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Approximation by Solutions of Elliptic Equations 

U. HAMANN and G. WLDENHAIN 

Es sei Q c R" ein beschrtnktes, glattes Gebiet, I' eine abgeschlossene, glatte, (n - 1)-dimen-
sionale Flache mit Rand un Inneren von Q und V elne offene Teilmenge des Randes au. in Q 
verde ein eigentlich elliptiseher Differentialoperator L der Ordnung 2m mit glatten Koeff i-

zienten betrachtet. (B 1 ,..., Bm) sei cin normales System von Randoperatoren auf a.Q, weiches 
der klassischen Wurzelbedingung genugt. Lv(F) bezeichne den Raum der Einschränkungèn 
der Funktionen des Raumes -'	 - 

	

Lv(Q)r{uEC00():IjuOjnf2, Biu IQ =	= B,nit IôQ =O inbQ\ V}
auf I'. Es wird bewiesen, daB L 1,(P) im Raum JY2m—lIP(f') (p > 1) dicht liegt. 
llycTb Q = .Rn =.R orpaIlIv1elluas! r.rIaJuan oJ1acTb, F - 3MHHTH rjjajan (n - 1)-MepHari 
nion axu, C xpaeM BHTH o6iacT1I Q, H	 Is V - oTHproe flO MI1OCTBO Kpaa 3Q. Paccta- 
'FpIIBaeTCH B Q.coöcTnellnl,iti DJUBUITit ,iecHilit onepaTop L nopnua 2m C rjiajxsiu 1o3q4H1- 
ullenTaMu. lIycTh (B1 ,..., Bm) - HOPMJThHBH clicTeMa cpaenux onepaTopoll Ha 3.Q, 
yoBJIeTBopflIou.an KJlaccwlecHoMy YC.TIOB1UO iia HopHax, a L(r) o603uaqaer npocTpaHcTno 
orpaHu'leIIuf Ha 1 yHHuItfl npocTpaucTna 

Lv(Q) = {u E Cm (-Q): Iju = 0 B Q, B 1 ujaQ = ... = B 1u = 0 B au \ V. 
JoHa3aIBaeTcn, 'ITO L 1,(f') nJ!OTI!o B-npocTpáucTBe 1V2m — hIP(F) (p > 0. 
Let 0c R" be a bounded, smooth domain, F aclosed, smooth, (n - 1)-dimensional surface with 
boundary in the interior of £2 and V an open subset of the boundary eQ. in £2 we consider a 
porperly elliptic differential operator L of order 2m with smooth coefficients. Let (B1 ,..., Bm) 
be it normal system of boundary operators on au, which fulfils the classical root condition. 
Lv(f') denote the space of the restrictions on .P of the functions from 

Lv(Q) = {u E C(Q): Li. = 0 in £2, Biu!Q = ... = BmU IQ = 0 in au \ V}. 
It is proved that Lv(F) is dense in the space 1V2m-1/P([') (p > 1). 

1. In. abounded domainQ R' with a smooth boundary aQa linear elliptic bound-
ary value problem for a differential operator L of order 2ni is considered. Let F I? 
be a smooth, (n - 1)-dimensional closed surface with boun 'dary in the interior of Q. 
Generalizing earlier results for equations of the second order of H. BECKERT [4] and 
A. GöPFERT [8, 9] in [18] the density of some sets of solutions in the Soholev space	- 
W2 2m - 1 (f') was proved. Changing for instance the boundary values on an arbitrary 
small part V of the boundary, one can generate such a dense set. 

In the present paper the results of [18] are generalized for the trace spaces, 

W 2'P(P) (p > 1). Analogous results for uniform approximation are given in [1.6, 
17]. For the-ease of second order see G. ANGER [3] and G. WANKA [14]. For approx-
imation theorems of another type for higher order elliptic equations we refer to 
F. E. BBOWDER [6, 7] and [12].
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2. Let	 . 

