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An.Existence Theorem for a Quasilinear Hyperbolic Boundary Value Problem 
Solved by Sèmidiscretization in Time	- 

V. PLUSCIIKE	 -	 -. 

T5nter Verwendung -der .Rothe-Methode wird die Existenz einer Losung cines quasilinearen 
hyperbolischen Randwcrtproblems bewiesen. Uber die Koeffiziciiten und die rechte Seite wird 
dabei lediglich Intcgrierliarkeit vorausgesetzt; Unter diesen schwacheri Voraussetzungen kann 
die Existenzeiner Teilfolge der Rothe-Approxirnationen gczeigt werden, weiche (in einem 
schwachen Sinne) gegen einc Losung des . Problems konvergiert. 

C flOMOUhiO MeToga Pore oFa31snaeTcn cyuecionauire pelileulin 1paeBofi 3aa q 1l gnfi 
}na3HjIuh1eflI(oro I-IInep6omI'fecIoroit44epeHlu4asIbIIoro ypasilellitH. 0 HO 4MIiuuneuTax it 
npanofl qacTu ypanHeHuli opu )TOM npeanoiaraecn ToJIbHO nHTei - pnpyeMocm. Ilpu yaaH- 
host npegnoiioetitii stoiio joiia3aTb cyuecsoisaiine cxo;tiueilca is onpeaeieiiosi 
(cia6or.t) cMblcne rIo( h1ocJIea0 BaT eJ11,H0cTu annpotciitaiiiit P0Te .K peiiieiutio npoGMeslhl. 

By the use of Rothe's method there is proved the existence of a solution f a quasilinear 
hyperbolic boundary value problem. On the coefficients and the right-hand side only inte-
grability is assumed. With such weak assumptions-there exists a subsequence of Rothe approxi-
mations that converges (in a weak sense) to a solution of the problem. 

1. Introduction 

The Rothe method developed in [6] has been used by niany authors in the investi-
gation of parabolic differential equations (e.g. [1, 3, 5]). In recent years this method 
has ,been applied to-prove existence of solutions of hyperbolic problems, too [2, 51. 
The principle of the Rothe method, also called sernidiscretization in time-,consists 
in discretization of the time variable, whereby the hyperbolic problem is approxi. 
matecU by a sequence of elliptic problems. The aim of the present paper is to prove 
existence of a solution of the initial-boundary value problem for a quasilincar hyper-
bolic differential equation system with weak assumptions . on regularity'  of the coeff i-
cients.  

In the cylinder QT = C x (0, T) R2 x R, [0, T] =1, we consider the system 

	

+ A 2v, + A 3v + A 4v) -	( AA5u ±A2u + A 6v, + A7v) 
ax	 Oy 

± B 1 u + B j2u	B 31 + B14v	1315v + B 6 v1 +	

= /, 

_	(A 8v, + A gv, + A 3u ± A 7u) -	(A1ov+.Agv+ A 6i -+ A4u)
ay 

B 1 + B22v + B23u, + B24v1 . + B25v ± B25v1 +	= /21
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where A. = A,(x, y, 1), B1k = Bk(x, y, 1, u, v), /k /k(X, y, 1, u, v), v = 1, 2, . .., 10, 
I = 1, 2, k = 1, 2, ..., 6. Additionally we prescribe initial values for t = 0 and a 
Diriehiet boundary condition on P = aG x I. By means of complex combination 

x + ly, z= x - ly, w = u + Iv with the partial eomplex derivatives 

	

a	
(ax.a\

	a	i/
=+i—1,	 1az*	2 	ay /	a	2 \ax	ay 

we transform the system (1) into one complex differential equation	
I 

[aw + a2w2 .	a3(w)* + a4 (wz .)*]	 - 

- --_ [ a3w * + a 2 *w, .+ a6(wø)*. + a4(wz)*} 
az 

+ bw + b 2w. + b3(w2)* + b4(w2.)* + bw j + b6(Wt) *. +	= /.	(2)012

The coefficients a = a(z, t) E C, where a 1 , a5 are real-valued, b,	b(z, 1; w) €• C, and
/ = /(z, t, w) E'C, have been derived from the coefficients andright-hand hide of (1). 
Briefly, we also write	 S

	

•	(2)

The boundary and initial conditions for (2) are 

w(z, 1)	0	for (z, t) € 1''),	 (3) 

w(z, 0) = ,o(z),	-- (z, 0)	V), (z)	for 2 € G.	 (4a,h) 

