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" Generalized- Analytic Coverings in the Spectrum of a Uniform Algehra.
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A

. Wir untersuchen cinige Bedingungén, unter dencn bestimmte Teile.im Spektrum einer gleich-
mifigen Algebra spezielle Strukturen zulassen,.so daB die Gelfand-Transformationen von

Elementen der Algebra verallgemeinerte analytische Funktionen sind.

" . PaccmaTpuBaloTCA HEKOTOPHIE YCIOBHA, IPH KOTOPHX OINpeJesicHHEE YacTH CIIEKTPA pPaB-
HOMCPHOM aJre6pH NONYCKAIT CHEUHANBHEE CTPYKTYDH, TAKHX, YTO NpeoGpa3oBaHuA
leasbdanna anemenTon anre6pu ABAAOTCA 0606UICHHBIMI AHANTMTHUECKUMH PyHRLMAMK.

" We examine some conditions under which certain parts of a uniform algebra spectrum admit
special structures so that Gelfand transforms of algebra elements are generalized-analytic
functions. : :

The theory of analytic functions of one complex variable. is naturally connected
with the semigroup Z, of nonnegative integers. Analogous functions can be con-
sidered with arbitrary subsemigroups of nonnegative real numbers instead. of Z;.
Though not very well developed, there are various constructions of such functions.
We shall deal-with generalized-analytic functions in the sense of Arens-Singer,. con-
nected with the semigroup Q; of nonnegative rational numbers in the same natural
way as Z; is connécted with usual analytic functions. In this article we ‘examine
some conditions under which certain parts of a uniform algebra spectrum admit
special structures, so that Gelfand transforms. of algebra elements are generalized-
analytic functions 6n them. - ‘ : ‘

1. Basic-definitions and results

Let § = {p} be an additive subsemigroup of Q, = Rat [0, co) containing zéro.
Denote by I the group generated by S u (—S) and provided with discrete topology
and by * — the dual group of I". The group @ is compact and connected and ¢ o T..
The bag plane is the cone C; = [0, 00) X G/{0} X G over G with the peak * = {0} X G/
{0} X G and the big disc with radius ¢ > 0 in it is the set Ag(c) = {(2, g)€Ce |2 <.
We call generalized polynomials the linear combinations over.C of functions 272, 9)
= AP4?(g), p € S, where 4P ¢ @ are the characters xPlg) = g(p) for all g € G. Fecause
of § = Q;, we have z7(4, g) = (4(4, g))?, so that all the functions 7 have arbitrary
powers p'€ S. Given an open set U < C;, we denote by Ag(U) the algebra of. all
generalized-analytic functions, i.e. the algebra of all complex valued functions on U
that are approximable locally by generalized polynomials on U. For a compact
set K < C; we denote by A4(K) the algebra of all continuous functions on X that

are generalized-analytic on Int K. The corresponding algebra for K = Ag(1) was’
historically  the first of this type which attracted the attention of mathematicians .
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It was introduced by Arens and Singer in .1956. They considered Ag(46(1)) as a ‘
_uniform algebra on & in a slightly more general setting. In [4—6, 9] the generalized-
analytlt functions are examined on arbitrary sets of ;. Taking 'S ~ Z,, we obtain:
=~ 8!, C;=C' and x (4, ) = )”e”’" (or, cquwalently iy n()et?) = Ametnt), e,

n(z) = 2%, ~ .

-Let D be a domain in C; and A be a subset of D. We call A-a negligible set if A is
nowhere dense and if for any subdomain D’ — D every generalized-analytic func-
tion f on D' \{ 4, locally bounded in' D), admits a unique generalized-analytic exten-
sion on the whole domain D’. We.call generalized-analytic covering any triple (X,7,U)
for which: :

1. X is a locally compact Hausdorff space .

2. U.is a domain in Cg; : -

. 3. m is-a proper continuous- mappmg of X onto U, for which. the set 771(4, g) is
“discrete for any (4, g) € U;
4. there exist a negligible set A U and an mteger m, so that z is a m- sheeted
covering mapping of X \ zn~Y(4) onto U \ 4; , s
5. the set X \ n~4(A) is dense in X. : o .