- L=	aa(x)D' 
II2m 

(m> 0 an integer, a = (x 1 ...,	j	0 integers, 

I M I	 1 ±	+N, D = D1 a ... D, D1 =	, x = (x1 , ..., x) E Rn) 

be a properly elliptic differential operator with real coefficients in Cc(R),'i.e. the 
polynomial. 

L°(x, + t'i) = E a(x) ( + r,	 I Ia2m 
which corresponds to the main part

L°= ' a,(x)D 
kI=2m 

of the differential operator, for any pair (,?i) E R' x R" ( 4 0, 77 + 0) of linearly 
independent vectors and any x E R' has exactly m roots with positiv imaginary 
part with respect to x. 

For the adjoint operator	 - 

L*u =	(1)t D(a(x) u) 

we suppose the "condition for uniqueness in the small". This means, if u is a' solution 
of L*u = 0 in a connected open set Q, vanishing on a non-vacuous open subset - 

Q, then u must be identically zero in 12. The condition for instance, is fulfilled, 
if the coefficients of L are analytic. 

Let 12 c R" be a bounded domain with a sufficiently smooth boundary W and I' 
a smooth, (n - 1-)dimensional surface (C°°-manifold) in the interior of 12, which does 
not split up the domain 12. On the boundary W we suppose a normal system of - 
boundary operators B1 , ..., B 	smooth (infinitely differentiable) coefficients 
and m5 = ordB, 2m. - 1 (j = 1, ... m; m 4 m for i +j). Further we suppose 
the classical root condition. For the definition of the notions see [12]. The system 
(B)1 = 1'....m can be completed to a Dirichlet system (B,, ..., B,,,, Ci , ..., Cm) of order 
2m on W by a. (not uniquely determined) normal system (C5 )5 =, .... m (ord C5 = 
:!^ 2m. - 1)'(see [11]). This means, that the completed system is a normal system and 

• the set *of the orders of the operators is 10, 1, ..., 2m - 1 1 . If the operators C5 
(j = 1, ..., m) are fixed, then in an unique way one can find 2m boundary operators 
B,', C,' (j = 1, ..., rn) with smooth coefficients' on Q, such that the following prop-
erties hold: 

(i) ordB,' =m,'=2m— 1—i,, ordC,' = i' =2m— 1—Mi. - 
(ii) (B,',..., Br,,, C1 ', ..., C,) is a Dirichlet system of order 2m on Q and for 

u, v E C(Q) the Green formula  

f (Lu) v dx - f uL"v dx = 
M	In 

 f C,uB'v dcr -. '	fB,uC,'v cia 
Q	 Q	 j.1Q	-	j=iQ 

holds.	 - 

If the boundary value problem 

Lu=g in 12,	B,u Q =q,	(j=1,...,rn)
	 -	(1)
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has an unique solution, under some smoothness conditions on g and p, the solution 
- u can be represented by means of a Green function 0 = G(x, y) in' the form 

= f .g(y) G(x, y) di +' f 9,j (y) C/G(x, y) da(y) 

(see [5, 15]). The op'erators 0/ are applied to y. Under our conditions the function 
U = G(x, y) for x == y has derivatives of arbitrary order with respect to both van-
bles. Applying of the differential operators to y we have 

L*G(x, j) = 0 for x, y E Q	(x + y), 

B'G(x, Y)IyeQ = 0	(j = 1,-..., m). 

In the general case we assume for simplicity that the index is zero. If there are Ic linearly independent solutions u1 , ..., uk of the boundary value problem 

.Lu = 0 in Q,	BjujaQ = 0	(j = 1, ..., m),	
S 

	

the'' there are also Ic linearly independent solutions v 1 , ...,	of the adjoint problem' 
L*v = 0 in Q,	B1 'v	= 0	(j = ..., m).	'	'(2)

We assume that

11 for i=j 
f' v1 (x) v,(x)dx = f u(x) u&) dx	

0 for i == j 

(1, j = 1, ..., Ic). There is a generalized 'Green function O = O(x, y) of the boundary 
value problem (1) with the following properties (see ,[5, 10]):  

L )G(x, y)	u(x) uj(y)	(,y E Q, x + y),	,	(3) 

B;()O(X, OVEOD = 0	= 1, ..., rn),	 '	' 

fO(x,ij)v(y)dy=0	(1= 1,...,k),	.	 /	'	(4)" 

k 
LrO(x, y) = - v(x) v1 (y) ,	(x, y € Q, x + y),  i1	 'S 

Bj(X) (x, OXOJO = 0 ' ( j, = 1, ,.., m),	--	 : 

f G(x, y) u(x) dx = 0	(1 = 1,..., Ic). 