Remark 1: The system (1) is strongly connected. The specialization of some co-
efficients is required to obtain an operator 4 which generates a symmetric bilinear 
form .). However, many physically important systems are enclosed in (1), e.g. 
the equations or equilibrium of dynamic elasticity theory (' + u) grad div iL + 1uAü 

—	= f, ii = (u i , u2 ).	 S 

2. Notations 

Let (•,.) and (., .). be real inner products in the complex-valued spaces L2 (G) and 
L2 (QT), respectively. Then and Ik)QT denote the corresponding norms. By W21(G) 
we denote the well-known Sobolev space obtained by the closure of the set C0(G) 
in the norm of W2 1 (0). We norm the space W 2 1 (G) by 

IIWIII= ( ff (lt : I 2 ± ! 2) dx 

Furthermore, let c4( . ,.) be a real bilinear form on W2 1 (G) obtained by integration 
over 0 of the term 4w . q and application of the Ostrogradskii-Gauss formula. We 
write i((., .)., if an integration over the time interval I is carried out additionally. 
Now we consider a Bnach space V with a norm I • Iv and a set of abstract functions 
W(t): I --> .Y.	 - 

1) The homogeneous boundary condition (3) is formulated without loss of generality, because 
inhomogcneous boundary values with sufficient regularity may be transformed into (3).
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Definition 1: We denote by L(I, V), 1 p	oo, the set ofall Bochner mea-
surable abstract functions w: I	V such that 

\I/p 
kt'1IL9(1.V =

	

	IIw (t)IIv' dl)	for 1 s- p < 00, 
o• 

IIwiJL(,v) = sup ess Iw(t)IIv	for p = 00. 
tEl	 V	 . 

In L(I, V) the weak* convergence, denoted by	is used. 
Definition 2: C(I, V) denotes the set of all continuous functions w: I -* V 

with the norm  

V	 lwIIc(,.V) = max 11w(1)ilv; 
tEl	

V 

CO - 1 (1, V) - is the subset of Lipschitz continuous functions with 

11w(t) —w(t')IIv 5L . It — l'	for. tEl.  

Detailed information about these spaces of abstract functions can be found in [7, 8]. 

Now let a subdivision of Qr,by hyperplanes I = l = . h, h = T/n; j = 0, 1, ...n, 
be given. Furthermore, let g,(z) be given functions n 0 x {t} :or restrictions V 

g,(z) = g(z, l) of with respect to I continuous functions on Q, respectively. 

Def inition 3: We denote	V	
V	 V 

Ag,=g,—g7_1,	A2i=J(j),	 V 

"(z, I) =g, (z) for I	(l_', I,],	V	

V 

V	 (z, I) =	€ g1_(z) +	g1(z) for I E [t, I}	. 
 

piecewis6 constant and piecewise linear interpolations with respect to I, 
resp.). Moreover, let	 V 

(z,l—h),	
Th+gfl=gfl(Z;€+h)V for tEl, 

U" -	 .	 V 

If there is no other specification, we set g(z, I) = g(z, 0) = g0 (z) for £ < 0. For the' V
 sake of simplicity we use the abbreviations I =	l), Q1 = 0 x I, and write 

V	

= e/az, U,z = ag/az* .	 V	
V 

3. ASSUflPljOS and discretization	
V	 5	

V 

Throughout this paper we impose the following assumptions on the problem (2)—(4): 
(i) Let 0C he a simply connected, bounded domain; aG E C°". 

V	

(ii) 'o, Wi E W 2 '(G).	 V 

(iii) Let 

a i E L 1 (I, L(G)),	!a(1 ± ô) -	(., I)IJLG) dl 

	
V 

for all 6,- 161	â, where a(z, t) =0	
'

for t q I. Further we asgume: Caraiheodory con-	
V 

V d1t1o1: b 1 (z, £, w) and /(z, 1, w) are measurable on QT for all w € C and continuous in w
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for a.a. (z, t) E Q: Growth limitation: 

b(z, t, w) I	B(z, t),	B E L1 (I, L(G)),	 (6) 
I/(z, 1, w)l	K . (F(z, ) + IwI),	F E L1 (i, L2(G),	 (7) 

,'forallwEC,a.a.'(z,t)EQ,i=1,2,...,6.  
(iv) For any Pi, p E C let the condition 

Re [(al p, ± a2p2 + a3p1* ± a4p2 *) p* 

+(a5p2+*piJa6p2*+a4pi*)p2*1 

	

a (i p 1I 2 ±lp2J 2),	>O, 

• be fulfilled a.e. in QT-

Remark
	- 

-. 	2: There is no assumption on continuity of a, b 1 , , and /. In particular,, 
condition (5) permits jumps with respect to t of the coefficients a 1 . (5) dc,69 not imply 
the existence of weak derivatives aa1i0t. 

