)

We write M (A), resp. JIZ+(o€ ‘217) for- tﬁhe set of all Jl-mcasure.s, resp. (A, ¥W)-
measures. .

Remark 3.3: (a) The inclusion #,(4, %) = M, (A) is proper as can be seen from -
the coordlna,te multiplication operator Q on &(R). v
(b) Davres and LEWIS use the term observable as synonymous w1th membershlp
of AL[B(D)] = A [B(D), D). In contrast we reserve the term for membershlp of A,
_c.f. [23: 3.1.1].

A

Aside from the continuous spectrum, two problems confront us. The first. is that
My (A, W) == M. (A), and the second is that A[u] is not complete and not reflexive.
This latter difficulty requires us to start our constructions by considering those
linear maps on £ which Davies calls expectatlons [24] by t.ranspOSItlon we wﬂl get
~our notlon of an instrument.

Deflnltlon 3.4: (a) An expectatum is a map Z Bor (R) = L(Ap) satxsfymg
(1) Z(0) =0, Z(A) =.,0 forall 4 € Bor (R) o . (86.a)
(i) On®, Z®R)[1] =1. : N o " (3.6.b)

. 1ii) For every countable family {4;:5 = 1} of mutua,lly disjoint Borel subsets,
is o- addltlvc in the sense

9 {Z. (U é';-) [b]} = § -9{Z(4;) b)), : . (3.6.0)

7. . ' i TN ) ] )

for all (p €Ay, all beod. L : , : ’

(iv) ftZ(dz) [1] € 4 ' ( (3.6.d)
R .

where the Riemann- Stlelt]es integral converges in the 9o- topology
(b) An ‘instrument is a map @: Bor (R) - f(uih [o*]) for which there is an e‘rpec- :
tation Z whose transpose satisfies , B

Z=Q.. S Y (37)

‘ We now consider some consequences of these definitions. The followmg charac-
terlzatlon of an mstrument is more or less immediate.
Lemma 3.5: Let @ be an instrument. Then
(i) For every A € Bor (R), Q(4) € Ly(Ay").

-/
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* (i) @: Bor (R) — £,(A4'[A*]). :
(i) For every countable family {A;:§ = 1) of mutually disjoint Borel sets, @ s
o-additive in the following sense: for every ¢ € Ay’ and cvery b € A,

@ (U 4) 9] 6) = £ €(4)) (4] ®). | 38
| , | _

(iv) @ preserves normalization in, the sense that for every @ € Ay’,
]

Q(R) [¢] (1) = p(1). » : | 39

. Proof: Properties (iii), (iv) follow frt;ni (iii), (ii)'respect,ively 6f Def. 3.4. Proper-
ties (i), (ii) follow from Prop. 2.14(d) 8 - ) ' ‘

We now embark on our analysis of the topological properties of instruments. In
particular, we shall show that an instrument @ is a map Bor (R) - L (A[6*))s
~which is a bounded Radon measure. The subscript s indicates that %, is equipped
with the topology of simple convergence. We start by showing that the o-additivity
of (3.8) implies that () [¢] is f* o-additive. ‘

Lemma 3.6 :\?An instrument is o-additive us a map

@:Bor (R) — 2, (A [B*))s. . ) (3.10)
Proof: From (i), (iii) of Lemma 3.5 follows '
0@y Ai)m S@( U A)l) S £Q(Udy) e, (3.11)
. isn j2n+1 R )

for any positive functional ¢ € 4, . By Cor. 2.16 it follows that
prame(UdNipl=y "~ . v "\
n js<n -
defines a functional p € 4,". We know by, (3.8) that . : T
o*-lim @ (Y A,.) (9] = @ (v 4 9]
jsn .o j

n

for all p € Ay'. As o* < B* we see that for all ¢ € £,
B*-lim @ (iu A,-) ¢l =@ (u A,-) (o). f L . (312
/n ) j=n 7

. ) A .
By linearity we may extend this to all.¢ € 4, proving the assertion 1

The next step is to prove that @ is inner regular. -
Lemma 3.7: An instrument @ vs inner regular: for all A € Bor (R),

CQ(4) = s-lim Q(K) , ) ’ (3.13)
kta ; ' ' o

where s is the topology of simple convergence on £ (Ay'[f*]) and the limit s with respect

to the filtering increasing compact subsets of A. ’ .

Proof: Recall that any positive Borcl' measure which is finite on compact sub-
sets of a locally compact Hausdorff space. in which every open set is*o-compact, is
regular [35: 2.18]. . o

For any ¢ € «A,” and b € A,, the set map m: Bor (R) - R, m(4) = Q(4) [¢] (b) .
is clearly a positive Borel measure on R; and R is space of the aforementioned sort.
Since m is bounded: m(4) < m(R) < oo, it follows that m is regular, hence inner
regular. In virtue of the -compactness of R, inner regularity can be written as (36]

1
\
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[N

m(4) = lim M§K"), where (K,:n = 1) i$ an increasing sequence of compact subsets
. -

with K, < K, <= - - = 4. Usmg additivity for instruments, eq. (3.8), such a
sequence satisfies 0 < @ K,,) [9) < Q(K ) [¢] < Q(4) [§] for any ¢ € A,'. We can
now apply Cor. 2. 16 to get Q(d) [p] = p*- 11m @Q(K,)[¢], and this extends linearly

to all g € A4,’. But this i is what was to be shown and we are done I

~In order that @ be a bounded Radon measure it must certamly be bounded.

