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On an Abstract Nonlin'ea.f Cauchy-Kowalewski Theorém - :
a Variant of L. Nirenberg’s and T. Nishida’s Proof) . : o

W. TUTSCHKE

3

Die Arbeit beschiftigt sich' mit einer Variante des Beweises eines abstrakten nichtlinearen
Cauchy-Kowalewski-Satzes. Sowohl der Originalbeweis wic auch dessen hier gegebene Modi-
fikation basicren auf der Methode der sukzessiven Approximationen, wobei in beiden Fiillen
das Konvergenzintervall durch ein unendliches Produkt charakterisiert wird. Wihrend im
Originalbeweis ein festes unendliches Produkt verwendet wird, sind in der vorliegenden Arbeit
dessen Faktoren willkiirlich wihlbar. Dadurch erreicht .man, daB in manchen.Fillen diec Kon-
vergenz in einem groBeren Intervall nachgewicsen werden kann,

B crarbe paccmarpusaerca aGerpakTHas dopma Hemmnefinoll Teopemnt Kolun-Kosaaesckoii.
J opuruHajibHOe HOKA34TENbCTBO M PACCMATPHBAEMAA 3[eCh MOAMODHKALGIA HCMOAb3YIOT
METOX MOCIe0BATENBHEIX NMpHOMIIFKEeHHIT, TPHYeM B 060HX CAYUAAX MHTEPBAT CXOTUMOCTH
XapakTepusyerca uepe3d OeckoneuHoe npousBefieHne. B nacrodugell crarbe ¢akTope ITOrO
NPOM3BCAEHHA — NPOMBBOJBLHBEIE, TOMAA KAK B OPHIMAAILHOM JOKA3ATCIBCTBE HEKOTOPOE
(uKcnpoBaHHOe NPOU3Be(eHHE IPHMEHACTCH. Taxun 06pasOM B HEKOTOPLIX cnyqan\ HHTED-
BAJ CXOMHMOCTI! 0KA3HIBAETCA GonbLue. .

The paper deals with a variant of the proof of an abstract nonlinear Cauchy-Kowalewski
theorem. The original proof as well as its modification regarded in this paper make use of the
method of successive approximations where in both cases the interval of convergence is
characterized by-ah infinite product. In the present paper the infinite, product of the original
proof is replaced by one with arbitrary factors. In this way in some cases the convergcncc is
proved in a larger interval.

1 Thc mltla,l value problem

. du =Fit, u), u(O)—O

L -

dt - . . s ( )
where the right-hand side F(¢, u) maps a scale of Banach spa.ces into itself for every ¢,
18 equlvalent to the integral equation T ‘

u(t) = f F(r u(r)) dr ‘ ‘ ' o (2)'

1=0 :

that may be solved by the method of successive approumatlons The present paper
contains a modification of L. NIRENBERG’S and T. NisHIpa’s considerations, cf.
[25-4]. They are based on the method of successive apprommatxons Starting with
uy = 0 the (& + l)th iteration is defmed by

) = f Pz, uy(v)) dr Co (3)

1) The paper has also been discussed in the seminar of the research group “Partial complex

‘differential equations’ of the Halle university. The author thanks the members of this research

group, especially ‘A. Crodel and M. Reissig, for useful discussions..,
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. The proof of L. Nirenberg’s nonlincar Cauchy-Kowalewski theorem makes use of
J. Moser’s method'[1], whereas T. NIsHIDA’s paper [4] contains a modification. of
L. Nirenberg’s considerations. See also I.. V. Ovsyaxwikov [5].

Sinmilarly as in T. NISHIDA’s paper [4] assume the followmg conditions on the
right- hand side F(t, u) of (1), where B, 0 < s < 59 < +00, 1s a given scale of
Banach spaces and [|||; is the norm in A, :

(i) There exist positive numbers R and T such that for any pair s’,.s with 0 < &’
, < 8 < & the right-hand side F({, u) is a contmuous mappmg of t:0=t<T}
X {u € By lully = R} into B,

= +(ii) The ¢ontinuous fun(,t,lon defined by F(( O) satlsfles, wlth a fl\ed p051t1vc
~ constant K, the estimate”

‘ K‘ . :
IFEGO)ls = ——, 0=s<s.

 (iii) There exists a positive constant C such that

1F (0 — B, ol < Szt | -
s—¢& .
for any pair s', s with'0 £ &' < s < 89, where C is independent of ¢, u, ¢, s and s’
The proof of the convergence of (3) presented in this paper seems to be a little
more immediate and more elementary because it does not make usc of the Banach
space of functions u = u(t) with values in &, for every s,.0 < s < s,. Further in
some cascs we can prove the convergence of the sequence (3) in a larger ¢-interval.