Remak 3: Assumption (iv) implies strong ellipticity of the operator ít. For the 
example in Reipark 1 this condition is fulfilled with a =.> 0. 

We now divide the time intervall I—' [0, T] by equidistant points t== j . 
• I = 0, ..., n, into n EN  subintervals. By semidiscretization of (2)—(4) we obtain 

n - 1 elliptic boundary value problems 

•	

+ w1 +	(w -	 4 w12) = h in G,	 (2), - 12

thi = 0 on aG,	 •	•	.,	( )1 - 

I = 2,3,..., n, with the start condition 

wo= po, ' w 1 = po-h- h 1 .	 : 

Here the operator 04j is obtained from 4 by replacing the coefficients a 1 by a 11 , (2, is 
defined as

Awi = b 11w, + b21ws + b3 ()* ± b41 (w,$)* +	(b 314w1 ' + 
b61Jw,*), 

where	'	 •	•	 •	- 

a(z)=.
	

a6(z,.t) di,	b,(z) =-/ b1 (z, t, w)i (z)) dt, 

= ..f/(z,t w,_j(z))dt,	z= 1,2	6,	= 2 3,	,n 

This kind of discretization allows the renouncement of continuity with respect to t. 

'Lemma 1: For w11 E L2(G) and h'> 0 holds a 11 € L(G), b1 € L(G), /j E L2(G), 
i=1,2,..'.,6,j,=2,3,...,n.	 "	•. 

•

	

	' '.Proof: For a Bochner integrable function U: i —; V the integral fu(t) dt exists 

and belongs, to V. -Owing to (iii), 'therefore we have a11 € L(G), b1, E L(G), and
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1, € L2 (G). In partidular, the relation 

f ?t(t) di ll	I IIu ( t)IIv dt 
I,	-	V 

yields	 - 

Ii/111	
-4-J" IIF(, t)II dt 4- IC	 (8) 

(cf.[7]) I 
Moreover it is possible to choose h0 > 0 such that 

-	(II b5IIc + IIb6jIIL(o,).	0 for h	h0 ,	= 2, 3, ..., n. 
h2	h 

This fllows immediately from 

Lenima 2: For every E > 0 there exists h0(e) > 0 such that 

•	f II B(, t)LG dt <e for h !E^ h0 ,	= 1, 2, ...,n. 
Ii 

Proof: We consider the function g = II B IILc,Q(G) € L 1 (I), g = 0 fort <0. For e> 0 
and every point t € I there exists an interval 

= (1— 6,t) with fdt <4-.	 - 

The set of intervals I6 , t is,an open covering of the compact-interval I. Hence, by the 
.Borel theorem, I is covered by a finite number of intervals 1 6,t of length 6	&nin-
For h0(e) < 6,dla and every I, there, are two of these intervals 16j with 6	6m1n 
which cover I,. Therefore . we have f g dl < e I 

-	 -1, 

Owing to assumption (iv) and Lemma 2, for a given w1 _ 1 € L2(G), the linear 
elliptic boundary value problem (2),, (3), has a unique solution w, E P2'(G) [8: 
Theorem 25.3], which satisfies the integral relation 

) +	) +	(42w ) = (/,	for op,E W 2 1 (G).	(9) 

In this relation we have 
•	

1(w, ) = Re f  [ a 11w ± a2 w. + a3j (wt )* + a4j(w:.)*1. ()* dx dy 

+ Re f  [a5 ws + aw + asj (w.)* + agj (w: )*]. (.)* dx dy 

for w, q.' € 11121(G). 

Starting with w0 and w1 from (4)0 the functions w2 , w3, ..., W. may be calculated 
successively. By piecewise linear and piecewise constant interpolation in I, respec-
tively, we obtain the approximates' is"(z, I) and ü5'(z, I); respectively (Def. 3). Thus 
the quasilinear hyperbolic problem has been approximated by a sequence of linear 
elliptic problems. 

11 Analysis W. 5, Heft 2 (1986)
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II 

4. A priori estimates 

First we formulate a version of Gronwall's lemma. 

Lemma 3: Let u E L(I), g € L1(I) be real functions, where g 0 on I and c E R 
isaconstant. I/ the inequality 

U(t) ^sc +fg(s) u(s) ds	 (10) 

hOlds for all t € I, then the estimate 

u(t) ;5 c - exp {i U(') ds} 

is valid for all lE I. 