Lemma 3.8: Any m.strument @ s bounded /07 the topology of simple conwrgence
on XAy’ [ﬂ*]) :

K

Proof: Now o is not reflexive but is 1dent1f1able w1th a total subset of ?t’”[t 1.
® W’[t'], c.f. Props. 2.5, 2.14 (b). '
Let us show that for all ¢ € 4, the family {@(4) [¢]: 4 € Bor (R)} is o*- bounded.

Write ¢ = ¢, — P2 with ¢, ¢, € A,' and let b = = b, — b, with b,, b, € A,. Then, for
all 4,

1R(4) [] (0)] < X @(4)[¢i] (b;) =2 0(“) [pi] (b5),
[¥] K ij

which is finite. Hence so is sup {|@(4) [¢] (b)|: 4}, showing o*-boundedness. THOMAS
has shown that if £ is an F-space and m: X — E an additive set function on a
o-algebra X, then a sufficient condition for m to be bounded is that there exists a
total subset H < E’'such that h o m is bounded for all k € H [37). But this i 1s pre-
cisely what we have shown; with X Bor (R), H = A, E = Ay/[f*]and m = Z(-) [¢],
.provmg the lemma 1 . o '

. Proposition 3.9. (a) Any instrument @ is a continuous mapping
 @:B(R) »> L(A(B*])s,

whe_:rje B(R) s the normed space of ooumled Borel /unctions equipped with the supremum
norm: Thus @ vs a boundéd Radon mapping in the sense of THoMas [39].
(b) For every ¢ € Ay, Q(-) [¢] is a bounded Radon measure. {

‘Proof: The first part is a consequentce. of I.emmas 3.6—3.8 and [39]. For the
second part we note that of,'[f*] is reflexive, and bhen apply [38: Th. 5.3/p. 136
-and Rem. 5.8/p. 139] 1

‘We sharpen this result, obtaining the desired property of instruments.

Theorem 3.10: Any instrument is a bounded Radon measure
@: Bor (R) —> L .(A/[B*])s. o (3.10y

Proof: Asdn [B*] is complete, the completion of ¥(Ay'(A*), is L(An'[A*])s [40:
p. 144]. Now #%/[t] has a countable basis, say {e,: n'€ N}. Therefore «4,'[f*] has the
_‘countable basis {¢, @ ¢n:m, m € N}, c.f. [42: p. 23] It follows thab

L(An'(6*1)s H v‘ln (6*] - - (3.14)

with the product topology Thus L(A,’ [ﬂ*] is reflexive and Frechet [40: p. 134 6:
1.6.2.,1V.5.8). By [6: V.5.2), £.(Ay[B*)) is a closed subspace ofi ¥ (A,'[#*])s and thus
of L c/lh[ﬂ*] Consequently £, (An'[6*]) is reflexive and Frechet. We then proceed |
exactly as l‘n the proof.of Prop. 3.9 above 1
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Corollary 3.11: (a) L,(4,'[8*]) = £.(Ax/[B%)).
" (b) £.(An'[B*]) is a proper cone in £ (An'[f*])s.
() £(An'[B*])s and X (A [6*]), are nuclear.

Proof: (a);now follows from Prop. 2.14. (b) is true because A, is total in Ay'[5*],
c.f. [6, ibid]. (c) follows from the product representation eq. (3 14) above for L(Ay'[8*])s
and the fact that 4,'[8*] is nuclear § : '

Our next proposition brings a degree of physical interpretation by proving that
an instrument uniquely. determines an (4, %/)-measure. The reverse implication i is
one of non-uniqueness: a glven (A4,%)-measure is determined by many instruments.
~ This is consonant with experience: there are many ways to measure the posmon ‘of
:? partlcle , . i

Prop051t10n 3.12: Ghven an znstrument @ there is @ unique (A, W)-measure |
A ~> M(@; A) determined. by . M(@: ) s gwen by extension from W to O of

M@ A)f=2HML (€®) _f o (3.15)

where Z s the expéctation, unique, /or whwh 7t = éZ
Given any (A, W)-measdre B, there exist many instruments ‘@ suck that M(Q; N) .
= B(4). For example for each state <p, the instrument

Qs 4) = Zig; )5 Zp; 4)[a) = p(a) B4) (a €A, 4 ¢Bor (R))

A : (3.16)
is of this'sort. v R '
‘Proof: From the deflmtlon of an expectation it follows ‘from (3.15) that
oS M@;AH<1 and SO an cxtcnsnon of domain to-9 is possible. For brevity we

drop the @ temporarily. ‘
In the first plane M must be shown to bc a generalized spectral family. Only the -
. o-additivity is not obyious. To show this, let f, g € % be arbitrary-and let P be the
" bounded 9 operator P(h) = (h, 'Ha. Takmg @ to be the functlonal determined by P
and with b = 1, the additivity (3.6. c)of Z ylelds