O has the same' smoothness properties as U in the case of-uniqueness. 
The problem (1) has a solution if and only if the conditions 

I	
712 

f g(y) vi(y) d ± , ' j P(j) Cj'vj (y) da(y) = 0	 ,	(5) 
Q	 j=1Q	 5	

5
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(i = 1,..., k) are fulfilled. Then every solution of (I). can be represented in the form 

u(x) =f g(y) (x. ;y) dy 

+	f j(y) C1 'O(x, y) da(y) +	c 1u 1 (x)	 (6) 
j1cQ	 1=1 

(the differential operators C' are applied to y, c i E B+, 1= 1, ..., k). Furthermore, if 

f g(y)v(y)dy. 0	(i =1 r ..., k),	-	 - 

then
u(x) = f (x, y) g(y) dy 

is the only solution of 

Lu=g,. Bu=0	(j=1,...,m) 

with fu(X)U(X)dX =0 for i= 1, ...,/c. 

For given open sets V	Q and 0 0 c Q \ F we define 

L(Q) = {u C(Q): Lu = 0 in Q, BjuIQ\v = 0 (j = l ..., ia)} and 

•	 -L(Q) = (U E C(Q): g :=Lü E CO-(Q), 

supp g : G, B1 a Q = 0 (j = 1, ..., rn)(respectively. 

Let L(F), LG (F) be the spaces of the restrictions onto F. Further we define 
\	

N(G)={gECoc0(Q):JIu=g for some uELG(Q)). 

N(G) is the set of all functions g E C0 0 (0) with support in 0 and f g(x) v(x) dx= 0 

(i = 1 ..., k). This follows from (5). We shall prove the density of L(F) and L0(I') 

in w 27Th 
P (F) First we give the definition of this space.	- 

3. Let W52m (Q) (1 <p < oo) denote the classical Sobolev spades with the norm 

IUInp = F . E I I D,u(x)l v dx1. 
[kI2m Q	 j 

In the sense of imbeddingtheorenis (see [13]) for IxI	2m - 1 on F' there exist
traces of Du for the functions u E IV 2m (Q). More precisely 

Dujr E C(F) for II < 2m - 

DuIr E L(F) for 2m -	:!E^ I a	( <q	
p(n - 1) 

	

P - -	 n—p(2m—H) 

WP 5	P (F) is defined as the space of all functions q, on F, which are restrictions of
functions from. WP

 2m(S2) on F in the trace sense. The expression 

IlILI	 : = inf IIUI2m.p , 
2m--.p

P
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where theinfimum is taken over allu E WP 2-(Q) with ui,' = q, is anorni, such that. 

WP
2m(p) becomes a Banach space. The space C(f) is dense in WmP(fl. 

For,definition of the dual space for p E C(f') we consider the norm 

:=	sup	I(	)!	 (7) - —2m+—.p	 1	IIIi	i P	 2m--	2m--.p 
r€W	P(r) 

((p, ) = f (x) (x) dr(x), dar urface element with respect to F,	+ 4 = 1). 
r	 .	 p	p 

The completion of C(P) with respect to (7) will be denoted by W1,."P(F). 
From (7) immediately follows 

I( '	)J	IIII	 II	 -'	 (8) — 2m+ —.p	2m--.p 

for	E Coo (F), 99 E . W 2m P (P). t € W 2m (F), € wP (r) . Choosing a se-
quence 1n E C(I') with limII	-. v'II	i	0 we put 

n—oo -2m+—,p 

,)	 Op. 0.	. S	
.	 ( 9) 

