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I'm allgemeinen Fall von Deformationen ohne Vollstindigkeitsbedingung zeigen wir, daB.die
komplexe Dimension des'Raumes Def, M3 gleich der Anzahl der isolierten Rinder der Mannig-
faltigkeit /3 ist. Fir n = 4 liegt eine starke Starrheit der Deformationen, ihnlich der Starr-
heit von vollstandigen hyperbolischen Strukturen, vor. ’

B obuen cayuyae nedopmanunii Ges ycaoBus NMOTHOTH MH MOKA3HIBAEM, YTO KOMIIEKCHAH
A -

pasmepuocth npoctpancrsa Def, M3 pasna uMciy 130JMPOBAHHHX IPAHHL MHOT0OGpA3MA
M3 us n = 4 momyvaetcsl CHAbHAA MECTKOCTH AeopMalAn, Nono6GHAA MeCTKOCTH HOJI-

HHX THIIEPOOINYECKHUX CTPYKTYP. .

. . \ )
In the general case of deformations without the completeness condition we will show that
the complex dimensionality of the space Def* M3 is equal to ‘the nuinber of isolated ends of
the three-manifold M2 For n = 4 there exists a strong rigidity of deformations, similar to

_ the rigidity of complete hyperbolic structures.

' )

1. Set-up of the problem -

* Let on a manifold M there be introduced a complete hyperbolic structure of finite
‘volume with a holonomy H which maps a fundamental group =,(M) on a discrete

subgroup G'=H(n,(M)) = Isom H"* of the group of isometries of the hyperbolic
space H", n = 2. Deformation of the hyperbolic structure on M (cf. [1]) is a howeo-
morphism f of the manifold M onto some hyperbolic manifold M’ of finite volume
which is, generally speaking, incomplete but satisfying the “maximality” condition:

‘any geodesic ray [ going to an end of the manifold M’ raises up to the maximal geo-

desic ray [ in the hyperbolic space H" (possibility of continuation). Two deformations .

/1: M —~ M, and f,: M — M, are equivalent, i.e. they define the same point of the

space Def, M, if the contraction of the .homeomorphism f,f,"1: M, — M, onto
enough neighbourhoods U, = M, and U, < M, is raised in the hyperbolic space H"
up to its isonietry. : ' ’ Co

Exact description of the subspace Def M < Def, M, i.e. of the space of defor-

~ mations of complete hyperbolic structures on the manifold M, vol M < oo, ‘is

given in the Mostow rigidity theorem from which-it follows that Def M consists of
one point [13, 15]. In the present paper it will be shown that in the general case of
deformations without the completeness condition the complex dimensionality of the
space Def, M3 equals the number of isolated ends of the three-manifold 3. But.in
this case the subspace in Def, M3 consisting of quasiconformal deformations con-
sists (just as in the complete case) of one point. In the dimension n = 4 it will be
shown that Def, M coincides with Def M and consists of one point. In other words,
for n = 4 there is strong rigidity of deformations, similar to the rigidity of complete

hyperbolic structures — cf. [6]. . ‘ N

\
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2. Whitehead link . ,

~ Consider a 3-manifold- M,, which is;the complement in the 3-dimensional sphefe S3
to the »Whitehea.d link (Fig. 1) with the corepresentation

(a,b: (b-'aba-1) (b-'a~1ba) (ba-1b-ta) (bab~1a-1) = 1.

\

The special role of M,, is clear from the fo'llowing theorem of W. THURsTOXN [18].

Abb. 1 ‘ o - -

[l

Theorem 2.1: The Whitehead link is universal. In other words, every closed, oriented
three- mam/old M contains a link L <= M such that M — L s homeomorphic to a /zmtc-
sheeted covering space of M. Moreover, for every link L — 83, there is a link L’ S L
whose co7np£enzent is a finite-sheeted covering of the W hatehead link complement.

On the manifold M, one may introduce a completc hyperbolic structure .(non-
compact, of finite volume) which defines the mapping of the holonomy H : 7,(M,,)
— @ < Isom H3, where the discrete group G is generated by isometries identifying
the sides of an octahedron P(G) = H?® with vertices on the absolute /1% and with
right dihedral angles, as it js shown in Fig. 2 — see, for instance, [11: Examples 59
~and 66). Thus assigned is the complete f1llmg of H3, w lt,hout overlappings, by octa-

hedra g(P(G)) g €G.