(At a) = M) La). e

We now apply the following theorem of THoMAS [38]: if m: Bor (R) - § is a set
function such that g o m is g-additive for all g € %, then m is a-addmve Here we
view % as a subset of the dual of §. With m(4) = M(/l)/ eq. (3. 17) implies that m
is c-additive. As M(4) is bounded, we can extend (3.17) to g € $ and transpose :
M(Ay to act on g. Repeatmg the above argument then implies that M (4) / is o-addi-
tive for all f € . Hence M is a generahzed spectral measure.
_Eq. (3.6.d) now implies that M is an «4-measure. To show that 3 is an (A, ¥)-
measure it suffices to show that @[3 (4)] is finite for all 4 and all ¢ € A4,’". Using the
. spectral decomposition of nuclear operators, the cyclicity of the trace implies that

- M) = () (1), | SN CT)

and as Z is an expectation, M(@; -) is an (4, ¥)-measure. Finally, the assertion that
Q(p;-) is an instrument which determines & is obv1ous ]

F ollowmg Davies [24] we introduce the class of observables whlch can be measured
By this we mean that. there exists at least one instrument which will nge some
information about the observable in questlon
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’

Defmltlon 3.12: (a) leen an A-measure cﬂ let 3«(3) be-the followmg set- of
functions of b:

mﬁr—dmmmxu—wwﬂw)AeBmam,. (3.19.5)

“where v indicates linear span, ‘and the closure of the span is.in the lndlcated topo-
logy. Note that B(), and 4y’ constitute a dual pair. :
We introduce a partial order on . (4) by settmg ‘

B<E i G FO). o SRR ST

Followmg [24] we say that B glves less information than &.

(b) An A-measure B € Jl+(u¢) is said.to be physzcal if there exists an (4, %)-.
measure & € S (A, W) giving less information than &, i.e.; £ < 8.

(c) An observable b € « is said to be' physzcal iff.it has a spectral representatlon'
by a physical A-mcasure. If & < & and € is a spectral representablon of the ob-
servable ¢ € 4, we say thatcis a regularlzatlon ofb. o

dy.If be u’l is ‘physical, and & € A, (A) is any physncal A-measure spectra.lly
representing b, then any instrument @ such that M(®;") < & is said to be an tnstru-
ment for measuring b.

Interpretatlon 3.13: Let b E A be a physwal observable, and @ an instrument
for measuring it. For any st,at,e @, the probability of obtaining an observatlon n
4 € Bor'(R) on (Q is-

/

P[M(@; M) = pr(Q; 9; 4). L (3.20)
If such'an observatlon occurs, the state P collapses to the state
P~ aw) [97]1’0(41) (e} (1) ‘ ‘ ' S (3.21) .

4

- the denomlnator prov:dmg hormalization.’ '

Remark 3.14: (a) An open question which would be of some interest to answer
is the relation between physicality and the structure of «#,(A). In particular, do
non- physncal observables exist; when, if ever, does a regularization of an observa‘bleA
exist which is maximal with respect to the information partial order?

(b) Let b = 2"2,P, € A be self-adjoint such that P,[®W]< @ for all n = 1.

" The associated spectral measure & isan (4, %)-measure such that P(4) —ZP,,() €4).
A “besb’ instrument for measuring b is given by

Q) [p] = X ¢(Py - Pu) (A, € A). . oo (3;22)
This is the familiar collapse formula for the discrete case. : >
Of course the instrument @ i is also an instrument for measurmg other observables
those.a € A for which b < a.
(c) If' B € AL, (A) is physical and. pro;ectlon valued then any regularxzatlon of B
- is an abelian famlly

/ ) .

4. Composition and conditioning

Lét @, @, be mstruments Suppose we measure with @; on a state  and obtain a
positive result in the Borel region. 4, ; then we nnmedxately measure with @, ‘on the
new state. If we get a positive result in the reglon 4, the final outcome state will’ be
the normalized form of

Qy(d: X ) (@] = Qe(de) {al(dl) (o). . S (4.1)-
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By virtue of our constructions, ®.(4, X 4;) [¢] is a positive functional for all
Borel rectangles 4, X 4, and all positive functionals ¢. Moreover it is the transpose
- of an «&-stable map. However, we shall now show that whilst there is a unique -exten-
sion to all Borel sets in Bor (R?), the extension is not generally an instrument. Rather-
it is the transpose of a map with range in %' ® %', the completion of A.

Propos1t10n 4.1: Let @y, be defined as in eq. (4.1) above. There exzsts a unique
inner regular Radon measure

@,,: Bor (Rz) = L (A [B*])s

“such that for all Borel rectizngies expression (4.1) results. In general, @), is the trans?ose
of a map Z,,: Bor (R?) - L, ([‘Z!V'(t’) 0w t’)]h) and s not, therefore, an instrument.

