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On the Majorization Method for flolomorphic Solutions 
of Linear Partial Differential Equations 

Die Anwendung der Majorantenmethode zum Nachweis holomorpher Losungen von Anfangs-
wertproblemen für zweidimensionale partielle Differentialgleichungen erfordert die asympto-
tische.Abschätzung inverser Matrizen. Der Beitrag . berichtet fiber zwei Beispiele hierzu. 
UpuMeHeline eoa MaeopaH 31B 0Ha3aTeJ1bcTBa cy[qecTBoBaIlHfl I'OJlOM0p4HbIX peweiuift 
aajwiu Rowu ui. JnyMepHuXIHepeHLHaJIb}Ib1X ypaBileuhtu B q aCT11hlx flOH3BOHb1X 
'rpeOyeT acnMnToTu'1ec1oft oLeuieH o6paTnux maTpilli. B /aHHofi pa6oTe flHBORTCH gsa 
iipuiepa H aTofi up061ene.	 - 
The application of the majorization method to proving the existence of holomorphic solutions 
of initial value problems for two-dimensional partial differential equations requires the asymp-
totic estimation of inverse matrices. The article presents two eamples concerning this sub-
ject.-

N 

The majorization method was first used by S. v. KOWALEVSKY [6] to prove the -, 
existence of holoniorphic solutions of the Cauchy probltii for partial differential 
equations, and it is still contained in in 	textbooks like L. HöRMANDR [5]

In the two-dimensional case it is possible to generalize the known results using 
asymptotic estimates for. Toeplitzian band matrices [3]. In what follows we first 
improve one result of [1] concerning the Goursat problem, and second we sketch 
the transfer of the method to the Cauchy problem with an analytic boundary. The 
majorization method for ordinary differential equations you find e.g. in W. W. 
GOLUBEW [4].  

Though the considerations can be done for more gefleral cases, we restrict our- 
selves for simplicity to the special/ differential equation with constant coefficients 

z(x, y) = /(x, y),	 (1) 
0	

fn 

where x, y are complex variables and /(x, y) is holonlorphic for -Ixl< r, yi <. We 
ask for solutions  

00 

z(x,y)= ,	z—.- -i,	 (2) 

which are are also holomorphic for x = y = 0 and satisfy given initial conditions. 
Substituting (2) into (1) we obtain the difference equation 

=fij  
for 1, j = 0; 1, ..., where at the right-hand side we have the coefficients of /(x, y) 
in an expansion analogous to (2). For i + j = m we introduce the notations 

Z(M)	 Z *- 1(m)	1.	 3 - ,+. m+n--I,	j $	- / i. ni—I 

IM
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so that we have to solve the equations 

	

= 1( m )	 (4) 

- for i=0,1,...,m and m=O,1,.... 

1. The Goursat problem 

-s	For a certain integer k with 0	k	n Goursat's initial conditions • read in the

homogeneous ease 

a, z(0, y)	.0,	z(x, 0) =0	 -	 (5)

ax,

for v=0,1,...,k-1 and =0,1,...,n—k-1. According to(2) and (3)these 
conditions imply  

ZO OO = =Z = 0, Z2kli = •.. = = 0. - (6) 

Hence the system of linear equations (4), (6) possesse fora fixed m the Toeplitzian 
band matrix

- fa,, •••a,	o 

a0
(7) 

a 

ak 

of size (m ± 1) x (in + 1) as coefficient matrix. We always assume that it	I. 

- T h'eo r ciii 1: If all A n are regular and the elements dT> of the inverses A m'	(dr)

possess uniformly for 0 1, j 5 m the asymptotic estimates 

dy )	O(m')	.	 (8) 

with a real number a > 0 and an integer 1 ^ 0, then the initial value problem (1), (5) 
possesses exactly one solution (2), which for a n arbitraryp with 0 < p < 1 is. holo-
morphic for 

x <pR/a,	Jyj <(1 — p)R	 ()


with R =min (ar, ).  
• Proof: Since the coefficients zij can be uniquely determined from (4) with (6), 
we only have to prove the convergence of (2) in the circles (9). If we diminish the 
numbers r and by an arbitrary small amount (but maintain the same notation) 
we have for the second coefficients in (3) by Cauchy's inequality 

f. (m) = O (fl (m - i)! rieim). 

