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- Non-Negative Trigonometric Polynomials with Constraints ,

St. RUSCHEWEYH

.

Es werden Extremalproblcmc fiir nicht- ncgatwc trigonometrische Polynomc mit vorgegobcnen
Nullstellen behandelt. In Anwendung des allgemeinen Satzes wird als Vcrscharfung cines Er-
gebnisses von Fejér das Wachstum eines solchen Polynoms in der Nithe einer Nullstelle disku-

tiert. Eine weiterc Anwendung betrifft das Koeff171entenprob]0m fur typlsch reelle (dlg(,bm- -

_ische) Polynome.

PaccMaTpiBaloTCA OKCTpeManbHhle 3aJadll JUIA HEOTPHLATENbHEIX TPHIOHOMETPHYECKHX
MHOrouaenon, obnapmaiomux sanauneMu nyaaMu. ITpumeHeHnem olweli Téopemel paGoThl
NOTy4aeTca yculieHie pesy brata Meitcpa 0 pocTe TAKOr0 MHOTOM1CHA B OKPECTHOCTH HYJIA.

npyl"OC npliMeHene -kacaerca ouem\u hOSd)(lelHCHTOB B Ciay4daec THMIIYHO BellleCTBCHHbl\ -

(ameﬁpau-lecrcu\) MHOrQYJICHOB.

We discuss extremal problems for non-negative trigonometric polynomials with prescribed

" zeros. The general result is used to ‘refine a former theorem of Fejér concerning upper bounds -
of those polynomijals near to a zero. Another application deals with the coefflcnent problem for
typically rcal (a]gebrmc) polynommls -

1. Intmdu'ctioh -

A rcal tngonomctrlc polynonual t of degree n is non-negative if and only if it has a
representation

4 {0) = Re p(e®)
where i

n
p(z) =X pe2* with po€ R, - Rep(z) 20, 2] = 1. .
k=0 ' .

" Let R, denote the class of such polynomials p and let M, = R X C*. With every
p-€ R, we assign the coefficient vector p = (py, ..., p,) € M,. Let ¢ € M,. In the
present note we are interested in estimates for linear functionals like Re ¢ - p for p
in R, or suitable subsets of J,. It is knownsince long that such problems for the
who]e of R, are closely related to the eigenvalues of the loeplxta matrix

Cop Cp .« . . Cy
C = C_l 90 . Cp—
' / —— \
Cp Cy1 Co

The fo]lowmg elegant theorem is due to Szisz [7] and has found numerous appli-
cations. L
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Theorem A: Let 210, Amax denote the smallest and tke grealest ezgenwlue of C. Then
for p € R, we haz,e

PO) dnin SReC-p S PO) bmax - . Y
and these bounds are best possible for every ¢ € M,.

Thus the estimation of those linear functionals is reduced to the solutlon of alge-
braic equations. We 'shall deduce similar results for p € &, which have zeros of Rep
at given points on jz| = 1. In terms of the associated non-negative trigonometric
polynomials this means that we prescribe- certain’ zeros. A first application of our
general result is a refinement of an estimate of L. FEskr [1] dealing with the maxi-
mum of a non- negatlve trigonometric polynomial with constant term 1. This in turn
can be used to improve a root-finding algorithm for complex polynomials which
was recently ‘established [5]. Our theorem applies also to the estimation of linear
- functionals of typically real polynomials. As an example we solve the coefficient
problem for the third coefficient of such polynomials. Partial results for this problem
have recently been obtained by SUFFRIDGE [6]. We also give a table of the numerical

. values of the bounds for the coefflcxents of all typlcally rcal polynomlals with degree
=10. .

2. The m~ain result - . / " N

Let » € N be fixed. Let @ = {2,,...,2), s = n,'where‘ z;.€ C are disjoint with
lz;| = 1. By R,(0) we denote the set of polynomials p'e R, with Re p(z;) = 0,
z; € 0. A vector d € M, is called a positive multiplier- for R,(0) if Red -p > 0
holds in R&,(0) except for p = 0. With @ we assign the matrix |

[ 0\ ' T
. 2%...2 i o K
’ ' 2t ...zt
De = -
\
¢
AL A

0 is the null ma‘tr‘ix. With ¢ € M,, O as above we assign the hermitian matrix
C Dg
Dot 0

Theorem 1: Let e,d € M,, d a positive multiplier for R (O). Let /mln, ) max be the
smallest and the greatest solution of the equation

Tle, ) :— (

| det (T(e — 7d,0)) = 0. | e 2
Then for p € R, (O), p = 0, we have . . '

’ _Rec- : o
;-mln é R 4. g g ;‘max- ' .' . . (3)

These bounds are best po.sszble for any admissible choice of ¢, d, 0.

