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i’olysingular Operators and the Topology-of Invertible Singular Operators '

~G. KHIMSHIASHVILI

‘Dic Homotopie-Gruppen des Raumes der invertierbaren singuliren Integraloperatoren mit
Cauchy-Kern auf einer geschlossenen Kurve werden berechnet. Es erfolgt die Darstellung einer

Index-Formel fiir einen blsmgu]aren Integralopcrator :
M Al

BUUHCIAIOTCA FOMOTONHYECKIE rp) NnH NpOCTPAHCTBA-06paTHMAIX CHHTYIAPHBIX HHTErPaJlb-
HHX ONMepaTopoB ¢ AApoM Hown na 3aMKHYTOI KpuBoft. llpuBomncn (opmyna naa nHuexca
6ucmu‘y'1ﬂpuor‘o MHTErpaIbHOrO ONEPATOPA.

The homotopy groups of the space of invertible singular integral opcmtors with Cauchy kernel
on the closed curve are computed An index formula. for a bisingular mtegral operator is pre-’
sented. )

“

1. It is well-known that Fredholm 't,ype properties” of pdlysingular operators are -

connected with the invertibility of certain naturally arising families of. lower-dimen-
sional singular operators [1, 2]. It turns out that this link may be effectlvely used
_in order to express some basic properties of polysingular integral operators in terms
of homotopy groups associated with the corresponding spaces of invertible opera-
tors. The computation of these homotopy groups seems to be of an mdependenb
interest, and we shall first consider just this topologlcal problem. The main result
(Theorem 1) is obtained in a more general scttmg than is necessary for polysingular
integral operator theory. It should be noted that such an abstract setting uses
Jessentially the general theory of smgular operators -as developcd in [3], and our
“considerations become even more clear in the framework of abstract smgular opera-
tors. In the last sequel the above-imentioned link is described precxsely in the case
of a bisingular integral operator with Cauchy kernel (the general case is completely
analogous but much more voluminous). In the conclusidn an index formula for
bisingular operators is presented which provides an example of concrete appllcat,lons\
of the preceding topological results, and some generalizations and related results
are mdlcated

2. We start with-the generalities on Fredholm theory and abstract singular opera-
tors. Let E be a complex Banach space, and let L(E), F(E) (F,(E)), C(E) denote,
respectively, the spaces of all bounded linear operators in E, Fredholm operators
(of the index =) and completely continuous (compact) operators endowed with the
norm topology. For an arbitrary subalgebra A of IL(E) containing the identity.

operator I let GA denote the group of units of 4, that is the set of invertible opera- -

tors from A4. If A doesn’t contain I then GA will stand for the set of operators from
A which become invertible after adding to them I.

Evidently, C(E) is the closed two-sided ideal of L(E) and the factor-space L(E)/
C(E) also has a Banach algebra structure (Calkin algebra). Let ¢: L(E) — L(E)/C(E)

be the factor-mapping and let G denote the multiplicative group of invertible ele-

'
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ments of the Calkin algebra:. The fundamental rcsult on Fredholm operators yields
that for 7'¢ L(E) one has T € F(E) if and only if ¢(T) € G. Set Gy = q(F’ (E)) —
this is a clopen subgroup of @, and if GL(E) is connected, then G, is simply the
component of the unity of.G. Denoting by p: GL(E) —~ GL(E )/GC(E) the factor
mapping with respect to the Fredholm group and taking into account that the
factor group may be ldcntlfled with G4, one gets the fundamental commutative

diagram: '

-

GL(E) "> FWE) — FE) — L&
o8 A o 6 : (1)
GL(E)/GO(E)=y G - G — LE)CE). - :

Evidently, g is a homotopy equwalence and if GL(E) is contractible, then'p defines
‘the universal GC(E)-bundle. The topological structure of the Fredholm group GC(E)
and its classnfymg space has been studied very intensively, and one can obtain a
lot of information on subgroups of invertible operators by taking the corresponding
restriction of p. This observation will be applied for the class of singular operators
defined following [3]. : .

Let R be some closed subalgebra of L(Iy) and P — a bounded pro;ector in ]9,

- Q@ =1— P. We assume that the following condmons are fulfilled :
a) mvermblc operators are dense in B;
b) if A € R and at least one of the operators PAP |im P or QAQ | im Q is semi-
Fredholm then 4 is invertible in R; ,
c) for every A-€ R the commutator [P A} is completely continuous.

‘Definition [3): An operat-or‘o'f the form
. C=AP+BQ+T, ‘ . : (@)

where 4, B E R, T € C(E), is called abelract singular operator (with coeffxclcnts in R).
If T = 0, then C is called a coupling operator with coefficients 4 and B.