Abb. 2
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. Further we assume that H? is realised as the Poincaré model in the half-space ‘
R?={z€ R z; > 0}. Here, the group Isom H?® acts on the extended complex

plane C = 3II® as the \Ioblus group U, (linear-fractional transformations in C).

Theorem 2.2: The set of hyperbolzc structures on the complement to Whitehead: link
depends on two independent (over R) complex parameters z, and z,. Here, the values
2y =2 =1 correspond to the only complete structure.

The proof-of the theorem consists in the mvest,lgatlon of identifications of

sides of octahedra P — H?3 with the vertices on the absolute 8H3 = C. These identi-
fications arc similar to those in Fig. 2 and to such ones that the sums of dihedral
-angles for equivalent edges of the octahedron P equal 2z..To obtain parameters on
which such identifications (or, rathér, octahedra themselves) depend, we divide an
octahédron P into four ideal sxmple\es having common edge connecting vertices p,
“and p;. As it is known, such simplexes in H3 are characterized to within an 1somc\;ry'
of H? by its three dihedral angles for any vertex (their sum equals z) or, which is
the same; by Euclidean triangle by which the simplex intersects an horosphere
with some vertex as the centre. One may assume that this triangle lies on a-complex
plane C so that its vertices are just 0, 1, and the point z, Tm z > 0. Therefore, one
may assign any ideal simplex in H?® with the vertices on 0H3 = c by the following
" parameters (see [17: Ch. 4]).

We ascribe to each of the three pairs of non- mtersectmg edges of the simplex
the complex numbers z, ¢, w with the positive imaginary parts — they are obtained
by considering (as above) vertex Euclidean triangles. Then these numbers are con-
nected by obvious relatlons

\

v=1/1—2), (z— 1)/z. o L e
So,.we have the 'simplexes 4;,7=1, ..., 4 (see Fig. 2) ’ .
Zl{ = (P1> P2s Pas Pa)» ,42 '=‘(7)1, Pos P> D) - (22)
As = Py, Pss Ps» Ps), ds = (p1, Pas Ps» 7’3)? .
assigned, to within the isometry of H3, by a set of parameters:
{(zi, wi, wi)} = {z € C:Tmz > 0)3, 1 <7< 4, . ’ T (2.8)

which satisfy eight relations of form (2.1). Besides, let us agree in all the simplexes
to ascribe the parameter 2z; to the common edge (p,, p3) — in Fig. 3 the parameters
for 4, are given. The: condition of the sums of dihedral angles of each of the four
edges of the complex: . ) -

’

' . -(7)17 7)3): - '+'>s' 4>,
(sce Fig. 2) — to be equal to 2z assigns four relations:

2120232, = 1 W Vg2 29Wats = 1,

1234- ’ 1412..3 v y (2.4)
V1 WolgWaWalsUg = 1, VUoW3Z32, U Wy = 1. S

‘Here, the third relation is the result of the three others. Substituting in (2.4) by
‘means of (2.1) the expressions w; and v; by 2z; we see the dependence of the second
and the fourth relations. Therefore, for three complex parameters 2y, 29, 23, Im 2; > 0,
there remains onlv one relation connecting them:.

-

(2, — 1).(22 - 1) _ 1— ”xzzzs
(23 — 1) 212923

(2.5)

\
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Fig. 3
\

N

‘This proves the first part of the theorem. The proo\f of the' completeness of the
manifold, corresponding to thc parameters z, == z, = 7, is obtained by means of
describing the action of stabilizers. of non- equlvalent vertices of P (for instance,
P; and p,) on horospheres with the centres at these vertices (this action is isomorphic
to the action Z @ Z) and by means of the following statement — sce. [5, 6].

Theorem 2.3:" A hyperbolic structure with the holonomy H on the manifold M",
n = 2, is complete iff the polyhedra Py, ..., Py 2 H* with a finite number of sides,
whose identification. by the generators of the group G = H (nl(M ")) obtained the mani-
fold M*, do not contain, as their Lemcea, fixed points of the loxodromic elements of the
group G’ . -

_ The uniqueness of the obtained complete structure on the complement to White-
head link follows from the'rigidit,y theorem — see [1‘3 15].