2. From (3) with k = 0 and from (ii) one gets immediately

<Kt - ‘ o '
ller(O)lls = so_s,-: . o S . (4)

where u,(t) belongs to every B, for 0 =< ¢ < T'. Restricting ¢ to the interval 0 < ¢
< a(sy — 8) depending on s (with any a > 0), the last inequality may be rewritten
as ‘ : '

. Ka- Ka
llua(Dlls = w50 = 3) < aa—9) 1,
t ¢ , )
hence o o
ol (0= — 1) < K. e

" For any u(¢). defined for 0 =<t < afs,—s) and ’belonging to B, 0 < s < 8o,.define
the functional . -

M) = s supjutol (22— 1),

0=58<3 0<t<a(go—3)
which may be equal to +co. In viéw of (5) we get the estimate

M(u) = Mu; ~ w) < Ka, .
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. - ¥ ’ . ) A *
therefore M(u,) is finite, especially?). Thus |j«,(¢)|l, may be estimated by
@l s —) , .
a(sg —.8)
f'0<t‘<a(so—.s). »
Now we want-to prove that the sequence (3) converges to a solution of the integral
equation (2) and, consequcntlv to a solution of the initial value problem (1).

this end we must ensure, in addition, thab llux(lls = R. This condition is satlsfled
if :

) — wpa Oy ek - NG

fork'= 1,2, ..., where ¢ are positive numbers satisfying the condition

S <1. s ' 8) .
N k=l ° . .
By virtue of (4) the inequality (7) is satisfied for k = 1 and 0 < ¢ < a,(sy — ) if
: o . R ' . -
a8 < 7T and a, Z¢ %z - ) 9)

We shall prove that (7) can be fulfilled for evéry k if we diminish the t-interval
step by step, where we must ensure that the length of the lnmt interval is positive.
The k-th iteration u; ‘will be defmed if

0=t < aso—9), ' | C o (10)

where a; > ay > .-+ > a; > 0. Correspondmg to bhe t-intervals (10) we must regard
a sequence of functlonals .

- My(u) = sup - “sup - |lu(t)ls (ﬂ‘_(f"t__i)_ — 1) >

0S8<9 0<l<ak(3.—a)

mstead of the only functional M(u) defined above. From this definition one im-
-mediately gets the property

MngMmawam<m

Now assume that the u,( ), 7=12,...,k, are defined and belong to B, if 0 <t
< ai(sy — 8), ur > g > o0 > g > 0. Assume by induction, furthér, that

llej () — wja(Ols = €502, -

,

while M(u; — uj,y) is supposed to be finite. In order to prove the existence of Uy

we choosc any positive .., < a. Later we shall get a positive lower bound for

Uy —. Uy, For an arbitrary s, 0 = s < sy, we define § by :
ax+1(80 — 8) = (s — 3)

- N

%) From the dcfinit}ibn of M(u) onc obtains ir;xmediately the estimate ,
'  tM(w)
o, & —m4m@MM@,
@l S -y

thus (0) is proved to be equal to 0 provided J_l[(%c) is finite.
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such that s < § <’ 8o The k- th iteration wu(t) is defmcd and be]ongs to B;if 0=z
< ag(sy — §). In view of (8) we have ! -

IMMM_VWHﬂ—%JthZqR<R

N l— ) \

‘thus F( u‘( )) .and, conscquentI), ‘weq () are dcflned and belong to &, if 0
< ukﬂ(so —$),0 = 7 = (. From (3) we get, moreover, that ‘ .-

Hum(l) —w@ll < [||F 4 (v, ’tq(r)) F(r, iy (7))||s de-

g'\~

’ -y

In order to estimate the norm in the integrand by aesumptlon (iii) we must take
the norm of «.(v) — u,_,(z) in a space with larger index. This index will be chosen
in dependence on v and will be denated by (). The nunibers = and s(z) must be
: connccted by 7 < ak(so - s(r)) This mcquahty may be-rewritten as

5(1) < 50 = —. . e £
i (473 . ' \ P
. ' ' ' _b
Now remark that for any two real numbers ¢ and b with « < b we have a 4 —2— v
< b. Thus (11) and s < s(t) are satisfied if we set -
. ) _ ‘ .
dmﬁ+~@—+—ﬁ_ : - (12)
2 g : .

Applying (iii) we get, finally, the estimate

7 { .
leslt) = e, = ¢ [ 10— teaOlan 4,
o T=0

@—s

if 0 <t < apay(s — 8). By assumption, M, (w; — w,_,) is finite. From the definition
of M, we get (v > 0) T

Mk(dk - uk—lj
s — s(v))

T

*w(z) — uk—l(T)”s‘(r) g .