The operators of the form (2) form a subalgebra S( ) of ]}(E’), and We shall -con-
sxder the group GS(R). )] | '

' Proposﬂaon 1[3]: An operator C of the form (2) s Fredholm zf and onéy z/ s
coefficients A and B are invertible 7n R.

It is already évident that the t,opologzcal structure of GS(R) is determined by
the group GR, in particular, working on homotopy groups’ level one has to compute
7,(GR). This may be accomplished for an arbitrary finitely génerated subalgebra.

" with commutative symbols, but for our purposes the following special case is suffi-
cient. : ' '

Let U € GL(E):be an invertible operator with the properties:

1. both the operators U and U-1 have the spectral radius equal to 1;

2.-there exists a projector P € L(F) such that

- UP—PUP vr =#:PU, PU-1= PU-P;
3. dim cokcr (U] im P) < oo. i

Let E(U) denote the closure of the subalgebra generated by U and U-1. It was
proved in [3] that the .algebra R(U) has the properties a)—c) and, moreover, the
symbol homomorphlsm h: R(U) — C(SY) is defined, where S!' = {z € C: |z] = 1} i
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the unit circle. If R(U) has trivial radical then % is an isomorphism into. For example
this is just the case if U is a unitary operator in the Hilbert. space H. )

One can form the a.lgebra S(U) = S(R(U)) and define the symbol k(C) of an opera-
tor (2) to be the pair (h(A), h(B)) The symbol is called non-degenerate if both the
" functions k(4) and A(B) are non-vanishing on: §'. Recall.that for a non- vamshmg
function f: St — C the index is defined to be the mteger

ind f = — [arg f]s, - : .
| : / 2n [arg /15 » , C e
where usual notation for the increment of the expression in square brackets along S!
in‘the positive direction is used. Now the 7ndex of the symbol'is defined to be.

ind (C) = ind h(A) —ind A(B), } e

and the main result of the Fredholm theory for ,abstracb smgular opera.tors w1th
coefficients in B(U) may be stated as follows

. Proposition 2.(3]: An operator C € S(U) 8 Fredholm if and only of tﬁe symbol '
h(C) s non- degenerate and in this case ind C' = ind k(C).- The couplmg operator C
of the form (2) 7s tnvertible if and only ¢/ ind K(C) = 0.

Usmg this propoeltlon one can easﬂy venfy that the restriction of the bundle

projection p on GS(U) defines a trivial bundle and its base may be identified with
the set H(U) of non-degenerate symbols. Our problem is thus reduced to the com-
putation of n,,(H(U ): Note first that H(U) is a topological group'and it is easy to
sec. that its group of (connected) components 7o(H(U)) is naturally isomorphic to Z,
the isomorphism being defined by assigning to A(C) the integer ind A(A4). Further,
dealing with homotopy groups one has to fix a point in H(U). Evidently, all com-
_ponents are homeomorphic, so that the answer depends. neither on the choice of the
component, nor on the choice of the point within the component. We shall assume
that the unity, that is the point e = (7, 1), is fixed, where 1 stands for the function
identically equal to 1. Throughout the text we deal only with spaces which are
.. groups-and we always assume that the distinguished point is the unity.
" In the case of a unitary operator-U in the Hilbert space I one has the 1somorphlsm
h of R(U). and C(S, C), so that the symbols'may be arbitrary pairs of continuous
functions on 8!. Using the usual radial retraction of C* = €\ {0}. on S it is easy
to verify that P

A (H(U)) = na(D), where D ={(f,g) € (C (Sl SY))2: ind f = ind g}.

It may be proved by some additional homotopy arguments that the same relation
holds for an arbitrary (not necessarily unitary) admlsmble invertible operator U,
+and 1t, remains to compute 7,(D).

Lemma The groups -z,,(D) are gnen by tke relations P
o =LZ®%, 7=0, nx2. . @)

For the proof it is sufficient to deal only with C’(‘S1 S‘) becauae every “component
of an element of D may be homotoped independently. Having this in mind consider
first an arbitrary topological group X, and let G"(X) denote the group, of continuous
mappings of the sphere 8" to-X w1th the. operation induced from the group law
of X. We assume that all spaces of continuous mappings under consideration are
endowed with the compaclt open topology. Let G,"(X ) be the subgroup of all mappings
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homotopic to constant mappings. Clearly, mq(Gy™( (X)) = - 71g(X). Let us introduce a]so
analogousgroups G"(X, e) and Gy"(X, e) for the mappings of the pair (S, &) into
(X, ¢), where s is some fixed point of S" and e is the unity of X. Note that in the
definition-of the latter group we could as well use free homotoples instead of homo-
."topies of pairs. This fact follows from the possibility of shifting the image of-s under
.the homotopy to e, which is due to the group structure of X. One’has also G"(X)
= G"(X, e} X G,, where the group of constant mappings G, is naturally isomorphic
to X. Consequently, my(G") ='nmg(Go") + mo(X). By defmltlon m(G"(X)) = [S7, X],
where square brackets denote free homotopy classes, so that

v

(57, X = mfGn(X, 0) + 7(X).. o 4

Using agaln the group structure in X it is easy to see that -zo(G (X e)) = 7,(X,e),
* which combmes w1th (4) and ylelds . "y . .