Remark 2.4: For a more exphmt assignment of hyperbolic structures on M
we describe the obtained octahedra P, excluding the isometric cases bv havmg
fixed some three vertices of octahedra. For instance, pub

P = O’ P2 = 19 - Ps : ‘co. ’ : (26)

Then from (2.5) we obtain that the remaining vertices p,, ps, ps of the octahedron P
are just the points of the complex plane € = @F3 which satisfy the conditions:

(s — 1) (ps — ps5) _ _Ps )
(Ps — 1) (ps — »s)  Psps’ : AN )
Imp, >0, Im(pfps) >0, Tm (py/ps) > 0. ‘

The family of non-complete structures considered in [12] evidently corresponds to
one real parameter ¢ > 0, namely, among the set of vertices from (2.6) and (2.7)
 there is pointed out a subset: p; = 0, p, = 1, py == 00, py = %, ps = — 1, ps = —u,

Remark 2.5: For the fir_st time such non-complete hyperbolic structures on 3-
manifold have been described by W. THursTON on the figure eight-knot comple-
ment which may be made up of two-ideal simplexes in H® — see [17].
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3. Dimensiona]ity of the space of deformations
of 3- dimensional hyperbohc structures

Let now M be any complete non-compact hyperbolic 3-manifold of finite volume,
and ‘P = P(@) < H3 be a fundamental polyhedron of the group G = H(nl(M))
— Isom H? for.the holonomy H. Deformations f € Def, M assign the deformations
‘of a polyhedron P, which are similar to‘the deformations of octahedron in Section 2
and give non-complete hyperbolic manifolds M’ of finite volume homeomorphic to
_the complete manifold .

To answer the question about the dimension of the space Def, M, consider a
structure of ends of homeomorphic manifolds M and M’. In the case of finiteness
of volume the manifold M has a finite number of ends e,, 7., €,; their neighbour-
.-hoods are homeomorphic to the punctured solid torus ’I"X[O 1) — see [2--4],
and the ends have Euclidean structure of two dimensional torus 12, To non-complete
structures of the corresponding ends ¢ = f(¢;), j=1,...,m; of the manifold
M’ = f(M) there correspond non- comp]ete affme structures on the torus 7' which
are assigned by partitions into quadrangles of the punctured plane C — {0},.i.e. by
discrete subgroups of the group R - O(2), a set of themn is described by one complex
parameter — see Theorem 2.3, [5]. This results in the following statement. -,

Theorerm 3.1: Let M be a complete hyperbolic 3-manifold of /mzte volume. Then
_ complex dimensionality of the space of deformations Def M s equal to a number of
tsolaled ends of the manifold M.

Another approach to the proof of this statement is.to use Theorem 2.1. Namely
“consider that link L in S% for which the given complete hyperbolic manifold M is
‘obtained from §* — L by Dehn’s surgery on a part of link L components which are
complementary to some link Ly, < L. Here, since the statement is trivial in the
case of the closed manifold M (Mostow rigidity theorem), then Ly == @. The existence
of the link L follows from the classification of T. Jergensen of hyperbolie 3-mani-
folds of finite volume — see [17: Ch. 5.13]. ]

According to Theorem 2.1 for the link L there exists a link L’ — 83, L, C L—L,
the complement to it finite-sheetedly covers the manifold M. Due to this, the
fundamental polyhedron P, whose identification of sides obtained §* — I/, is a
union of a finite number of octahedra with right dihedral angles, these octahedra
correspond to the complement to the Whitehead link M. A space of deformations
Def, M, is parametrized by two complex parameters (independent above R) which
-correspond to two classes of non- equivalent vertices — see Theorem 2.2 and Re-
mark 2.3. To the ends of the manifold M there correspond sone classes of equ1valence
of vértices of the above octahedra, these classes assign the components of the link L.
To every such class of equivalehce of the vertices there corresponds a family of.
deformations of non-¢omplete structures of the manifold M parametrized by one

complex para,meter — cf (2.5)—(2.7).

4. Absence of quasiconformal deformations wrthout the completeness condition

The subspace of quasxconformal deformations in the space Def, M will be char-
acterlzed by the following result. . .