Sonietimes X is called a covering onto U and A — its critical space We call gene-
ralized-holomorphic any complex valued function f, defined on an open subset V
of a generalized-analytic covering X, if for any open subset V' — X \ n7}(A4) on
which = is homeomorphic the function (f{;+) o 27! is generalized-analytic on #(V’).

Let A beauniformalgebra on the compact Hausdorffspace X and let sp 4 beits maxi-
‘mal ideal space. Let {f?},¢s be a multiplicative semlgroup of elementsof 4, where Sisas -
above. We call spectral mapping of Sthe mappmg @g:sp A — Cg, Ds(z) = (Ifu(2)], 92),

where g: € G=1"1is dcfmed as follows: g,(p) = fP(2)]|f*(z)|, g(—p) = g(p). It is
- easy to see that /P(x = ,(”(¢b(x)) where z € sp A and f? stands for the Gelfand
transform of /7. In the classical case, when S =~ Z,, ®s(¢) = fl(); the last property
is simply: f(x) = (fl(x ) We call spectrum a(S) of ‘a semigroup S, A4 the image
of g, i.e. a(8) = DPs(sp 4). In the sequel we, shall omit the indéx S. Tn (6, 9] several
~ aspects of the spectrum o6(S) have been discussed.

Further we assume that S = Q,: In [10) we have found conditions assuring that
~ some neighbourhood of certain infinitely generated linear multiplicative functional
of .2 uniform algebra is homeomorphic to a generalized-analytic covering and the
_restrictions of algebra elements are generalized-holomorphic on it. Actually, we have
obtained there the following results. :

"Theorem 1.1: Lét W be a component of Int ¢(8) (15( X)) and lct the spectral map-
ping D be one-to-one on DY W). Then h o @1 is a generalized- analytzc /unctzon on W
/O'ranthA ze Alq,n(w,CAG(W) - ‘ ‘

“Inthe sequel we shall denote the number of elements of the set E as usual by 3 E

Theorem 1.2: Let'X = &~ 1(b<D sp A)) UdA, W be a connected componenl of
Ce \ D(X) and let there exist a k << oo, such that 3 PY2, g) = k for any (4,g9) € W.
Then the set @Y W) has the structure of a ky-sheeted (ky < k) generalized-analytic
cozermg over W, and the /unctwns f, f € A, are genemlzzed-holomorphzc there.

For the proof of Theorem 1.1 in [10] we made use of a result by S. GRIGORJAN,
announced in [4]. Since no, proof was given afterwards, we give one here. Some

preliminary facts:The big plane C; can be presented as lim {C,, #,"}, where C, ~ C,
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n™(2m) = 2z,* and m >n iff m = nk for some k € ', Zm € Cp [8]. Now m, = /”"
Wc prov1de C¢ with the weak topology with respect.to the family of functlons
{x"'"}n; where the base neighbourhoods are the sets of the type :

Q((/o: 90)’ &, )
{(/ g) € Ce £'"(2, g) ~ /""(/o go)l < &, 6 > 0},
‘n=12,.., (Zo, go) € Cg. If 2= 0 the corrcspondmg base nelghbourhood

Q(* &) = {(2,9) € Oy | 11*"(2, )| < &} = de(2")
is homeomorphlc to some big dise.

_ Proposition 1.3: If i, == 0 and ¢ > 0 18 small enough the neighbourhood
Q( %05 90); & n) 7s homeomorphic to the set (Ker 71" x A(1).