Remarks: 1. The extremal polynomlals for (3) can .be obtalned via the solutlon
of a linear equation system mvolvmg Jmins Amaxs respectlvely 2. The case @ = &,
"d=-e:=(1,0,...,0)t of Theorem 1 is Theorem A. 3. It is not difficult to .see that
. all solutions of ,( ) are real (this was observed by Dr. R. FREUND D).
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Theorem 1 itself supphes a necessary and suiflclent criterion for d € M, to be a
positive multiplier for &,(0). )

" Corolla ry 1: d € M, is a positive multiplier for Ji,,(O) of and only if all solutions
o/ det (T(d — Ze, ©)) = 0 are positive. o \

“Proof of Theorem 1: It follows from FeJers theorem [1] that p € R, if and
.only if - there exists a polynomial g(z) = Zq,z" such- that lq(e‘9)|2— Re p(e“’)

"0 € R. Furthermore, p € R (0) if and only 1f the correspondmg g has zeros at
z; € @. Now let x = (g, ..., Gu, fhy, -y 4s)* be arbitrary in €"***! and choose
/'. > Amax- With the subvector (9os -+ -» q,,)‘ we construct a polynomial g and then the
+ corresponding p € R,. The following relation is easily verified: -

?

Fx) = xt-T(¢ — 7d, ©) - X = Re [(c — M) -p+2y ﬂ,q(z,)].
. j=1 .

Hence F' is the Lagrange multiplier function for the extremization of )
. Re(e—id)- . Y
‘in R,(0@). Since the z; are d15]01nt the manifold describéd by the constraints has -

maximal rank. Hence for an extremum we must ha,ve

VR=Te <, 0)-X=0. . _ - (5)

But 4 > Jpn.x implies that (4) has only the trivial solution and in thxs case (5) is
zero for the extremum. Therefore (4) has constant sign on &,(0). But for / large and
non-trivial p € R,(O) this sign is obv1ously —1 which, by. contmunt;y, 1mplles

‘Rec-p
Red-p

g ;') Y4 6\ c%n(@)s V4 $ 0: ;' > Amaxf

If A = /nax (3) has a non-trivial solution which is.also non-trivial in the first n 4+ 1 |
components qq, ..., ¢, Which produce a non-trivial p € R,(0). Clearly (4) vanishes
for thatp whlch proves the sharpness of the upper bound 2,,,. The other estlmate
follows similarly 1

. . -

3. The range of,trigonometric polynomials

Let ¢ be a non- negatlve tngonometrlc polynomial of degrce n with constant term 1.
FEJ£R [1] proved

Wsn+1l, 0eR, . B (8
with equality (at-0 = 0)-only for ' . A j :
N Cm1\?
o — [sin—5 0
ol0) = n 4 1 1
. i ' smEO

"'The ioliowing theorem is a refinement of (6).
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Theorem 2: Let ¢ be a non-negative trigonometric polynomial of degree n with
constant term 1 and ¢0) = 0. Then

)+ W@ Sn+1, 0eR. L m
For each 6, € R there ezg‘sls.an admassible t such that equality kolds in (l7) for 0 = 0.

Proof: Let § be fixed, z = €. Our problem to niaximize ¢(0) is obviously equi-
valent to the following extremal problem: .

Re p(1) . oo o -

. -_|]1QXW, pE (R"({Z}), ])E*EO.
- In view of Theorem 1 the solution to the latter problem iS Amax, t-lle‘greatest solution
of det (T(d — e, {z })) = 0, where d = (1, 1, 1t e M,. Denote this determinant/

by D,(4) (it has n + 2 rows)." We perform thc followmg operations to evaluate Dy(4)
(assuming Z > O)«

1. Subtract the first row from'the other rows except for the last one;

2. Add the first column multiplied by 1/% to the last one;

3. Add all columns except for the first and the last one to the first column;

4. Expand with respect to the first column (only the first and the last element is
non- zero)

The remaining two determinants (w1th n + 1 rows each) are easily evaluated and
we finally obtain

Solving D, (%) = 0,2 = 0,.yields 2 = n + 1 — £,(0) which gives (7).,’Ollr claim about
cquality is a consequence of the sharpness of Theorem 1 8 | r

D,(2) = (—2)"1 [(n +1—i)(n+ 1)/— \_):z"
. ' . . k=0 .