Theorem 4.1: A complete hyperbolic 3-manifold M 0/ Jinite wlume and the homeo-
morphic to it non-complete hyperbolic manifold M’, where each geodesic ray going to
an end of M’ s raised up to the mazvmal geodesic ray in H?, are not quasiconformally
equwalent

N
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- Proof: Suppose there exists a quasiconformal mapping f, /(M) = -M’, Then it is
raised up to the mapping with the bounded distortion : H® — H3 — see [16]. As
it is known, such mappings are, in some sense, pseudoisometries of the hyperbolic
space 3 — see, for instance, [15; 4: Ch. 7.6], namely, if by d(x, y) we denote the
hyperbolic metric, then there exists a constant ¢ > 0 such that for all z, y € 3

df(2), /() < cdlz, ). . T - RS

By the conditions of the theorem M’ has no boundary, is not the interior of a
hyperbolic manifold with boundary and‘is locally convex. Therefore, M’ is a convex
manifold — see [17: Ch. 8]. Conjugating a group G = H(n,(M))C Isom H?® one
may assume that to the end e of the manifold M transferring at the mapping / to

the noncomplete end e’ of manifold M’, there corresponds on H3 = C the point co.
Let'y be a geodesic in H® with end in oo containing the edge of the fundamental
polyhedron P(G) Applying the traditional geometric arguments, to within the iso-
metry of H3, one may assume that the curve () lies in the r-neighbourhood of the
unique geodcsm # with the end in oo, and in such a case 7 > O depends only on /.
. Indeed, if 7 is sufficiently large <md U,(q) is r-neighbourhood of some geodesic
g < H?, then there exists the upper boundary of lengths of bounded components
yN\f- ( g ) Besides, the orthogonal projection from H3\U,(g) on ¢ decreases the
distances by at.least Ch (). Therefore, for z_,,, z, € 9 and the geodesm g connect,mg
. the points f(z_ i,) and f(x,) the segment f({z_,,, x,]) of the curve f(») intersects any
plane orthogonal to g,.at the bounded distance of ¢,. At { <> +o0 the points f(z,)
tend to oo € 9H? (due to the Maximality condition of the geodesics) and, conscqucnt-
ly, the limit for the geodesic ¢, possesses the required property. ;
Similarly it is shown that there exists a constant C’0 such that for any plane L = 113
orthogonal to the geodesic y the projection of its image f(L) upon the geodesic 9
has a diameter not exceeding C,. To prove this, consider an arbitrary geodesic ray
{ = L with the beginning at the point 2 = y n L, and let the geodesw {, connect
its end with the positive end of the geodesic y. Denote €y = arc Ch V2 = d(=2°, 1),
by y° denote the point on ? that is nearest to f(z°), and by I,1, and I* denote para.llcl
geodesics'in I1* such that in r-neighbourhoods of the former two ones there lie the
curves f(I) and f({,), and I* iritersects 9 at a rlght angle at some point y(I). Then
from (4.1) it follows that -~

Ve L) = dlye, 1) + dlf @), fa) (i), 1) s 2 +0c
and therefore . o
d(yo, y(l ))~$Z 2r + Ci(c + 1) =.0y,

besides, the constant C, does not depend on ! and L. Hence we obtam that any
point f(z) for z € L at the projection on 9 is contained in the-Cy- neighbourhood of
the point 3°, where the constant Cy = C, + r does not depend on L.

Due to the non-completeness of the end ¢ = /(e ) of the manifold M’, its invariant

d(e’) (equal to the minimal distance between images of horosphercs in H3 — see
[17]) is positive. Denote it by dy and let A be a linear mapping with det 4 > 1
generating the stabilizer G, = @' of the point co € 8H3. Here the group G’ = Isom H3
is the image of the group G’ -at the homomorphism induced by the mapping f and
transferring into 4 some element g € G, < G." Assume, without restrictions upon
generality, that the length of the transference vector of ¢ equals 1, and consider
the orbit {g"(z): n € Z} of some fixed point x € B, ny. For every n we also consider

~
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_ the plane L containing the point g"(z) and intersecting the geodesic y orthogonally
at some point z® = L, ny. Having assumed z = (0, 0, 1), we obtain for the angle w
between .the radius-vector of the pomt g"(z) and thé plane R2 = {z ¢ R3: 23 = 0}
in R3 the equality Sinw = (n? + 1)"Y/2 and therefore the hyperbohc dlstance
d(z, z") may be calculated by the formula

] . n® 4+ 2

Ch d(x, :1:") = m. N (4.2)

. Hence i't, is élear that with the increase of » the distance may be estimated ‘as follows:
dz,z") <In(l + 1) O o S (4.3)

Con51der t,he horosphcre . ‘ ‘ ) . v
{J € H3 :yy = (f(2) ):;} _ o (44)

By the deflmblon of the invariant d(e’) of the end ¢’, for any horosphere S = A"(S,)
- there holds the equallty

d(Sy, 8) = [il - dg. ' B | (4.5)

At the same time the horospherée S, contains the.point f{g"(z)) = A"(f( z)). Hence
and from (4.3)—(4.5) we directly obtain that the projection of the image f(Ly,) of
the plane L, upon the geodesic $ has a diameter no less than |n| dy — In ([»]| 4 1).