The existence of the limit follows from (8). (, ) does not depend on the sequence 
(). Moreover, the' inequality

/	 . - IIVII_ 	2m--.p	 (10) 

holds for € Wlm+p(I), E	 The spaces w;2m(r) and W2m+(F) 

are mutually dual; ( W 2m_ (F)) ' = W;:2m+(F). For a given F E GYP 2m(F))' 
there, exists an unique element tpp € W,,12m+P(F), such that F() = (V'r, q) for eery 

ç' E W 2" P and IJFI = IJFII —2m+—.p 

4. Now .we are able to formulate our main result. 

Theorem 1: Under the suppositions 0/ Section 2 /or 1 <p <00 the space LG(f') 
is dense in W 2m P(F).	S 

Proof: We shall prove the theorem indirectly and suppose Lc(F) + W2mP(p). 

Then there exists an element h € W .2mP (P), k + 0, with (h, u) = Ofor all u € L(P) 
in the sense of the scalarproduct (9). Therefore we can choose a sequence h € C(F) 
with IIh — h 

—2m+—.p —* 
0, such that	 - 

S 

P 

(h, u) = lim(h ) u) = lim f h,(x) u(x) dar(x) = 0 
j—I.00	 j—.'oof	 -
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for every u E Lc(fl. The definition of LG (f') and (6) give the representation (with 
Liu=gEN(G))

k 

u(x).=fg(y)O(x,y)dy+Ec1u(x)	
S. 

for every u E Lc(fl. Because of ujIr € L(r) we have (h,	=0. Hence 

(h, u) =lirn fhi(x(f g(y) (x, y) d) daj-(x) 

=lim .f g(y) (f h(x) (x, y) dar(x)dy = 0	 ' (12) 
j-*ooG 

for-every gE1N(G). 
We shall prove that the sequence 

fh,(x)D/O(x,y)da i-(x)	 - 

for Ifll 2m with respect to y is uniformly convergent on every compact set - 
Kc Q \. We fix anopenneighbourhood Uof r with f Uc:Qand V  K = 0. 
From the smoothness of O = O(x, y) for x == y follows D/G(x, y) € W 2m(U) with 
respect to x E U and any fixed y E K. We suppose that the boundary 'U is smooth-. 
Then we can use a.general result from the theory.of Sobolev spaces. Namely, because 
the boundary a U is smooth, there exists a continuous extension o j erator from 
WV

 2M'(U) into W2m(Q), -i.e. for every u € W 2m (U) there exists an extension 
ü € W,2 "(Q) with u(x) =.u(x) in U and 

ftuiIW 1'nSQ	0)	JUIIW,25(U) 

(w independent of u E W 2m(U)). Obviously the estimate (Jfl	2m) 

IIDG(., Y)IlWmw  
sup DDG(x, y).rn(U)P = C(U, K, rn, p, fl) 

laj ^2m XEU.y€JC 

holds, where m(U) denotes the Lebesgue measure of U and the constant on the right 
hand side is independent of y. It follows 

IID/( . , )II	1 =	inf	IIuIIw,s"Q) -	 2m--,p u Ir =D ( ..v)	 I	- 

-	 Il1)/(., y)IIw,u	O(U, K, n,	). 
Applying (10) we get the estimate 
-	1 D/O(x, y) (h(x) - h5 (x))dar(x)J	 - 

^5 D/0( . , )IP	1 IIh - hi ll	 i 
2m ,— 'm—.p	 —2m+—.p 

^5 C(U, K, m, p, j9) . 11hi - hill_ 2m+.p• 

Because the right side is independent of y, the assertion follows. The sequence 

- f h(x) (x, y) da,-(x) 
I. 

especially converges uniformly with respect to y E G.	 -
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Therefore in (12) we can change the limit and the integral and get 