Before proving this proposition .we present two preliminary lemmas. D Note first
that we have taken the liberty of implicitly extending all our previous definitions
and construction of §3 from: Bor (R) to Bor (R?). Obviously all the results remain
true.

-The measure @,, w111 be referred to as the compose of &, and 02

Lemma 4.2: Let {T;:7 € J} be an upper bounded and upward directed net m
b (u@h [ﬂ*]) Then the net converges in the szmple topology to its supremum:

—sup{I’, 7€Jl—sllmT o 4.2)

Proof: By Prop. 217, {T;p:j € J) converges to its supremum for each ¢ € A.'.
As £ (Ay'[f*]) is s-complete, the result follows 1 .

Lemma 4.3: £, (A’ [8*))s 28 a topological algebra under the product S, T ~>S8T. If
{T;:7 € J) is a net as in Lemma 4.2, ST} —>Sl’ and TS——>TS/or all §.

Proof Obvious 8

Proofof Proposition4.1: The existence of a unique extension of &,, to Bor (R?),
satisfying the stated conditions follows from applying Lemma (4.3) to Theorem (1. 1)‘
of {42]. That @, is not an instrument in general follows from the non reflex1v1ty
of 4 § : /

. The fact that @,, is not an instrument is ‘mildly disturbing. However, a strong
case can be made, on operational grounds, for defining expectations and instruments
not on all Borel sets, but only on intcrvals, perhaps only on finite intervals. Tt is
difficult to imagine, e.g., how one would measure the position of a particle within an
extremely wild Borel set, nor even why one would wish to. Be that as it may, it
seems useful to introduce the notions of pre.and post instruments and expectations.

Definition 4.4: (a) A pre-expectation is a map Z: P4 — L;(Ay) satlsfylng the con-
ditions i—iv of an expectation (Definition 3.4) save that P4 is the ring generated by
all polyintervals in R¢, so the families of disjoint sets must satisfy 4;-€ P4 and
v d; € P4. As well, the integral eq. (3.6.4.) is over R4,

A post-expectation is a map Z: Bor (R4) — L, (¥’ & ¥’), where %’ ha.s its strong
- dual topology, and satlsfymg conditions i—iii, wlth iv replaced by

ft,lo. taZ(dty dty ... dtg) (11 € W' @ W". C . (8.8.¢)

(g) A pre-instrument is a map @: P¢ > £ (Ay'[0*]) which is the transpose of a pre-
" - expectation. Similarly for a post-instrument, with domain Bor (R9).
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- We shall not examine the general consequences of these definitions in this paper

.save for three remarks: : : ' '

" The first is that we could have demanded only finite additivity for pre-expec-
tations and pre-instruments. However, one could always extend uniquely to ¢-addi-
tivity, cf. [46] and references thérein. ) C

The second remark is that every pre-instrument has a unique continuous exten-
sion to a post-instrument. The quality of being an instrument seems delicate.
Thirdly, every instrument appearing in this paper compose with every other such

‘instriment to' give an instrument. We take this to be a result of special circum-

, Stances. Nonetheless, we do not have an example of two instruments which compose -
to a post-instrument which is not an:instrun.]ent,.

Davies and Lewis also defihed joint distributions and conditioned observablés. --

Proposition 4.5: Let Z,, Z, be expectations, B,, B, their respective (A4, ¥ )-measu- - I
res, and @, @, the respective instruments. ’ : o : :
The joint distribution of Z, following @, is defined to be the map

Zy:Bor (R — LW Q W');  Zn(w) = Qyw).
Then Zy, 18 a post-expectation whose marginal distm'bytiém salisfy ’ ' -

Zu(R X 4) = Z,(R) Z(4); * Zu(d X B) = Zy(d) Zy(R). o

1

'

Hence : . . .
T Za(R X 4)[1] = Zy(R) [Be(A)]; Zay(4 X R)[1] = B,(4)
.are (A, W)-measures. ' '

The map 4 — Z,(R) [By(A)] is the (A, W)-measure B, conditioned by the measure-
ment of B, with the instrument Z,, cf. [25: Th. 3]. ' ' o

N

\ AN

To end this section let us note that instruments generally have no repeatability — °
properties. We have not examined the e-repeatability properties of our instruments,
cf. [25]. ' . ’ o '

' 7

- 8. A class of instruments (;n F(R)

In this section we consider the system % = #(R), with one degree of freedom Our
principle result is the explicit formula, for'a family of instruments which will measure
the basic quantum mechanical operators with some degree of accuracy. We note -
that the basic formula was proposed by Davies [23] as a covariant approximate
position instrument. What is new here is that we consider the family as labelled by
the normalized elements of #(R) and show that the result is an instrument in our,
sense, i.e., with reference to the algebra 4. We also show that the formula is valid .
- for more operators than the position and that the compose of any two instruments

1 .

is an instrument. Our principal result is this.

Proposition 5.1: Let a € Ay stund for any of the essentially self-adjoint operators
Q; P = —1iD, or H = P*+ V(Q), where z ~> V(z) is C and, together with all of is
derivatives, is bounded. - : ' . S ‘ .