This contradicts the above-obtained uniform estimate of diameters of such projcc—
tions and; thus, proves the absence of the quasiconformity property for the map-

pmg /i

Corollary 4.2: A subspace o/ quaswon/ormal deformations tn the space Def M
of deformations of the complete hyperbolic 3- mam/old M of finite wlume consusts of
one pornt. .

~

\

5. Non-rigidity of three-dimensional hyperbolic structures

i Let, as above, a non-complete hvpcrbohc manifold M’ be obtamcd from the com-
plete hyperbolic manifold M = H3/G of finite volume by the deformation of the
fundamental polyhedron P(@) onto-the polyhedron P, i.c. a manifold M’ = P'/G'
has the maximality property of raising the geodesics. Whab are the properties of the
groups G with the approachmg of P’ to P(G)?

Lemma 5.1: The above manifold M’ is covered by a subdomain H@ — H3 obtained
by the rejection from H® of a countable, nowhere dense set of non-intersecting (in H 3
. = H? u 0H?3) geodesics.

To prove the lemma, denote again by f'a locally, univalent raising on H? of thc :
homeomorphism f: M — M' The mappmgi is the extension of the homeomorphism
P(@) — P’ which is compatible with the groups G and G’ and, therefore, we have .
the homoniorphism H, of thc group G on the group G

.

a A

Hifg) = Iol . » A RERT
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In other words, one ma.y say that- for the homeomorphism f: M — M’ the homo-
morphxsm of the monodromy is defined — cf. [9] — by

L X,.n,(M)_—»G'CU:, Co o (5.2)
which is the superposition of the isomorphism of the holonomy H and homomorphism
(5.1). Here, the monodromy group X,(nl(M)) of corformal automorphisms of the -
three-dimensional sphere R* u {co} acts upon H*® = R.® as a group of isometries of
H3 which leaves some subdomain H3 invariant.

Let e be one of a finite number of isolated ends of the manifold M Due to the
finiteness of the volume of M, the neighbourhood of this end is covered by a horoball
B, = H? with the centre at some parabolic vertex p € 2H? of the polvhedron PGy
(i.e. by a famlly of- geodesic rays ending at the point p). The stabilizer G, = G of
the point p is the free Abelian group of rank 2 and, assummg P = oo, it is gcnerated
by Euclidean translations on linearly - mdcpendent vectors v and w, To these trans-
lations for the isomorphism of the holonomy H there correspond generators  and y
of the fundamental group of the end e, z,(e) =~ Z D Z, which, for homomorphmm
(5.2), pass into generators @ and b of the stabilizer G, = & of the vertex p’ = = f(p)
of the polvhedron P'}If to this vertex p’ there (,orresponds a non- complete end
¢’ = f(e) of the manifold M then from Theorem 2.3 it follows that the subgroup
R X (e )) G” N ’ . (5.3)
of the monodromy group & is a cyclic loxodromic.group or its finite extension —
see [4: Theorem 3.3], and to complete partlblonmg of the horosphere S, = 9B, by
the traces of polyhedra G’ {g (g€ G} there corresponds thc partltlon- .
lng of the punctured horospherc Sy — {zo} by the traces of polyhedra, G’(P’), where '
2, is the intersection point of the horosphcrc S, with the axis of the loxodromic
generator -of group (3.3). The axes of IO)\OdI‘OlDlC elements of ‘the discrete group
" can have no common ends. At.the same time, the orbit- of fixed points of the loxo--
dromic element of the discrete group is dense in the limit set of the group — cf.
[4: Lemma 3.16]. This shows that the set H® — f(H3) is the union of non- mtersectmg
(in H3) geodomcs which are the axes of loxodromic ‘gencrators of stabilizers of in-
finitely remote vertices.of polyhedra G'(P’), i.e. Hy® = f(H?) has thc rcqmrcd prop-
erty 8

Remark 5.2: Simultaneously we have shown that the mamfold M’ is obtained .
by the factorization of G'-invariant set [(H?) obtained by rejection from IJ3 of the.
axes of subgroups conjugated to-(5.3). A more detailed lnvcstlgatlon of monodromv
groups leads to a non-rigidity thcorem of 3-manifolds.