(h, u) = f g() (lim f 0(x, y) h(x) dc(x) dy	0	 (13) 
G	 / 

, for every g E I(G), i.e. for every g E C0 (Q) with supp g C: G and 

f g(x) v1 (x) dx	0	(i = 1, .. .,k)	 (14) 

((14) follows from (5)). Combining (13) and (14) we obtain	
0 

urn f O(x, y)h5 (x) da,(x)= E cv() =: v(y) n G.	 (15) 

Puttin	
0 

W(Y) := urn f G(x, y) hi (x) dar(x) - v(y), 

using L*v = 0,'(3) and* the uniform convergence for	2m, we have for  E  \ F 
L*w(y) = L*( urn f ((x, y) h,(x) dij'(x)' - L*v(y) 

/ 
= urn L* f O(x, y)j(X) dr(x) 

j— cO	r 
= lini f L 1O(x, y) h,(x) dar(x)	 '	 0 

= —urn Z u1(y) f u1 (x) h(x) dcr(x) 
j— oi=1	1' 

	

u(y) . 
f j-*00

lim f u1 (x) hi (x)dir(x) = 0.\
f	

0 

The last equality follows from (11), because ui E L(Q) for i = 1, ..., k. From (15), 
i.e. w = 0 in G, and from the "condition for uniqueness in the small", we obtain 
w	0 in Q \ I', i.e. 

urn f ((x, y) h,(x) dcrr(x) = v(y) in , S2 \ r.	 (16) 

	

0	

0 

	

In the next step we shall show that	 0	 - 0 

urn fu(x) h,(x) dir(x)	0	 0	 / 

j—cr	
0 

.holds for every u E Co-(Q). Defining / := Lu, the function u E C0 (92) can be con-
sidered as a solution of the boundary value problem	

0• 

Lit = / in Q,	Buj8Q	0	(j = 1,..:, m)

and by (6) we have  

U(x) =f O(x, y) /(y) dy ±	cu(x). 

5 Analysis Bd. 5, Heft 1 (1986)
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Because of ui € LG(Q) it is 

lim i'(± cu(x)) h(x) dar(x) = 0. 

Therefore we must show that 

lirn f (f O(x, y) 1(y) dy\ h(x) dir(x) = 0. 
/ 

:= {x E Q: d(x, P) <6J denotes an open 6-neighbourhood of P. For every 6> 0, 
there is a 996 E C0 (R) with 0	5(x) ^ 1 for all x E W, p0 (x) = 1 for all x E P612 
and supp q c P. We define / := 1996 and J	1(1 - q'). It is / + /  
supp/o P5 and 16 (x) = 0 for x E P512 . We have 

•	urn f (fG(x, y) 1(y) dy h,(x) dar(x) 
•j-*or\Q  

= urn f (f ((x, ) 10(y) dy' h(x) do-(x) 
—*oor\s	 I. 

+ urn 1(1 O(x, y) /(y) dy\ h(x) dar(x) = 11,6 + 12.6. 
j-ir\Q	 •1	 . 

• Using once more the uniform convergence of fh(x) O(x, y) do-(x) and (16), we 
obtain (/ = 0 in F612 !)	 .	r 

= urn f J(y) (f (x, y) h5 (x) dcx(x) dy - 
j-=Q	'F  

= f jo(y) (lim f O(x; y) h5 (x) dar(x) dy 

=.fJo(y)v(y)dy.	 •. . 

52  

Because v is a solution of the homogeneous boundary. value problem (2), the con-
dition (5) gives	 • 

0 = f v(y) 1(y) dy = f v(y) /a(y) dy+ f v(y) /o(y) dy.

	

9	 í'â 

Because of. liin m(P5 ) = 0 (m(P6 ) denotes the Lebesgue measure of F5 ) there is a 

6, (E) > 0 for a given e> 0, such that •	 I	- 

•	IJs..oI 
= If v(y) Jo(y) dyj < e for ;0< 6	61(6). 