Proof: Since g in L1 (I) can he'approximated by nonnegative continuous func-
tions it is enough to prove the assertion for g•E C(I). By means of	". 

fg(s) [!(s ' ) dsi] ds 
= k ± 1 1f

0tg(s)ds]k+1 

it follows from (10) by induction that 

it 

•	u(t,) 	c 7 -.( I g(s)ds I '+ ;,?.+I(,) . k=Ok!	j 
\o 

	

holds, where	 S 

R1(t) = f g(s) f.982 .. .f g(s,) u(8 1 ) ds	... d81. 

Denoting M = sup ess {Ju(t)J:t € I} we get 

(n ±')! (/s) de)	- for £ E. 

Consequently, because R.1 (i) -. 0 for n - øo uniformly on I, the assertion follows 
bypassing to the limit n -oo I 

Lemma 4: The expression	.), j = 1, 2, ..., n, define real bilinear forms on 
*21 (G) tith the properties	 • 

a) a I IWII,2	Jl,(w, w) for w € W2 1 (G) (positivity), 
b) cit5 (w, q)	45 (q, w) for w, q € 14'2 1 (0 ) (symmetry). 

Proof: The bilinearitv is obvious. Assertion a) is a consequence of assumption 
(iv), and assertion b) can be proved by an elementary computation since c47(., 
a 17 , a5 are real quantities (i.e. a 1 , = a 1;...) I
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Furtheriiore we need an identity. As iseasily seen, for a symmetric bilinear form 
(.,.) holds 

2(w 1 w) = (w5, w1) L (w_ 1) vF1) + (Jw1 , 4w).	 (11) 

We shall now show the .boundedness of all w, independent of the chosen subdivision. 

L e in ma 5: There exist constanis M 1 , M2 independent of t and n such that the esti- 
metes	 S 

•	

D 

hold for all h :< h0 , j = 1, 2, ..., n.	'	 •	 "	
0 

Proof: We. substitute the , 	functionin (9) by ç, = 1w, and obtain with 
q,:=(l/h)4w	 -	- 

(w1 , 4w) + (A q j , q1)	h . ((/, q5) - (2w1, g1)). 
Due to (11) we can estimate  

1 (w;, w) - 1 (w_ 1 , w) +, I q II 2 - lq-1II2 

2h . ((/, q1) -	qj)), 

and  

—	4(w1, w) - 4_ 1 (w_ 1 , w_ 1 ) + JJqjJJ2	Iq-1II2 

[(w, w) -	 w)] ±2h(II	HII + IIwlI• Iq1II). 

Summation over j = 2, 3, ..., p and application of (8) yields -	-

W") + JqI2  

0'	 0	 p 

-	 :5 4 1 (w, w1 ) -I- 11 q 111 2 -f- 	,[4(u;1 _ 1 , w)_ 1 ) - .4 . 1 (w 	w,_1)] 

	

j=2	 - 

+ f (2K f IIF1I dt . JJqjjJ ± 2Kh IJwji II IIjI + 2h IIc wjII IIq I.	(12) - 
j2\  

Since we-have B( . , t) wj € L2 (G),B w5 € L1 (I,, L2 (G)), it is possible to estimate 

' Ik 1w,II	PJIbjw),+	+ b6qj*j dt  

-	-	'	
2JIB(.', t)L(c) dt . (f IIw IIi + IqII),	

0• 

2h 112 jwi ll - JJqjJJ

	

	I IIB( . , t)JL(c) dt (4 ' II w th + 5 Iq1I). 
I,

/
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The first items in (12) may be estimated by the use of the start condition (4): 

w1 ) + 11q1112	
1 

= i(o, o) + 2k	+ k2 1 ( 1 ,	+ IIiI12 

ff [f( aio + ..) ()* + (a5O2 . + .)(oz.)*)dt] dxd 

+4 
1	

I IIa , t)IIL(G) dl (II0II12 

1.2.....6 

	+II?pijtj2) 

+ 4k	max	f a 1 ( . , t)IJL(G) dl I i II 1 2 + I11II2 

ff [(a. 
± ...) 

+ (
	

-- ...) (.)*] dx dy dl + cj 

max f -1 
i=1,2.6	Ita(, 1) — Tha l (-, )ILG) dl . 4 I01112+ 

C,	
C2. 