To each f € F(R) the associated map

Z[a; f; 41 6) = [ fua)* bfoa) ds, T s
) T 4 . I BN
2 Analysis Bd. 5, He@ 1 (1986)
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where /,(‘ ) 18 de/med by thc spectml calculus, with /,(x) = f(x — 8):

/

f/x—w)EMﬂ, . S (5.2.a)

=fa:E(d:I1:), o .~ ) e (5.2.b)
- R . c

- ~

18 an expectatzon By an abuse of motation we are not dwtmguwhmg a €Ay /ram s
closure a** The function f is reqmred to be normalized: ‘

AP = 1:

Before passmg to the proof,of this proposmon let us make a few remarks about

_ the physical interpretation of Zla; f; -] or, equlvalently, its corresponding instrument
@Qla; f; -] = Zla; f; -1 -

Were it possible to ‘build a perfect instrument, and it is not, it would be the simple .

generalization of the.disc rete formula, viz,

Ze[a; A] (b) = fF(s) bE(s) ds.

(5.3)

(5.4)

. One reason why Z,, is not an instrument is that it ‘“chops off the incoming wave
functions too sharply” at the boundaries of 4. As it is required that “#(R) in, S(R)
out”, we must smooth Z_ out. Hence regularizing @ with f. More precisely:

Corollary 5.2: The (:A,»J’)-measure M(@; A) corresponding to the instrument
- @=0fa;[;-]1s . /

!

m@; 4 = f F x ya(@) Edz) = F.* y4(a), (5.5)

h' with F(x) = | /(at;)|2 and com)olunon 28 meand.

AN

“This formula was given by Davies; that it defmes an (A, ¥)-measure is a conse-
quence of our. general theory, Prop. 3.12, once we show Z to be an expectation.

Oné measure of the goodness of an instrument, probably not a useful measure, is
. the difference between the instrument (A, W)-measure M and the A-measure in
questlon here E If we consider, in the B(g)) norm, ' :

HE * 7A(a) EI,

we see that this vanlshes for F = 6. As F € J’ a.nd & is dense in S, choosmg F close
to.d in some way, makes @ a good instrument. Similarly, choosmg F close to the
-constant function makes @ into a poor instrument.

Now to the proof of the proposition. The proof is rather long with the appearance
of numerous inequalities mvolvmg the &(R) seminorms. These are relatively stralght,-
forward, so we have not given the full derivation. ‘

In all that follows we shall be u%mg four sets of seminorms, namely, in an obvxous
notation,

Wil mico = 168D™ s [fllice = miax (Il miwi 0 S T m<k,

. (5.6)
W/lln,ms2 = Ill"D"‘/IIz; " llese = max {||flln, m;2 0= n, m =K.
' Each set defines the usual ‘topology on J" ‘The index ranges are n, m, k € N.
We shall use the following estimates, which are too well known to merit proof for
Q, P; for H see [43].
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X .

. 'L.em"n-la 5.3:

. (i) ‘QmI)" elaO — emOZ‘ (L) ar— kaI)k ' 'j\ . -, L (5~7.a)
ksn . . - o
(”) Qmpn elbl’ — eleZ (k) bm kaPn . . - . . ; (57b) .
\ ksm . T o
(i) Qre—itH — e—}:ﬁQn + i"f‘e_‘““"”[H, Qu] e—itH g : (6.7.¢)
 with D S ‘
[H,Q") = 2inPQ 1t 4 n(n — 1)@t - U by,
(lV) ."e'aO/”m n;2 = Z ( ) la|™— k ”/“m k2 - | L R 5 : (57(_‘)
o ‘g044m Whmae o (5.7:)
(V). 0P ;e < X ( ) N L T
) k=m- \ o B . N N
< (1 4 1B)™ lla;e- - e _ ) (5.7.h)".
(V) e e S call + 1) Wfllnie- A

- The' Fourier transform of the characteristic funct,lon of a Borel set is a tempered )
dlstrlbumon as we now show. This will provide a useful estimate in whatfollows.

‘Lemma 5.4: For any Borel set A € Bor (R), the Founer transform of /4, mém
18 a lempered distribution.

Proof: It is sufflclent to show that 74 € f Slmply, for all [ €S, mult,lplymg
and dividing by 1 + t2 glves |/,,(f)| < sup ](1 + ) () f 1+ 12) 1 dt <=z H/Il2 ‘0

. The ll]]nledl&t(», consequence is that for each Borel set 4 therc cmsbs an index M:
and constant c, dependmg on A such that for evcry/ €L,

s S ¢ Wi X )

For definiteness let us now specialize to a = Q. The cal(,ulatxons are quxte similar
for the other casesa = P, H. -

Lemma 5.5 Let [ be the function labelling the instrument, and g its Founer trans-
‘form; hence g, is the transform of f,. Let b € A and write -

b, =eit% e~ ~ (teR) . . . . ‘(5.9).

ro

. - E EEPA .