As a conseq'uence of Theorem 2 we get

(}orollary 2. Let p(z) =1+ Zbkz" be a polynomial with [p(z )— =1
lz] < 1. Then /'or 0=7 <1 there e:vzsts an arc I'on |z| = 1 of len{/t/z,

1 24(1 — 7) . . ‘ '
L(F-);n+1l/n+1\_ _ (®)

such that
n . '
PEIP=1— 23 bl = z€l.
k=1
In [5] we proved Corollary 2 with the bound

L(1’)>l 81—-4) U
“ n n 41 . . .

instead of (8). Hence (8) is better by a factor of about V3. This can be used to reduce
the number of search points in the global descent method for solving polynomial
equations described in [5] by about 40%

\

Proof of Corollary 2: Let s = min |p(e®®)]: By the minimum prmcxple we have
s < 1and we rhay assume § < 1..Furthermore, we can assume |p(1)] = s. The tri-
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40y = (Ip(e?)[* — s7)/(2® — s?), where v = 1 4 3 [byl2,
. - . . k= 1
satisfies the assumptions of Theorem 2 and hence

PR < 6% o (0% — ) (1 + 1~ 16).

.It is known [5: Th. 3] that v* < 2 — &* and a simple calculatlon shows that-|p(e*)|?

1
=1-— )(v —'1) holds for all 0 with £(0) = n + ;. Now, for. IGI s —

o (l——));o h +1
‘X n 1 : 0y - we -have
'\ . . 2 3% 2
. sinn+100 ) n—f-loo in+100
: 1 2 1 2 6 2
£(0) = : =
n+1) .. 1 n 41 1
smgﬂo : 500“

A PAC T i— s
m+n( 4(+D)%n+1— .

Hence the arc I' = {e?: |6] < 0y} has the desired property 1

.

0

4. Application to typically real polynomials

If the vectors ¢, d have real components and.if 0 € @ lmplles 2% — 0 € O oneeasily
deduces that the bounds in (3) are attained for polynomials p € -R,(0) with real
coefficients. Let R,7(O) denote the subset of polynomials R,(O) with real coefficents.

.We have the following corollary to Theorem 1.

Corolla.ry 3: Let ¢, d € R, d « positive mulliplier /or ‘R(O). Then for inmin, Amax
as tn Theorem 1 we have

s el S peno),  peo.

These bounds a?e best possible.

A polynomlal 8(z) = Zskz" is sald to be tjpzcally real if § = (S1s ++ s 85). € R*#,
k=1
and Im s(z) - Im 2z = 0 in |z] S 1. Let 8, denote the set of those polynomials. Tt is

well- Lnown that s € S, if and only if
pe) = (1 =) 22 e a1 1. - -

Let e = (¢), ..., ¢,)t € R™, e = (¢, ..., ¢}, 0, 0)t€ IR"** where

(=]

! C)"= Z Cit142k » 7=O, 1,...,77/—1.

' ff s, p are pelated by (9) we find ¢-s =.¢' - p. Hence from Cor’ol}lary 3 we get
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Theorem 3: Let e,d € R*, d a positive multzplzer /or Sp. Let Agin, Amax be the
~smallest and the greatest solution of

det (T(¢' — 7d’, {—1,1})) = 0. - ' . o)

Then we have

T ¢ 8 :
- Amln = _S glmax, SES,,, SEFO.

These bounds are sharp. »

We note that in case of “odd” multipliers e, d, i.e. if the components with even
index are zero, we’can replace (10) by the simpler equation .-

det (T(e”" — 2d”, {1})) = 0 ‘ S (g

.where ¢’ = (¢,/, ¢35 ...;0) € R™, 4" = (d,/, dy’, ...; 0) € R™ with m'= [(n + 3)/2].
Note that the determinant in (11) has only m -+ 1 rows instead of n 4+ 4 in (10).
This-simplification is due to the fact that in this case we only need to consider odd
‘polynomials s € S, which are in one-to-one correspondence with the polynomials
p € R, ({1})and we have.c.s = ¢’ - p. We omit the details.

- 5. The coefficient problem for typically real ‘polynomials '

~ Let S, denote the set of normalized typically real polynomials

8(z) == + )S’ skz". : ,

'

The (,oefflclen’o problun for S, ¥ is the determinant of the best constants Ak(n) B,,(n) '

such that for k£ € {2, !.., n}
—Bi(n) < & = Ayln), s €S,V B

‘This problem has been' studied several times (se¢, for instance, ROYSTER and
SUFFRIDGE [4], SUFFRIDGE [6]). For arbitrary n it is solved.in the cases k = 2,
n — 1, n. Also A(n)isknown and B;(n)inthecases4 |n — 1,41 n — 2. Spccmllzmg
Theorem 3 we obtain :

Théorem 4: 4 k(n), — By(n) are the greatest and the smallest solutwn y3 o/ the equatzon

S det (T(c - 2e, {—1, 1}) =0, k even,

: (12)
"det. (T(@ — Ze, {1 }) =0, k odd. ]
Here ¢ = kco,. 5 Cas1)t with ¢; =1 for j = 1,3,...,k — 1 and ¢; = 0 otherwise;
d = (do, ..., dp) with m = [(n + 1)/2] ondd; = 1 /nr =201, (k —1)/2,d;, =0

othcrwzse

This result gives a means to calculite Ak(n), By(n) at least, numerically. This has been done

for n < 10 and the results — rounded to 6 decimal places — are given in Table 1. It may be

possible, however, to simplify (12) considerably and to obtain a theoretically satisfying solution -

to the coefficient problem. In the sequel we do so for k = 3 thereby completing the solution
of the third-coefficient-problem for typically real polynomials.