Now we consider 12: 5:	 • 

-	 I' hi (x) (f O(x, y)/,(y) dy) do,-(x)1 

._	 IJhjII_2m+!.p . Ill O(x, y) /o(y) d/Irm_!p 

^C . fO(x,y)/o(y)dy	- 0' 

-	 52	-	 2m,p

LI
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(the convergent sequence h5 is bounded!). Now we want to show that - 

ii. fG(x,,)/o(y)dy	L6 
Q	 2m.p 

ForAl	f /(y) v1 (y) dy we have urn Cj 6 0 (i = 1, . ., k). We define
o-+o 

-	k 
F6 (y) := /(y) - ' C 6v,(y)	 . 

and get  F6 (y) v1 (y) dy = 0 (1= 1, ..., 1. Therefore 

•	W6 (x) :=f O(x, yF(y) dy	 S 

is a solution of the boundary value problem 

L=F6 in Q,.	Bu 6Q='0	(j=l,...,m).	-. 

From the Schauder estimate (see [2]) we can conclude that there exists a cOntant 
 -

 
C-<oowith	•	 ,	 S 

•	 IIW6112m.p	0 DLW6 II0. = C JIF6 11 0 .,	- 

for every 6 > 0 (Cdoes not depend on ô); Because of	'	S 

•	 k. 

II 1 'oIlo•p,	I/6110,p + ZjC jI j	Vjp, 
-	-	

S 

urn II/ôIIOp = 0 and lirn C 5 = 0	(1 = 1, ..., k)  o-o	 -#o	 -,	0 

we have lim II W6II2	=0. From  O(x, y) v 1 (y) dy = 0 (see (4)) we conclude 

fO(x,y)/6 (y)dy=fO(x,y)F6 (y)dy.= W6 (x). 
D	 12 

Therefore we get urn 11 f (x, y) /o(Y) dy	= 0. For that reason we can find a 
62W,> 'O that	°	 2m.p 

fh1 (x) . ( f(x,y)/6 (y)dyd yp(x) < 
•	1'	-Q	 I 

for 0 <6 6) and every j. This means,  

lim f u(x) h,(x) dar(x) = 0. -	 •.	 ' 
• j-4--ooV 

Now we cdnsider any function V E C0 (1') . From the smoothness of f follows that 
an extension to a function u E C,- (92) , can be found. From our preceding consid.. 
eratiocis we obtain	 S 

urn (h 1 , ,) = 0 for every 1p E C°°(r).  
—	 S	 S. 

5*
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Finally we get 

• Ih	1 = sup	 Sill)2.  

	

1	IIIj	i	Ec(r) ftlI •	 P	 2m ---U)	2m---.p 
91EW 	P	 p	 p 

lirn(hj,p) 

	

=• Sup j—.00	 0. 
,€coo(r)	

1 -	 2m--.p 

i.e. h = 0 and L(f) = W " P(f) • 
5. Let V D be an open subset of the boundary aQ. We construct a larger 

smooth domain Q 1 Q with 9Q \ V O.Q, In addition to our earlier assumptions 
we suppose: 

(i) The coefficients .of Bj can be extended to aD, \ aQ in such away that the new 
system (l3). 1 m of boundary operators on'aQ 1 also is normal and satisfies the roots 
condition.	• 

If the coefficients of B, are constant (for instance in the case of the Dirichiet 
problem) condition (i) is fulfilled. 

Theorem 2: We suppose the conditions of Section 2 and(i). Then Lv(f') is dense 

in WP	P(r) (1 < p <- oc).	r	 V 

Proof: We choose an open subset GQ1 \ Q and consider the space L(Q1). 

By Theorem 1 we have Lc(Qi)Ir 
= J372m.() 

Since Lc(Qi ) I L,(Q), we obtain 

L(F) = 1V2mP(p) • 

If we further suppose that the boundary value problem 

Lu=0 in Q,	BjuIs=0	(j=1,...,m) 
only has the trivial solution, in the , same manner as in [18], replacing W22m_1(I')by 

2m W	p(p) we can prove the theorems, corresponding Theorem,3 'and 4 in [18]. 
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