This is true since the coefficients a i satisfy a i	0 for 1 <0 and (5). Applying (iv) 
thus we can continue in (12) 

a 11w,11 1 1 + lIq I 2	c2 +	[ j (w -1 , w1_ 1 ) -	1 (w 1 , w1)] 

+ Z [2K f JI F11 dl . max jjq j jj + Kh(IIwII 2 + IIq112) 
=2	 j-=2.3.....p 

+ I IBM J(G) dt(4 1 1wiII II ± 5 IIqJI2) 

As proved in Lemma 2 the term f II B IILOG dl can be made arbitrarily small for all 
I, 

h :s- h0 if k0 is sufficient small. Now we choose 40 = m in {K14, ho(a/8), h0(1/20)} and 
obtain, by subtracting the terms with IIw 111 2 , 11q,112, 

a	1	 P 

- II w II1 2 -4- --	 c2 -4-- 2	, 	w,_ 1 ) - .41_1(w,_1, w_1)] 

p—i .	p—i 
-4- max 11 q1 11 . 2K IIFII L( I,L(G)) + E Kh. 11 w111 2 +	Kh 1qII2 

+	I JB
	 dl. (4 IwJ i 2 + 5 11q1112) 

j=21 

The Friedrichs inequality for w1 E l4'2 1 (G) yields IIw 1 2	C IIw II1 2, and by further 
estimation we get 

2a Iw112 H- IIq II 2	c3	C4	max I!q,II 
n	 -	-
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p—I	 p—I 

+. 4 f [4,+1 (w,, w) - 4 1(w w1 )] -f- ' 4Kh(C Ikv1111 2 + IIq51I2) 

+	fIIB ( . , 0I1L(G) dl(16 lIwII i 2 + 20jIq1l2). 
j-I Ij	 S 

In other notation (see Def. 3) this is equivalent to 

2a II3 1a(., )ll 2 H-. Il(	)ll 2 < C3 + C4 SU lIll 
'El 

+ f ff	-	...)(wn)* 

((T/, + a5	(q)	. +) (?.).}dx dJ dt 

H- f [4K ( C HIJ12	II'Il) -I- 11 13(, )flLw (16 Iii h lI 2 -4- 20 IIIl)1 dl 

for I € 1,,. Hence, we obtain 5•

 2aIIi5"(•, 1)111 2 + ii( . , 1)11 2 < C3 •- r-4 P U P Il, 011 
'El 

-	

±f [ 5 . 5fliX	I1-ra1	(iIJL(G) + C6 + c7 JIB( . , t)IILc)] 

X (2a IjTh"( . , 4)112 .4-.	1)112 dl 

for all 1 E I since p, 2 p	n, is an arbitrary number (it is obvious that such an 
inequality holds for I E [0, h], too). On this inequality we can apply Lemma 3, 
which implies, due to (5) and (6),	 .. 

2a ii"(- 1)11 i2 + Il	1)112C3 + C4 sup Il( t)Il ed 
tEl	•	/ 

for I E I, h	h0, that means 

2a - SLIP IIII i 2 + sup IIII 2	c9 + c 10 sup II"lI. 
tEl	 tEl	 tel 

The Young inequality 2ab a2/e + b2 completes the proof with	- 

2a . sup IWII 1 2 + 1 sup IIII2	c9 + --- c0 for h	h0 • 
tEl	-	 2 tEl	 2 

The existence theorem in the next section is based essentially upon this lemma. 

5. Existence of a solution  

The assertion of Lemma 5 means 

sup Iiv"(-, t)II	flu,	sup II i "(•, ')ll ^5 M"	 (13) 
tEl	 -	 tEl 

sup ( . 1)	MI.
10 at
	 (14)
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Moreover, the estimate I IAwjII ;5 M2h yields a Lipschitz condition 

IIu(, t) - is"( . , t')) 	M2 I t - I'I for t, 1' € I.	 (15) 
and the property 

SU P ü' - 	MA,	sup II u' - rhW'1 II	MA .	 ( 16) 
tel	 tel

We can now prove the existence theorem. 

Theorem: Let the assumptions (i) - (iv) be fulfilled. 
a) The problem (2)—(4) has a we solution	- 

€ co1(I, 112 (0)) n L(I, W2 1 (o)),	€ L(i, L2(G)), 

sat is/ying the integral relation	S.	 - 

Jl(w, ç,).	W, P)QT	Cwt, Pt)Q T -	q(., 0)) = (I,	 (17) 

fur q' E C000(Gx [0, T)).,' -.	- 
b) There exisls'a subsequences {nk} of subdivisions of I = [0, TJ such that the approxi-

mate functions calculated, from (2), (3),, (4) 0-have the convergence properties 

is k , 1A3"	 Win the norm of O(i, L2 (G)),	 (18) 
i3' --w in L(!, JT21(0)),	 -	(19) 

OjVnt 

	

\ --- 	in L(I, L2 (G))	 (20)at 
for k	oo.  