" Theorem 5. 3: For. a complete non-compact hyperbolzc mam/old M = 3G o/
Jinite volume there exists a sequence of various complete hyperbolic manifolds *

M; = H3X(G) o ' , (5.4)
which am;roxzma'te forr j— o the manifold M in the sense that homomorphz'sm&
X; : G — Isom H? converge in the topology of porntwise convergence to the inclusion,
(md the volumes of the manifolds M ; converge to'the volume of M.

Remark 5.4: This theorem was first proved by W. THURSTON [14, 17]) by means
of the topological procedure known"as Dehn’s surgery of 3-manifolds — see, for
instance, [11: Examples 68 and 69]. Besides, Thurston’s formulatlon states that
vol M; < vol M.

N
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Proof of Theorem 5.3: For the complete non-compact manifold M there exists
a sequence of non-complete hyperbolic manifolds M;* which are assigned by the
identification of the sides of polyhedra P; obtained by the deformations of the
. fundamental polyhedron P(G) of the group G — see Theorem 3.1. The identification
. of the sides of P, is realized by the generators of discrete groups of monodromy
(5.2) which correspond to a sequence of deformations f;: M — M

6" = Xpfm (M) o 6y

. By construction, the polyhedra P, tend at j — co to the polyhedron P(G). There-
fore, the polygons (Euclidean) equal to P;’ n'S;, where S; are horospheres with
"centres in the corresponding infinitely remotc vertices.p;” of P ', tend to the polygon
which is the intersection of P(G) and “the horospherc S, with the centre at the vertex
p € 0H® — see the proof of Lemma 5.1. Here, in bhe case of non-completeness of .
the ends of manifolds M *, corresponding to the vertex p, in groups (5.3) there
appears a new (as comparcd to G’,,) rclatlon of the form

X/,(z””,?/ ) = a}M;b)"/ = 1’ ’ : ) v. (56)

".where integers n’z, and n; are’ characterized by the fact that the non-closcd chain .
of the length m; + n; + 1 composed of the polyhedra

P&, gl(P(G)) Yo" (P(G) 9291 ’(P(G)) <o G2, (P(G)) NG

(g, = H(x) and g, = II(yl are parabolic generators of the stabilizer G, = G) turns,
while mapping /, to the closed, without self-intersections, chain of polyhedm
? B ,(] j ), ey Cljm’( i ), bjCl/i ’(P"_), ey i"l'(.l.}‘m!(l)j ) = P"’. : . (58)

From our observation of the behaviour of traces of polyhedra on horospheres it
follows that for j — oo “the faces of (m;, n;)-parallelograms’ on horospheres §;,
the m;-th and »;- -th constituents of chain (') 7), turning-into the closed chain (5 8)
become arbitrarily long. In other words, the closeness of the polyhedra P;' to P(G)
‘is characterized by the closeness of the pair (mj, ;) on the prolectlve ‘plane to {00, 00)
of the projective plane RP2.

Let the generator g of the group G identify the sides Q and Q' of the polyhedron

P(G). Then, for j large enough, the polyhedra P;’ have sides Q; and Q;’ convergmg
to the sides @ and @’ and identified by the generators g; of groups (5.5). For j — co
the mappings ¢g; converge uniformly on the compacts from H?® to the mapping g.
Hence it follows that for j — oo the groups G’ convcrg(. to the group G (the algebraic
) convcrgenct,) i.e. the homomorphisms -~

K

X;:G > G = X;,(n(M)) = Isom H3

~

converge to the inclusion in the topology of pointwisc (,onvorgcnce From the con-
vergence of the polvhedra P; to P(G) there follows the convergence of their volumes:

Lim vol P/ = vol P(G). . ' ) . (5.9) .

j—>oo N

Consider now complete hyperbollc manifolds M; whose holonomles assign discrete
groups coinciding with G;: :

M, = H3G, . - . : '(5.10)
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Then, taking into account the convergence of homomorphisms to the inclusion and
. (3.9), to complete the proof it is necessary to show that the hyperbolic manifolds
M;* and the manifolds (5.10) have equal volumes for equal j. This follows from
Lemma 5.1 since the polyhedra G/ (P;") do not only fill in H? a countable, nowhere
dense set of geodesics — in other words, to turn P, into a fundamental set of the
group G, (having the volume equal to volume of M i), it is sufficient to join-a set
of measure 0. This completes the proof of the theorcm |

’
)

.