80 that by € A for each t-€ R. Let @, yp € & be arbitrary and consider the function.

8§ ~— h((s) = g,(s) (eg'sob‘q,, W)N;Z} N T LI ':, . . (510)
where . ‘ : v . N o Co

L@, Yv;2 = max (@Q°Dbg,y), - , S i (5.1L.g)

. 0SabSN. . . ,

and so, e.g. ' B - - .

Ko, w)n;el = Il ”?’”N;'z,» ; S . _(5.11.b)
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. Then h,; € J’(R) with

Ilhz”M o = 2N+3M(1 + [e])¥+28 ||'P” ”bl‘P“N+M 2 ||9||~+2M joo - .(5.12)
Proof Wlth eq. (5 7.€) and (5.11.b) we find that o
(e, Yyw;al < Il (1 4 IsD¥ lbiglly;z- .
. Then ' R ' / '

uvSH w= o w

“ht”M joo = max Z.' (v) sup [%D°~g,(s) (&%, Y412

_ .= IlwlI Ilb¢¢|l~+M,z Jnax . 2 sup |8"(1 + |s|)¥+¥ Do~ "’gz\S)I
We now use - :
JoE (1 4 sy Y (5N 42 and ligllpie < (14 )7 lglore’
the Tesult follows 8 L
It will be nec'essdl"y to find an estimaf;e in ¢ for ]']b,|!N+4;'é

' Lemma 5.6: For every b and N-+ M there, exists an index P a'nd a posuwe con-
stant ¢, such that for allt € Rand all g € &

[oellsaie < c(1 4 KDY FH+P gllp.- - , C(5.13)
Proof First of'all .~ - ~ - :
Nibepllyesre < (1 + |g])¥ +¥ ”b e—"O‘P||N+M 2e

' The contmuxty of b glves ol N +a;2 S < lvllps and w1th p=e "°<p the result is
immediate 0 -

-Proof.of PI‘OpOSlthn 5.1: We must show that -

12(4) [b] @lly;» =.sup {|(Z(A) [6] @, wiviel % € J’ Ilwll = 1}
is finite for all 4, b, p. Using Fourier transform‘;,
KZ(Q) ] @, il < [ lg(0)] 1) de,
TR A

where - . ! | . L
J@) = [ 9:(s) 04(8) (*bip, Y)niz ds. |

T -

. We have changed variables s —t-—>s in this expression. Now we observe that
J(t) = 64(h,) Using eq. (5. 8), (6.12), and (5.13) ylelds

| @ < e IIwII (1 |t1)2~+“"+'° @l sz llgl-+-2ae:00
‘But then '
1Z(4).[b) ¢||~-2 <e ||<'p||p-‘z (ilg|1~+m+2.m>2.

" This shows that for every Borel set 4 € Bor (R), Z(4) is a'linear map from 4, to
itself. It is obvious that the positive cone is stable under Z(A) The normallzatxon ‘
t~ condition is . .

Z(R)[1] = f/,(Q)*f.,(Q) ds=1."
. R

i
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As f, eSS for each s € R and f,( Q) is bounded the spectral calculus for bounded
operators apphes changes of order of mtegrablon are allowed, and as ||f,]|2 = 1, the
condition is verified.

Now we shall prove the requlslte o- add.mvxtv eq. (3.6.c). Leb ® E A, b €A, be
arbitrary and {4;:7 = 1} be a family of mutually disjoint Borel sets with U 4;
€ Bor (R) We use the spectral representation of ¢ and Prop. (2 18) toget 7 -

o(Z(4) [b]) = 2 t(Z(A) ) eny ) ‘
for all Borel sets 4. ‘The epecific form of Z yields
(Z( [b] €n, eu) = f (ful@)* b/w(Q) €n; €q) dw

The mtegral is o= addltwe cf [44 Exermse (29 6)], and so, changmg ba,ck to the 7
form -

<Z (U 4; )[b] én; en> 2 (Z4 [b] en; en>
for each n. By [45; Theorem (8.3)] we can interehange sum_mation\:order, to get
(2 () 4 ) =2 D0 Blew e =2 plzd) p): 1

By lmearlty this extends to all @ E Ay', b € Ay, and so Z is o- addltxve in the o-topo-
logy. '
. Finally we shall show that ft(dt) (1] is an element of A, whence Z wnll have been

R
proved to be an expectablon By tHe spectral calculus, as mentloned above, for all
pyeL - :

() [ 0.9 = (FsQ) 7,9, deBr®m -
Where Fut) = f I/t — 8)|2ds. As 0 < Fy(t) < Fgr(t) and Fr(t) = |Ifo]2 = 1, lb follows

“that 0 < FA(Q) < 1. We can contmuously extend FA(Q) from & bo all of L"’(R),
whereby it is easy to see that, with .