‘

C (X, 0 =[S, Xl X _ ' , )

- Consequently, for an arbltrary group X the problem is reduced to computation of

"free homotopy groups. For X = C(S%, §!) it is fairly simple due to the remarkable -

" property of the circle 8' = K(Z, 1 ) One has, according to the general property of
Eilenberg-McLane spaccs : - : '
Z®@Z for n=1

VA for n=2. (6)

[S*, (S1 SH] =[S ><S‘ S‘] = 11‘(S" Sl) _{
Now, taking into account (3) and reducmg (6) modulo ao(X) = 1Z, we‘get finally
~ the relations (3) i '

Gomg further let us agam restrict ourselves to the case of the umtary operator
in the Hilbert space, then by the well- known result of infinite dimensional topology

0 forn even
(GC(H)) { Y/ for n odd:

Combining t,hns with the precedmg remarks on the’ produc'o structure of GS(U) and
" with (3) we obtain immediately our main result.

Theorem 1:.Let U be . 'umlary operator in the complex separable Hilbert space
salisfying the condztzons 1—3. Then the homotopy groups ﬂn(GS(U )) are expressed by
the relations . .

\

=17, nx_z@Z@z,, =0, s = 7 “k=1. (1)

Analogous results are valid for an arbitrary admnSlble .invertible operator U
acting in* some function space of L,-type, which is 1mportant for applications to
singular bperators in the spaces of integrable functions. It is also worth noting that
the case of matrix singular operators with coeffments in R(U) may be treated as
well by the ﬂmllar arguments.

We are now going to show how these results apply to smgular mtegral operators '
with Cauchy kernel on-closed curves. It follows from [3] that such operators have"
the form (2) for suitable choice of U and P, so that we have only to reproduce some -

s

definitions which are neceseary for dealmg with the index problem for blsmgular -

' ) operators
Let K be a closed LJapunov curve in C. For simplicity assume that. K is connected
.w1thout self- mtersectlons (thus homeomorphlc to the circle) and the bounded domain
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defmed by K contains the origin. The canomcal singular mtegral operator Sy is

,defmed on the functions of Hélder classes by the formula . .
¢ . t) = — . .o
.(Shm)l( ) ’m. — du, AL o (8)
. F A

" It is well-known that (8) defines a bounded linear operator in the spaces L,(K) for
1 < p < o0, and Sg? = I. This enables one to introduce the projectors P = (I + Sx)/2
and Q@ = I.— P, Recall that classical singular integral operators with continuous
" coefficients are defmed to have the form &/ + bS; + T, where &, b are operators
of multiplying by the continuous functions a, b € CK,C), Te C(L,,(K) All such -
operators form an algebra Z,(K) which ev1dcntly has the form S(M), where M is
the algebra of multlpllcatlon operators arising from’ continuous functions on K. In .
the case when K is the unit circle S! the algebra M coincides with R(U), where U
. is 'the operator of - multiplying by the independent variable: (U(/)) (t) = tf(t). We
see that for K = Sl and p = 2 our theorem applies directly to get the desired con-
clusion. :

Co rollary The komotopy groups 7,,(22(8‘)) aré gz'ven by the formulas .

For p = 2 one-of the mentioned generalizations of thc theorem is apphcable For.: :
.~ general curves K, of course, M == R(U), but the whol¢ scheme remains valid and
* one may easﬂy obtaln an analogous result. :

“Theorem 2: The homotopy groups "z,,(Z (K ) of the spdce of tnvertible singular
‘integral operators with Cauchy kemel on'a szmple closed L7upunoz curve K are given
by the formulas (7). : :

We would also like to' point out that similar results ho]d for curves with several -
components and'for matrix smgular operators

"~ 3. We turn now to. bisingular ‘operators. Let K, and K, be simple closed Ljapunov
- curves in complex planes of independent variables z; and z,. Suppose again that
_the point 2; = 0 belongs to the bounded domain defined by the curve K;. Consider
‘a bounded linear operator defined in the space L,(K, X K;) by the formula

7 ' ' .