Hence, inverting the system (4), (6) we find 

z	 j=0
=dT)f;(m) =O(mbomEcxii!(rn
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and in view of j!(m -	rn! and 

O((e/c.r)m) for o > cr, 
(e/c')i.= m + 1	for o. = 

j-0
 10(i)	for	< cr,	 - 

consequently z' = 0(7i'(rn '+ 1)! cttR_m), o, according to (3), 

zjj = .0((i + )' (1 ± j)!	 : 

The binomial forniula implies (1 + j)! pt(i - p)	i!j for an arbitrary p with 
0 <p < I. Thus we obtain 

= 0((i +j)' (pR/	((1 - p) R)-) 

and we see the convergence of (2) under the conditions (9), if we let tend r and	-. 
to their original values I	 - 

Remarks: In [1] Theorem 1 was proved under the a'dditional assumptions 1 = 0 
and p .= 1/2. Sufficient conditions for (8) you find in [3]. The statements are sharp, 
as can be seen from the following	 - 

Example: The partial differential equation 

z(x, y) - 2cxz 9(x y) + cx2z(x, y) = —h"(x) - 

with x > 0 possesses under the initial conditions (5) with n = 2'and k = 1 (i.e. 
=It	0) according to A. SCH1IIDT [7] the unique solution 

z(x, y) = q(cxx + y) + xq(ccx + y) - (y) - h(x) +'c	 (10) 

with q(x) = (h (-f-) - g(x)) -- and c = g(0)= h(0). Because of/(x y) = —h"(x) 

- cx 2g"(y) let r and be the radii: of convergence of h(x) and g(y), respectively.. Then 
q(x) has in general the radius of convergence R = mm (xr, ) and (10) is holoniorphic. 
in the intersection of jax + yJ < R, jxj <r and jyj <p. This domain cannot be 
enlarged in general. 1-fence it is possible that the solution (10) possesses for x =pR/cx 
and y = (1 — 3) B, i.e. for ax + y= B, a singularity. Condition (8) is satisfied 
with I = I. 

2. The Cauchy problem 

Now, for the partial differential equation of order n = 2 

az(x, y) + bz(x, y) + cz 9(x, y) = /(x, y)	 -	 (11) 

with ac = 0 and a curve 

y=dx+Xd,x'	 .	 ( 12) 

which is holomorphic for x = 0 we consider the homogeneous Cauchy problem 

z(x, y) = •0,	PZx(X, y) + qz(x, y) =0	 (13) 

8 Analysis Bd. 5, Heft 2 (1988)	 /	-
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on the curve (12) with p 2 + q2 = I and 

pd =i q.	 '	 (14) 

The inequality (14) guarantees that in the point x = y = 0 the tangent Of the 
curve (12) does not point in thedirection of the derivative-in (13). 

Since (11) is a special case of (1),, the corresponding difference equation (4) sim-

plifies to 
-	cz + bz 1 +az +2 .= Ii	 S	 (th) 

for i = O, 1, ..., m if we drop the u'pper index 5 m. On the curve (12) we have 
00	 /	00 

	

00	-	 i+j/ 00 

PZx + qz,, =	(pz 1, + qz1+,) ---- (d + ^' (lfX) 
•	 •1-0	 '	i•2. \	'=1	 - 

so that 'the conditions (13) go over into zoo 	0, dz, + 210 = 0, qz,, 1 + P210 = 0, 
i.e. in view) of (14) also 201 = zio = 0,' and. 

m-/-2 fm + 2\ -. 
L . d	2, - /m+1,	 S. 

=0 \	/	 (16) 
7( ( ±1) 

'where /m+1 and /m	 ; +l . are'linear combinations of values , \vith I -f-j < m + 2, which, 
for a fixed m, are already known if we solve the system (15), (16) recursively. 

Lenima: The determinant A o/ the system (15), (16) possesses the value 

A = (pd - q)(ud2 —bd +C) m+i .	 (17) 

Proof: By rneans'of permissible transformations of the last two lines, where the 
cases p1+ 0, q ='O and q ± 0 are to be treated in different wa ys, we can write A in 
the form

	

b	a 

	

C	 b	a 

:ii 
A	(pd	q)
	 (18) 

C	b 

-	dm.1	 cim	................... 1	-	0 

- 0	dm'	(m±l)dm	 1 

But the remaining determinant is the resultant of the two plynomiaIs
(19) 

and (2 ± d) m + 1 and therefore, according to B. L.' VAN DER WAEEDEN [8], equal to 
(ad2 - bd -1- C) m+i •	 S	 •	 •



I 
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According to (14)'and (17) we have the following 
Corollary: The 4jsiem (15), (16) is uniquely solvable, i/and only 1/ -dzs no Zero 

0/ the polynomial (19), i.e; if the tangent y = dx of the curve (13) at the point 
x = y = 0 is no characteristical line of the differential equation (11). 