<Fd Q) P> w> f </w Q)* /W(Q) P, w> dw, . (‘P,"'P € LZ) »
4->F A(Q) isa generalwed spectral family. Thls family defmes asymmemc operator,

-ca]l it ., .
T = f (Fa(Q) = f 1) [1.. ' g

Now we must show tha,t, L € </l
F Jrst]y, ' S

o (R)cDom(Y)‘={¢L2: [ #Fu(@) 9, 9) < oo

But if g € &, a simple estimate glves L
Isz(Fa;(Q) o 9| = f tz(/(s - e))2 ds(B(dt) @, 9) .
R

St |m|22)2<Q2+4Q+1)%Q’> o ’
which is finite. .
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B Secondly we show that, for all ¢ € J’(R) Loe J’(R) To see thls let ¢, pes
be arbitrary. Then it is easy to show that .

(To.9) = (9i9) f t I/(t ) dt't(Qw, v

But bhen by con51dermg (X, Q"'D"tp) and taking- the supremum over y, |jy|| =1,
we find that i

I @llm,nz2 < 1@llm,n;2 [ ¢ 1O A2+ 1Qplm ;2

and so & éu’lm proving the proposition 8 .
'- Corollary 5.7: The (A, &)-measure determined by '_Z[f-; Q;-]7s

Al 111 @ g

As this is bounded for all A, it is an element of o(F cf. eq. (3.18.&),'and so @[f;Q; -]
is an mstrument fox measurmg Q1

’

The reader will note that we have not proved the proposition for P and H. In
view of Lemma 5.3, the reader will.see that these calculatlons are entirely similar.
. Details 'will be found in [47].

As we mentioned previously, because £[u] is mcomple’oe a pre-instrument may, in
gencral, extend to a post-instrument. This applies in particular to the compose of *
_ two instruments. We now have a class of instruments &[f;a; 4] for f € S(R), .

- a =Q, P, H. By computing the compositions explicitly we shall show that the com;
pose of any two, hence any finite number, of these instruments is an instrument. As
regards the lmpllcablons for the general case, we believe that this result is special,
and depends on the translation covariance of these instruments and various special
properties.. . A

To write out the proof in any detail would be longcr than the proof that @ is an’
instrument. Moreover, it depends upon estimates obtained precisely as for Prop. 5.1,
but “doubled up®. For these reasons we choosec simply to state the required estlma.tes
and refer to [48] for details. The form of the estimates will, we feel, be convmcmg

. Proposition 5.8: Let. Z[f;, a;; A] i=1,2) be expectations of the type descnbed
in Proposition 5'1 Then Z, 0 Z, is an expectatz'bn .

Proof: We mtroduce the following notation. By U, we mean the one-parameter
unitary group on L?(R) generatcd by the observable a;, and by a; the: corresponding
automorphism group of 4. By g,, we mean the Fourier transform of f; & f,, and
for any 6 € Bor (R?), dy is (27)~! times the Fourier transform of ys.

Just as for Z we can use Fourier transforms to show that for all Borel rectangles
a]lcp,zpéf(]l)béai N=0. : 7

<Zl2("-jl X 4,) [b] @5 Yix;e

='f gm(s)'( f[.eg"’gn]* ('n)h(&m)ad.x;,(n)dn)d&. ‘ ' (5.14>

An obvxous vect,or notation has been introduced, so that, e.g., D = (3/3)71, a[eny).
We have also mtroduced t,he function :

R(E;m) = <0‘2(52) Uz(’)e) Ui(m) “1(§1) (6] @, 1/’>_N;2- ) (5.15)
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.

Let us specialize toa, = Q and ay = H for deflmteness Our first. estimate is that for’
any u = 0 there exist indices and a constant so that, . . '

Il[e’é‘”on]* RE; Juseo < CuL o+ L& 1)™ (1 [£el)* gl lgselose

. For any set 0 € ‘Bor ' (R?) and any function @ such that its Fourier transform
C' € LY(R?), 165(@)| < {|G}l,. Note that the bound is independent of 6. After some
\mampulatlon we find that there exist indices and a constant so thab .

|5o [eEDglz]* E ))I

< G + &)™ (1 + |&)™ Ilwll llpllm, 2 "9'12”0-4. ‘
Th]S lmphes that the function

E > 01a(E) 35{[e5P gia]” R(E; ))

is bounded by. a Lebesgue mtegrablc function.
~ Suppose now {4,:n = 1} is any family of Borel rectangles for which there is a
Borel set' 4 € Bor (R?) such that the characteristic functions converge pointwise;
we write 4, 1 4. Any Borel set A can be obtained this way. It.is evident from the
Lebesgue dommated convcrgence theorem .that for any -function F € & (R2),
llm 04,(F).= 6A( ). It follows that '
dn1 4

—

, hm<zlz(A )[b]w,wm—hmf gw(a)ad (h<€ ))—f 712(E) 0 4(R(E; ))

nR’

Mbredver, this last is flmte, and ) “

18, )| < C Il

for some C > 0. Ta.kmg the supremum over p € J’(R) w1th [lpll = 1, we see that‘, Z,,
is an expectabxon ] .