Proof: b) Due to (13) the functions ü'2 ( . ; t) are uniformly hounded in LI' 2 ' (0) for 
all £ € I, n € N. The set of bounded functions in W 2 1 ( G ) isa compact set in L2(0). 
Furthermore we have the uniform Lipschitz condition (15) for £ € 1, n € N. Thus, 
by the diagonal method of Arselá-Ascoli, it is possible to choose a subsequence 
{is k } with üi' --*. w  in 0(1, L,(G)) (for details see [4, 7]). ruogether with (16) this 
yields (18).	 0 

For simplicity, in the following let us denote all further subsequences of {flk} by 
{nk} again. As a consequence of boundedness (13) of k,.W'kin L(I, W21(G)) there 
exists a subsequence with &k , ii5'	w in L(I,W21(G)). The coincidence of these 
limits with the limit in (18) . results from c(i, L2 (G))	L(1, W,l(0)) and the
uniqueness of a weak limit. Thus we have proved (19). 

Formula (14) implies the existence of a subsequence such that aivnqat	q in
L( (I, L2(0)). By a limit process k - cc the integral identity 

	

OiV"k 9, * + fvnk . 09) d dy dt 0 
ff	

t for 97 ECo(QT) 
QT 

yields	 .	 . 

ff(q o.q,+w.!.)dxdY dt = o for qECO °°(QT).	- at 

In this way we get q = Ow/at and thus (20). 

-	S	 -
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a) The regularity assertions on w result from completeness properties of the spaces 
C(I, L2 (G)), Lco(I, L2 (G)), and L,(I, W2'(G)), as well as from Lipschitz condition 
(15). It remains to show that w satisfies the integral relation (17). 

We choose an arbitrary but fixed test function 92 € X [0, T)). For the n-th 
subdivision of QT this function generates a step function r(z, 1) (see Def. 3). Then, 
by summation of (9) for j = 2, 3, ..., n with q' ='q, we get in equivalent notation 

ff ) dt+	 n) di + f
	

dt =f(r n) di. 

-	 (21) 

Here the coefficients in	" are b 1" = b 1 (z, I, r3'2 ); analogously 1" = /(z, 1,	tl). 
Defining (z, 1)	0 for 1. ^! T we have the identity 

[I	;• -/(-	
+	

t—	92(.,2h)).•
at 

Furthermore, owing to the estimates of wy', ü' and Lemma 2, we change (21) only 
by a quantity e(h) with urn (h) = 0 for h .-* 0 if we integrate over the whole inter-
val I. Thus, we have

	

Iau'	a+\ 
+ (9i3, '7)oT -	r'F	— 	2h)) 

-,	 at OujQr 

	

•	 •(22) 

As a consequence of assumption (iii) the functions b 1 (z, 1, w) and /(z, 1, w) define con-
tinuous and bounded Nernyzki operators mapping L,,(I, L 2(G)) into L 1 (1, L2(G)) 
(cf. [7, 8]) Due to (16) and (18) the convergence ThTh?1k -* w in L(I, L2 (G)) takes place 
and,, consequently,  

b'k, /' -^ b 1 (z, I, 'w), /(z, t, w) in L 1 (I, L2(G)) for k	00.	 (23) 

The approximations of 92 converge uniforfrily on' Q to q, and the derivatives of q,, 
k - respectively. Passing to the limit n- 00 in (22) ' the already proved convergence 

properties (18)—(20) together with (23) thus yield - the, integral relation (17). Since 
the solution w belongs to L,(I, W21(G)) it satisfies the boundary condition (3) in 
the sense of traces. The initial condition (4a) is satisfied due to	k(., O)'= w0 = 
for every nj, and (18). The initial condition (4b) is fulfilled in a weak sense defined 
by the test relation (17) I 

Remark 4: The space of test functions in (17) may be a Sobolev space, too. One 
can also show that w belongs to the space c9(i, 4'2 1 (G)) of weakly continuous func-
tions 1 +-> W 2 1 (G) (see [4]). The weak assumptions (i)—(iv) do not ensure uniqueness 
of the solution w • 
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