6. Rigidity of hyperbolic structures in dimensionn = 4 -

The results of this section show that in the dimension n» = 4 the space Def, A is -
trivial, i.e. there can exist no deformations similar to those described above for
n = 3 — there takes place strong rigidity, just as for complete structures.

. Theorem 6.1: Let n-démensional, n = 4, hyperbolic manifolds M and M’ have
finite volumes and be homeomorphic, the manifold M be complete, and any geodesz'c
ray going to an end of the manifold M’ is raised up lo the maximal geodesic ray in the .
kyperbolic space 1". Then the manifold M’ vs complete and wometnc to the manifold M.

Proof: For closed manifolds the statement trivially follows from the ngldltyh'
" theorem [13, 15]. In the non-conipact case any end e of the manifold M has, due to
vol M < oo, the Euclidean structure of the (n — 1)- -dimensional torus 7", and
its nelghbourhoods are homeomorphic to the solid cusp torus T"-! x[0,1) — see.
[4: Ch. 8.1]. For the homcomorphlsm/ M — M’ the end e maps to the end ¢’ = f(e)
of the manifold M’ which, in the case of complcteness of the manifold M’, should
also have the Euclidean étructure of (n — 1)-dimensional torus. To the non-compl_et-c_
end ¢’ there should-correspond the affine structure (non-complete) of the torus 71
(due to homeomorphy of e and ¢’) induced by the action of a cycle loxodromic
group on the set of geodesic rays going out of some infinitely remote point p’ € ¢H"
determined by a finite-length geodcsw going in the manifold M’ to the end e’. The
point p is determined up to G’-equivalence. The discrete group G’ of isometries -
of H" is the image of n,(M) at the homomorphism X, :z,(M)— Isom H". The
‘existence of the above.geodesic in M’ follows from the non- -completeness of the
end ¢’ [10: Ch. 1, Theorem 10.3] and from the convexity of the manifold M’ (of a
-locally ‘convex hvpcrbollc manifold without boundary, satisfying.the maximality
condltlon of the geodesics of the Theorem — sce [17: Ch. 8). -

" The action of the cyclic loxodromic group G, < G on-a set of geodesic rays is
_cqulva]ent to the action of an affine discrete group generated by a linear trans-
formation A, det 4 > 1, in the Luchdean (n — 1)-space without the origin. This
follows from .the fact that the hyperbolic metric of H" induces on a horosphere
S, <= H™ with the centre at the point p’ € dH" the Euclidean metric, and the
ongm corresponds to the ‘point z, € S, which is the intersection with S,, of the
axis of the loxodromic generator of the group G;. At the same time, it is known
[8] that the factorization N = {R"! — {O}}/{A" k € Z) fordet A > 1 gives a Hopf
manifold diffeomorphic to S' x 87-2. Hence it is clear that for » = 4 this manifold
N cannot be homeomorphic to (» — 1)-dimensional torus 7m-1, to which the end ¢’
should be homeomorphic. This proves the completeness of the manifold M’ and,
the rigidity theorem for- complete hyperbollc mamfolds being taken into account,
the isometricity of M and M’ e :

Corollary 6.2: For a complete hyperbolzc manifold M®, n = 4, of finite volume
the space Def, M™ is trivial. -

.



ciormations of Hyperbolic Structures 109

Remark 6.3: With Theorem 6.1 (for small deformations) the resuR of G. GAR-
LAND and M. S. RacHUNATHAN [7] is closely connected. This result is opposite to
Theorem 5.3 on "non-rigidity of hyperbolic 3-mamfolds as follows from the next

" theorem.

" Theorem 6.4: For dny comp'lete hyperbolic manifold M = H"|G, n = 4, G < lsom
H", of finite volume there exists no sequence of Izomomorphzsms X; G - Isom H”
converging to the enclusion.

Renark 6.5: The result of the present paper and, especially, Sect. 6 are closely
connected with the author’s results [6) on the filling of the hyperbolic space by
polyhedra, which generalize the well-known Poincaré-Aleksandrov’s theorems.
In their context it may be said that (unlike the case n < 3) for n = 4 there exist
no deformations of complete partitionings of H* (of finite- volume) preservmg the
condmons of cycles of codimensionality two.
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