~

i

6. Concluding remarks

In this sect,lon we wish to summarize the scheme for qua.nt,um mechamcal measure- . -

ments that we have presented, in a schematic and non-technical form. The first
remark we feel it is important to make is that our choice of algebra and states is to -
- a great extent determined by the nature of quanhum mechanics. An examination of
the problems actually treated in quantum theory and attention to the initial develop-
ment of the subject, shows that its essence lies in the canonical commutation rela-
tions. Up to rather moderate technical assumptions, this leads to the space % of
waye functions we have used. The paper was written using & only for simplicity;
takmg direct sums leading immediately to the general case.
‘The second remark we wish to make is to point otit what we did not assume such
things as non-repeatibility and instrument distortion. These are results of the mathe-
_matical analysis, and must be considered as inherent in the scheme. It seems fair
to say that our scheme is essentially operational in origin. We view an instrument;
or a measurement, as testing incoming states for some quantum mechanical prop-
erty and, contingent upon the result observed, emitting an outgoing state. This
process should be linear, in accordance with genera,l principles. The emitted state
should in fact, be a state on the, algebra. which is why the condition @ ="2¢ occurs.
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1
'

Finally, o-additivity over the Borel sets seems a modest enough requirement. The
other obvious .candidate axiom is finite countability. This probably would have
consequences for repeatibility, but seems to put an unacceptable. constraint on the:
sorts of measuréments which can be performed .

Once our defmlblon of an instrument has been ma.de it is a mathematical result
that wé must cons1der only (A, %)-measures -

© o MA, w)—'m'f( )ﬁ‘w ' . R ' - 61)

~ as the basic material for instruments. This set is seen to rep]ace the set of all ortho-
gonal projectionson § in the bounded case. It will prove helpful to theintuition to
emphasize this, and so we propose to call the (4, .%)- -measures questions for the re-
mainder of this section. Evidently it will be useful to analyze the structure of the '
set of questions and its relation to «. Perhaps an axom scheme based on questions
can be devised, generalizing the Mackey scheme to the (4, %) structure.
" One way to understand our system is to consider the elements of (A, %) as
containing all the definitively answerable quantal questions, and the instruments
as the only possible means of answering them. It is in accord with experience that
. each instrument answers a umque question whereas each question can be answered
in many ways.
-Our scheme determines which operators in the algebra can ‘be measured. First of
‘all we can measure all operators of the form f tB(dt), where B € M (A, W) is a
questlon These constitute a rather special class of operators: we shall come back to
this ‘point below. The most general symmetric observables which can be measured
are those b € 4, which admit of a spectral decomposition by at least one £-measure
&; which has more information than at least one-question & € (A, %). That is,
B > €. Then € is a question we can answer which will tell us something about b. -
The ‘most we.can known about b is contained in all the questlons € satisfying & < B
as we run through all the spectral decompositions of b. If b is essentially self- adjomt
there is only one such decomposition.
In the usual description of quantum measurement theory, a measurement has a
dual function. Firstly it determines eigenvalues, more generally. spectral values;
secondly "it prepares states by virtue of the postnlate of collapse into eigenstates.
_There are two sorts of instrument distortion thercfore: imperfect reading of the spec-
- tral values, and imperfect.filtration of cigenstates. These lattér possibility is related
to non-repeatibility, of course. An ideal instrument is one which admits of neither
sort of distortion. It is a mathematical result in our'scheme that such instruments
do not exist, except for operators in 4, whose spectrum consists only of isolated
eigenvalues of finite multiplicity. For operators defined- by spectral syntheses from
.questions, these seems to be no bar to instruments which do not distort the spectral
values. Nonetheless, as there is no repeatibility, there is always spectral measure
distortion present. This can be seen from eq. (3.21) by acting with- &(4) twice.' The
compact operators are such that there distortions around an ngenprOJcctlon can be
made small enough not to suffer interference from the nelghbourmg eigen-projec-
tions. Although not to be taken too. serlously, a mental image might be of a beam
incident on a slit; The slit edges must not be sharply defined, but must be #-class
so as not to chop off the beam too sharply.- An observer reads the eigenvalues of the’
“beam as it passes through, but the observer is, typically, near sighted. For our
special observables, the eigenvalues are written m\sufflucntly large type that there
need be no distortion. As if this were not strange enough, the whole slit apparatus
has an uncontrollable tremor, ca.using imperfeet filtration: of spectral projections.
‘Another .point. worth emphasizing is that the above considerations hold for one
- observable alone; the unccrtamtv principle 1nter£erence effects aré not bemg con-

)
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t

sidered. If one demands “‘states in, states out” and ¢-additivity, it is a. mathematical
consequence that a perfect measurement is impossible. Considering @ measurements
again, one can only measure observables obtained from questions and: satlsfymg
@ >b. For example, one can measure F *.(Q) for all F(z) = /()% all f € F(R).
By judicious choice of f one can get close to @ in sone suitable sense, but @ itself
cannot actually be measure. The function f both distorts the spectral readings of @
and the spectral prolectlon filtration. Weré one to wish to measure F * y(Q) rather
than @, spectral prOJectlon distortion would still octur in: the sense of non- repeatl- A
blhty :

.
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