Proof: Let .+ ¢ Q = Q((2, go), &, 7) and denote by . V((%, g), n) the set ~z,,(Q) = Ct,

(4, 9) € Ker @, = Ker y!/". For any m >n we denote by ¥((4, 9); ) the component "~

of 7,(@) = C' that contains 7,,,(/ ). Now the set V(2,¢) = lim V((%, g), m) con-
" tains (4, g) and ) m>n .
Q((}'O: Jo)s & n) = nn_l(V((;'O:.gO)’ n)) = U V()': g),
- . ) ' . (Lg)EKery'/n

where V(4,g)n V(21,9:) = 0 for (J;g) & (2, ¢1). Because of. V(2,g) ~ V(i, 91),
then Q(().O, 9o)s & n) = V(i go) X Ker 1/, The set V() go) is homeomorphic to
the disc 4(1) = € with radius 1. In fact, let ¢,,: (()0, J0)> m) — A(1) be the Rie-
mann conformal mapping with <p,,,(/‘/"' Ao, 90)) = 0, (pM( ‘/”'(/0, 90)) > 0 for any
m >n. There arises the diagram

— A
A . Pm
(20, 90), ) == V(70 90), )

where m >1>mn, i.e. m =k, k € N. According to the definition of V(()o, do)s m)
the mappmg z* is one-to-one. Then y,,(z) = @,(z*) is also a one-to-one and conformal
mapping from V(30> 90), m) onto A(1), with p,(y 1™ (A, 90)) = 0, vu’(2"™ (4, go)) > O,
ie. p, coincides with ¢,,. Hencc the dlagram is commutative and there exists
a one-to-one .and continuous" mappmg from lim V((2,, go), m) = V(%, g, onto
lim {4(1), id} = 4(1) B . . m>n

Natural questions that arise in connection with Theorems 1.1 and 1.2 are: when’ ‘
is the spectral mappmg @ one-to-one?. When is the condition 3 &-1(7,g) < k
fulfilled on W? Partial answers to these questions are given in [11). Namely:

Theorem 1.4: Let W be a component of Int a(S) \ P(X), contuining the point x,
and dg(c) be a big disc in w.If : : '

.‘Kerq)—— (/”—/" )

1 s \

/or some @€ P l(A(;(c)) then @1 4s a /wmeomorphzsm of d¢(c) into sp A.

Theorem 1.5:-Let W be a component of Int a(8) \ &(X), contammg the point *,
and 44(c) be a big disc in W If for some (2, go) € 4 (c) the ideal

J (%0, go) = (/p — 1%(%, go))
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ILas codzmenszon k < coin A, tlum H O Lg) =k /or any (2, ¢) /rom the maxzmal
big disc belonging to W.”

The .proofs of these two theorems made use of Kato’s perturbation bheorv for
" semi-Fredholm pairs of closed linear subspaces of a Banach space. -
Let us set W, ={(4,g)€ W |3 d Vi g)=m}. If Ag(n)nlnt W, &0, then
also # @°(4,¢9) < k on any big disc dg(¢c) belonging to- W [11] As a corollary if
AG(77) — W and 4¢(n) nInt W, == 8 for some 7 > 0, then @ is one-to-one on the
et & l(A ), where dg(e) is the maximal big disc in W,. The most mterustmg is

thecasewhan—A()andX—spA\@ HW). .

2, Main results '
/

\

~ Here we give new answers to the questions stated above.

Theorem 2.1: Let A be a untform algebra on X and M = sp A. Let f”},,es - 4
be a mulnphcalwe subsemigroup of A, isomorphic to Q,; and le' P X > C(, be the
‘spectral mapping of {f?}. Suppose that: -

a) @(X) < bQ for some base neighbourhood Q. = Q((/o, Go)s & q)

b) (%0, o) € P(M) and .

c) there exists a closed subset N oj Q for which the set yP(N) has a non-zero Lebesque
~measure for some (and any!) p € S, such that @ is one-to-one on the set P~1(N).

Then @.7s one-to-one on ®1(Q,), @, being u base neighbourhood in Q.