ay(ty, uy, &)

fluy, lQ) du,

. ' 1
(A/) (t1, t2) = aolty, &) (4, &) +- ;f us — 1
. ' .
1 a2(tl: 12’ u2) '.,
— fuz——tg—/(tl’ up) @2 .
(37 tl: Uy, tz: 712) ' ’
T e ff w— b)) ( — & )/(ul, Uy} dul du,, . (9)

where g € C’(Kl X K,) and the functions U1y Uy, g ATE Holdu with rcspect to th(,
whole set of their variables. The. minimal Banach subalgebra of L{L;(K, X Ky)
- containing all the operators of the form (9) is called the algebra of bisingular epera-
_ltors on K, X K, [1, 2]. This algebra contains all compact operators, which enables

one_ to apply general considerations on symbols and to introducc a quadruple of
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"operator valued functlons
’ (AF(‘) f) (f2) = (“0(51’ ly) :t ay(ty, 4y, 12)) f(lz)
' _1_ f ay(ty, b, Up) &= @yally, 8y, b, Us)

L Uy — &y
K. .

f(ug) duzg

' ' ; - ’ (10)
(Aei(tz,) 9) (&) = (“0(51: ) & ay(ty, tg, 32)) g(ty)
i f ay(ty, uy, &) = aralty, g, &y, b)

k1) u, — 4

+

glwy) duy.
K,

Here /‘ € L,(K,), g'€ L,(K,). Assigning such a quadruple to an operator of the form
(9) one gets a homomorphism of the algebra of bisingular operators to the product
of  algebras of norm. continuous operator- -valued mappings defined on one of the
. given curves and taking values in singular integral operators in the I,-space on
another curve. The crucial result on bisingular operators, claims that the operator
(9) is Fredholm if and only if all the operators 4;% are mvertlble for all values of
parameters [1, 2]. Onc may note that every famlly defined by (10) generates some
element of the fundamental, group of the space of invertible one- dlmensxonal opera-
tors, and we’ll use this observation in order to introduce a sort of numerical in- -
" variants for A. For this purpose a system of generators in an(Z (S‘)) =73 should
be chosen. Let us take the homotopy classes of the following one-paramecter families
of invertible operators: A4,(¢) = (P 4 @, 4,(t) = P + Q, where P and () are gener-
ated by S, and the third is given by the formula

- fﬂ—udu, t E Sl. Y
27 u .
st g .

, This allows us to fix an isomorphism J: 7,(GZ,(S!)) -> Z3, and using the natural
identification of the spaces of.singular operators on the curves K; with the corres-
ponding spaces for 8! we are now able to assign to'every family of the form (10)
a triple of integers (Jy, J, J3), which is called the generalized index of such a family.
Our assumptions imply that for the components. (10) of the symbol of bisingular’
operator (9) the generalized indices are well-defined, so that we have only to combine
the corresponding integers in such a way as to obtain ind 4. This problem admits
a simplification' by means of some special representation of bisingular operators
developed in [1]). Namely, every operator of the form (9) may be rewritten in the
form 4 = A°4, + T, where A° is a bisingular opemtor with exterior coefficients;
A, has the symbo] of the special type (with values in the Fredholm group) and T is -
a compact ‘operator. Recall that an operator with exterior coefficients has the form
(9) with the functions ai, «,, a,> depending only on (¢,,,4,). It is sufficient to solve
our problem only for operators A° and A,, as follows from additivity and compact
invariance properties of the index. Both these special cases are completely analogous
so that we treat here only operators (9) with exterior coefficients.

Note first that the components of the symbol of an operator’ 4 with_exterior
* coefficients are continuous families of coupling operators, and from, the definition

of the generalized index it is clear that they have J; equal to zero. Moreover, we
~ have also J( it ) = J(A (¢ ) This may {)e derived from the general thcory of
blsmgular operators [1] and explicit expressions for ‘the introduced numerical in- *
variants in terms of indices of special combmatlons of coefflcrents of 4. Now we
are able to present the final result of the- paper )

(As(l) N @) = /) + 1

'
~
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PropOSltlon 3 The Fredholm index of a Fredholm bzsmgular operator (9) with
exterior coefficients is given by the /ormula

. ind 4 = ( (A *) — Jo(4, +)) (Jx(A2+) - Jz(A2+))

In order to prove this formula it is sufficient to note that both its sides have
honiotopy invariance. property, so that one can verify it only for the simplest opera-
tor with monomial coefficients, which follows easily from explicit formulas for
solutions of the correspondmg homogeneous linear equation [1]

In conclusion we would like to mention that 'similar results are valid for poly-

*_singular opera,tors and for abstract. bismgu]ar operators defined i in [1].
N
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