1

\
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Table 1

o) A AL A A A A A A

10 1768177 2.246980 2.331017 2.246980 1.889229 1.618034 1.99179% 1.000000 .833333

9 1.732051 2.246980 2.135779 2.246980 1.618034 1.618034 1.000000 1.000000 | .500000 2
8 1.677193 2.000000 1.878133 1.618034 1.266451 1.000000 .800000 | .333333 1.000000 3
7 1.618034 2.000000 1.618034 1.618034 1.000000 1.000000 |.666667 .333333 1.215250 4
6 1.520315 1.618034 1.240597 1.000000 .750000 | .500000 1.000000 618034 1.414214 5
5 1.414214 1.618034 1.000000 1.000000 [.750000 .500000 1.240597 .618034 1.520315 6
4 1215250 1.000000 .666667 | 600000 1.000000 .618034 1.618034 .716515 1.618034 7
3 1.000000 1.000000 [ .800000 .600000 1.266451 618034 1.878133 716515 1.677193 . 8
2 500000 [ .666667 1.000000 .618034 1.618034 .801938 2.135779 .801938 1.732051 9

/833333 _ .666667 1.291 726 .618034 1.889229 .801938 2.331017 .801938 1.768177 10

 Bulm)  Bym)  Bym) “Bym) Bym) Bym) Bym) Bfm) © Bym) m

f .

Theorem's: Let n €N, m:[%] . Then we haze

e

C : : m 4+ 1 '
=1 ’ = -1 d,
. Ag(n) + 2 cos — T3 n, Bj(n) 1 2 cos - - 5 m odd" ‘
If m is even, By(n) s the largest root'2 < 1 of the equation T7,, (\/—i a— /‘_.)) =0.

. Ty, U, denote) the Chebychev polynomials o.f‘tl.le first and second kind, respec-
. tively. For the proof we need a lemma ' o .

Lemma: Let

1 =2 T 0 0 1
. 0 1 -2 1 0 1 N
En(2) = ‘ .
0 0 1 -2 1 .
1 1 1 1 1 (m+2) -
.Thpn we have A
v . E (;&5 = (—1)m+1 2 v 1 @+ 2] (13)-
m ’ . al m+1 4 i

Proof: We expand E,,(2) with respect to the first column. Otie of the three result-
ing determinants is E,_,(4). .After expanding the remaining two determinants with
respect to the first row we arrive at

C )= —Fua) = Bna) = =17 Quh) — Rulh) . (14)
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,wh‘ere -
1 —i 1 0 0 0
0 1 —4 1 .0 0
Qu(A) =1 o o o i .
’ 10 0 0 0 1 -
- 1 1.1 i 1 1w
and )
L —2 1. O 0 0
R,;,().\ - 1 —7 1 0. O y
............... \
0 0 ¢ 1 —2m o

- Expansion of Q;,,(}.) with respect to the first column yields @n(2) = @p-1(4) + (—1)"" v
X R,_y(2) which, by induction, leads to

m_t e
Qm(A) = Z (=1 By(2). , : (15)
k=0
It 1s known [3: p. 528] that 2 I’,,(A)( z)¥ = 1/(1 — Jx + x2) and together with
. (15) we obtain EQ,,,(A) ™ = x/(l —z) (1 — iz + 2?). Multlplymg (14) by z™ and
‘summing with respect to m gives |

. z—1 . 1 0 1— xz'
. ZL’”(A)"” A+=2(d+fizt22 =z 021+ 221+ 7z -+2Y)
FE3£R [2] has shown that .
1 — a2 ® 1
J— m 2 — m
(1 + )2 (1 + Az + z?) méo( D™ Un (‘/ 4 (/'. + 2)) *

which completes the proof of the lemma 8

A simple d1=cuss10n of the representation (13) shows that the largest root of

. 2
E.(2)= 01is 2 cos
o m

) n. If mis odd, the smallest root is 2 cos

; 7z while for

-even m the smallest root coincides w1th the smallest root > —2 of Upiy (‘/ (A +2 )

The proof of Theo rem 5 follows now from Theoremn 4 since
En(2— 1) + det{ T(d — Je, {1})) with d =(1;,1,0,...,0) € Rm*

and from th» relatxon m+2) Ul =1%., 1

m+l\
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