‘Proof: We shall follow J. WERMER in his proving of a similar statement for the
“case S o~ Z, (see [12]). That is why we shall not give all the details but only a sketch
of the proof, emphasizing on the differences. Without loss of generality we may
assume that ¢ = 1, dO(N,) > 0, N, = N n bQ. If u is a'measure on X we denote
by @(u) the induced measure on C = b@, namely: P(u) (£) = ,u((b“(E)) for F= C.
We know that (D(M) 5 (%0, go) and @(X) = C according to a). Now, according to
[10: Lemma 3], (M) D Q. Let <p1 and ¢, be such elements of M that @(,) = D(p,)
= (1, ¢1) € Q. Supposing that ¢, = @, we can find such p > 0 that xP(p,) + %(@e)-
Let po€ S:ph = p,pér =4q, ki, k€ N and @, = Q( 295 Go)s 1 po) — Q. Now again
© yPo(gy) = yP(@,). We canfind also such a function g(2) € R(/"n(ﬁl)) that g(/f’n(qal)) =1,
g /"°(q)o)) = 0. If u, and p, arc representing measures of ¢, and g@,, then it tums
. out that ®(u,;) = D(u,). Because of the injectiveness of @ on @ YN), u, and p,
" coincide on"@-1(N) and hence the measures v; = (g - y;), j = 1, 2, also. coincide
on'N,. Then, having in mind the choice of g, we obtain: :

J Pd(yy =) = P(is; 9)) h " - (1)
e -
for any generalized polynomial P on C¢ of the type P(2,g) = fj(,g”o()., g)), P being
a usual polynomial. Let us consider the measure (/”° — zPo(Ay, gl)) d(v, — »,), ortho-
gonal to all generalized polynomials. Denoting by »;° thc induced measures on the
unit circle S = yPo(C) — y(%q, go), defined as

' f/d‘l/,'s = f/(lpo - Zpu(;'o: 'Io)) d‘”i} / S C(S), ‘ ‘ /t
s . ¢ -
we see that the measure

(/p“ - 7”“(71» gx)) d(” - "2) = (z — yP(4, 91)) d¥,® — %% |
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adniits the Lebesgue decomposition hdf + »,, where & € H‘(A) and Vs 1S a smgular
measure with respect to the Lebesgue measure on the unit circle. Tt follows from
_ (1) that the same-measure is orthogonal to all polynomials P(2, g)v= P(/’f*() g))
on @, and at the same time — that the measure\(z — /"o(/l,gl)) d(v,S — »,5)is

. orthogonal to all polynomials of z on 4. According to the theorem of F. and M. Riesz

© it follows that v, = 0. Since [y, = sy, on y7(N,), We have »,S = »,5, from where
(z— /”°()1,g,)) d(v,S — v,5) = hdb is 1dentlcally zero, because the H'-function A .
vanishes on the set 2P (N,) with d0(y?(N, )) > 0, (and hence d0(y?( N,)) > 0 for
any p € S). But. z7«(%,,¢9,) € 4 and consequently z — z7(2,,¢,) %= 0 on -8, from
_where,» 5 = »,% in contradiction to the equality (1). Consequently P1 = P2, and
henu, ‘® is a one-to-one mapping from @-4(Q,) onto @, I

Supposu that 3 @-1(Z,¢) < co for any-point of a measux‘able subset N of the
maximal big disc in W with dz dy y?(N) > 0 for some (and.hence for any) p € S.
Let W = dg(e) and X = sp A \ @~ ‘(A(,(e)) The sets yP(N) and N,=NnW;arc
also measurable. The proof of this statement for the classical case is due tod. WERMER
[12] and holds true also for the generalized-analytic case, by replacing only € with -
C¢, the Gelfand transform f — with the spectral mapplng <D and 4 — with a base