Let us, denote the matrix of the system (15), (16) by A and introduce the notation 
A-' = (gj,) with z j = 0, 1, ..., m ± 2. Further we denote the zeros of (19) by a, 
And we introduce the notation 

k	I ak for k0, 

	

= lo for k < o.	
(20) 

Theorem 2: In the case when (14) holds and we have pairwise di//erent values a, fl, 
-d, the elements gjj o/ A' have the representations	 - - 

=	
- t-j-1 

	

 in -4-- 1\	I a k-	i+k'j-1 \] 
- V' I	dm+1-k I	 _ 	 (21 

k=;+i 	k /	\(d + a)"'	(d + m+1)] 

/or j rn as well as 

-	1	/ (q + pj9 ) x	(q 4- pa) fi' 
- (a - fi) (pd q) kT (d + a) m	(d + )m+1)'	

22 
-	1	

((d
(d+)a1	(d±a)fl1 

 -(a - ) (pd -q) 	+ a)m+1 - (d+ )'' 
Proof: With the shift operator V defined by 17z, = z_1 equation (15) reads 

a(1 - a!') (1 - flV) z = /12 and has in view of	 - 

(1- aV)(l- F')	a- fikl - aV 1- 
the secial solution  

1 =	
(a"' - 

and, consequently, for .j = i - v.- 2 the general solution 

1	1-2'	 m+2	th+2 

	

E (x'	 (23) 

	

a(cx - p) j=O	 5=0 

The coefficients u, and v, are to be determined in such a way that the equations (16) 
are satisfied, as well, i.e. that  

(dm+2	(m ±2 )dm+1	 ... (m+2)	 1' 

4m+1 
q (m±1) dm+pm+1. ... q+p(m)d 

x

	

	
1	(at_i_1 -	t_i_1)	 -	- 

a(a-) 
f(d + a)m+2	(d + fl)m2

	).(Vj) 
u1 	 /0	0 1 0\ 24

+\(qpa)(d)m+1(qp)(d)m+1 \0 ... 001/' 

8*
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i, = 0, 1, ..., m + 2. The last two columns of the matrix (a' - fl+i_1_1) con- 
tain only zero elements. Hence we find for the last two components of . 'it, (d + )n +1 
x u, i3 = (d ± fl)"' v, 

(^Mi-1

üm;2\ fd+. d+fl \1	 —1	/ q+pfl. —d—fi\
 ?'m+2/ — k + P q + P19) — (a-19) (Pd q) \—q — 1)C	d +9' 

and in view of (23) the representations (22) are proved. The first m + 1 columns of 
(24) are satisfied, if we choose by restricting on these columns 

= a±	(dm1, (
	

1) dm, (
	

1) 
dm-', ..., i,	(0++ii1), 

= a(a	
(dm+1, 

(m	1) 
dm,	± 1) 

dm- 1 , ..., i, o) (flt-i-1) 

since

a(a—j9) 
(o. dm',	± 1) dm, ..., (m + 1) 

d, i) (ai-ii)
In 

and a similar equation holds with respect to i3,. Hence in view of (23) the represen-
tations (21) are proved, too I 

Corollary: For i > j we can replace equation (21) by	- 

gii—
	

1	. (m + 1 \ dm +1_ k I___________	'' \	25 - 
— (a - 19) o \ k )	kd + a)m^1 (d ± fl)m+1)' 

and for i	the firs1 two terms at the right-hand side o/(21) vanish. The results also 
make sense for a P. 

Example: In the case rn = 0 we finin the usual way that 

b	a\' - 
1d2	2d	1 

•	\qdq±pd p

	

/ pd — q	apd -I - aq — bp b-2ad 

=( —(pd — q) d pc.— aqd	ad2 — c 
•	(pd — q)(ad2 — bd -r c) \ (pd —q)d2	bqd — eq— pd 2cd— bd2 

and we can check the validity of (21), (22) and (25). 

Estimates: Assuming that d, a, flare positive, we find from (21), (25) and (22) 
the asymptotic estimates 

((m + 1\	c	 flu	\	•\	-. O	
— .) ( + a) + (d-+ —fl) i ) dm?) for z 

= 1	•- 
o ((m ±	

(	a)1 + (d 19mj) dm-) for i> 1 

and	m as well as • - 

/	a'  •	I)_O()m+ (dfi)m	•



The Majorization Method for Lin. Part. Diff. Equ.	117 

for = rn + 1 and- / = m ± 2. The correctness of these estimates follows imme-
diately from 

fm±l\(m
.
+1\(m—j\ (m+l\<frn+l\f/ 

\ -k )	 rn - j/ kk— / - 1/'	k ) \ / / k 

Remarks: After having constructed the inverses A' and estimated their ele-
ments, it is possible to calculate the coefficients zi j df the solution (2) of the initial 
value probletn(11), (13) and to construct amajorant for (2). It is also possible to 
transfer the method as in [1] to- more geneal equations. We leave this to the reader 
and mention only that it is further possible to use the special solution of (11) con-
structed in [2], to add the general solution of the homogeneous equation according 
to A. Som1IDT [7], and to determine the arbitrary functions of this general splution 
from the initial conditions (13). 
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