.neighbourhood. Since N = UN,, yP(N)y = U/%( i) for any fixed Po € S, there

exists such a & that dxdy /”°(N‘) >0 and hcnce dz dy x?(N,) > 0 for any pe S

- (in fact, dz dy /”°(N > 0 implies dx dy yPP(N,) > 0 and hence dx dy /”(N,‘) > 0)..
Now applyng the diagonal principle, we can find such (2, go) € Nk that for any-

P €S 5P(%, ¢o) is a point of density for the set yP(N,). Let p,, pz, .., g be all the.
points of @7}(4,, go) -and let Q be a standard neighbourhood: Q((?o, do)s €, 7)) :

for which @-1(Q) splits into % disjoint closed subsets, any of Wthh contains exactly

one.point of @12, g4} = {py, P2, « .., P} For arbltrary small ¢ > 0, the boundary

bQ,>of the base neighbourhood Q1 = Q((/o, J0)s €15 p) intersects N, in a set L, for

which 4?(L,) = S(¢,) and dG( (L) ) > 0. Let J, denote the component of ®-1(Q)

. contamlng the point p, (v = 1,2, ..., k). Now dx dy /P(J ) > 0 for any p € 8. Ac-

-cording to [10 Lemma 4], we obtam\that DY@, )C: U J,. We shall see. that @ .

maps J, n &-YQ,) injectively onto Q, for any ». Supposmg (41, g1) fixed in L, for
any v =-1,2, ..., k, we have: (%, go) = D(p,) € D(J,), from where~ ?J,) > Q. ac-
cordmg to [10 Lemma 3], and consequently there exists at least one point (say ¢,)
in every J,, with @(q,) = (2,, ¢1). Because (4}, ¢,) € bQ,, we have g, € dA(J,). For a

v fixed » we can assume A(J,) to be a uniform algebra on 84(J,). Theorem 2.1 gives
us now that @ is a one-to-one mapping between J, n @-1(Q,) and Q, &= Q,, i.e. we
obtain that Q, = W, and conscqucntly — that Int W, == 0. If now dg(n) = W,.
d¢(n) 0 Int W, = 0, Theorem 1.5 1mpl1es that 3 @7'(4, g) =< k for any (4, g) belong-
ing to the maximal big disc 4d¢(e),in W. By applymg Aheorem 1.2 we obtam the
following rcsult,

Theorem 2.2: Let A be a unzform algebra ‘and { /"},,es be a multiplicative subsema-
group in A, isomorphic to Q.. Let @ be the spectral mapping of {f?} and W be a compo-
nent. of ¢(sp A)Y\ D(0A) for which [fP} = const on 0A \ PYW) for some (and
hence — for every) p € S. Suppose that there exists a measurable subset N = W such
that dz dy (/P(N)) > 0 for some (and hence — for every) p € S and that the set ®(2, g)

= {p € M | D(p) = (4, g)} ©s finite for any (2, g) € N:

Then the set @~YW) has the structure of a k-sheeted genemlzzed analytzc covering
over A¢(|f']) and for any function h of A, the function ho @ s generalized-holomorphic
on thzs covering. -
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\Tote that we know from the discussions precedlng Theorem 2.2 that the set W,
is open, so that the negligible set W \_ W, there is closed. As shown recently by
" B. AUPETIT and J. WERMEE [2], thé conditions for the set N in Wermer’s theorem
can be weakened. Following them, the condition dG(/P(N)) > 0 for N in Theorem
2.2 can be weakened as well, by requiring N to be of nonzero exterior capacity
instead of nonzero measure. In the frame of theory built above, it is possible to
insert also generalized-analytic analogues to n-dimensional boundaries: for the
algebra A as well as the corresponding results of R. BASENER [3] for existence of
n-dimensional analyti¢ manifold’s structure in the spectrum of a uniform algebra 4.
All the results hold for subsemigroups S of Q; possessing the following property:
for any p, and p, € 8§ n[0, 1] there exists a p; € S n [0, 1] such that p; > p,; and

Ps > Do Q4 and/Z+ are particular cases of such semigroups.

.
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