1 .

Substituting (12), the following estimate follows: . -,
! .

¢

\

. ‘ , . )
i) — “k(t)”a = 4C“kMk(uk — )t f (a (s S) 1)2 de.
¥(So — 8) —

e r=0

Calculatmg the integral, we get for 0 <t< aHl(so — s) the inequality

1
| ||UL+1( ) — weldllls = 4’J'k+10Mk( - u&)-x) W’
t.

-~

from which we obtain first - e

Misr(upsy — w) = 4o OMp(we — ugy) S (13)
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and sccond

at,, o ’ L
lfeer(8) — uk(()”s =4 ———— OM{ug — ), g - (14)
) Ay — ak+1 . . . Co
since ‘ . ) N
a,(so — 8) —1 > a‘(SQ — S) 1= dy — Cl«k+]
¢ - 1S — 8) “kﬂ

Takmg into cons1derat10n the estimate (6) w1th a'= ay, the mequahtv (13) leads to

M‘,(uk — W) S _(40)k Lag:..a,0,K,

_hence (14) glves :
MmU—M%SMWK%ﬂL—v - (15

\ QG — Q4

From (13) we derive, further, that M, (%, — %) is finite, too. From (1'5) “one’
gets the desired lower bound for a; — a,;; guaranteeing the estimate

(lze +1(8) — (B, = 3.k+1R-‘ : ' ’

- This lower bound is .

K ‘ . v
(40)"— a3, 1% S — Ui - , (18) .

3&41

The limit.function « = lim %, will be defined for 0 S t < a(sg— s) and' will belong
to ‘B, where a = lim-a,.  Besides (16) we must ensure that a> 0. To this end we
define ay,, as product . o )

. _a'IH-l'—ak(l—ék)y L 0< <1
similarly as in Nirenberg’s and Nishida’s papers®). Then

a—mﬂﬂ—&)

is positive if the infinite product converges For this convergence the condition

.

2m<+w | r . S
is sufficient and necessary. Condition (16) may be’ rewritten to become the relation
(40)"% a.?(,‘,la,ma,,_g...al Segad, k=12 ... .
™ conﬁecting Eri1 a,;ld O This relation is fulfilied if
- (4a,C) a, —2— Sewde o o (18)

for every k = 1,.2, ..."The existence of a solution of the initial value problem (1)
belonging to <&, for- :

0=t<also—s), a=a J](1.—6)>0,
- k=1
is consequently reduced to the following auxialiary problem:,

3) The basic idea also taken over from the papers mentuoned abovc is thc consideration of
the functlonuls M.
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Find positiVe numbéré &1, &gy ... and &y, 8y, ... such that the conditions (8) and
(17) are satisfied. Find, further, a positive number «, satisfying (9) as well as (18)
* for every &. :

There are various possibilities to solve the auxiliary problem. In the next section
we shall realize only two of them. In view of & — 0 and 6, — 0 for ¥ — oo from (18)
one immediately gets that «; must.in any case satisfy the inequality 4¢,C < 1.

3. In order to fulfill\condition.(8) we first choose ¢ ‘= 1/2*, Then in view of (18)
-we may choose ¢, = 2(8¢,C)* «,K/R. Taking into consideration condition (17) this
means that ¢; must sat,isfy the inequality 8a,C < 1 instead of 4a,C < 1. In order’
to ensure that every & is less than 1 we restrict a, by 2¢,K < R. This' condition is -
identic with the second one of (9) Summarizing (9) and 8¢,C < lwe get a

First choice o/ a: Let a, be a positive number satisfying the inequality
o : ! \

- ' 7" B 1
a min oK 8(‘
Then _
oo K

.Second we put & = 1/2 and 6‘, = 2&41. Then (18) is satisficd for Aek 1= (4a Cy*
X alK/R. Provided that 4a10 < 1from (8) we get

Vi = 4a, VK_C S S
L R 1—2Va,yC
K (2Va, yO)*+°
2RC 1 = 2Ya,}C

(where we took the equallty in (8)). In order to ensure. that 0 < 1 for every k we

require
K 2Va_xV5 <' |
2RC 1 — 2Va,)C )
This leads to the condition ) o \
' 1 2RC \2 S
_onr : 19)-
o < 40(2R0+K) \ : (19)

for a,, which is more restrictive than 4a,C << 1. Summarizing (9) and (19) we geta -

and, finally,

6k:

Second: choice of a: Let a, be a positive number satisfying the incquality .
o T R .1 ( 2RC \¥ '
a1<mm( el (m))
Then the number a is given by .
(i )
2RC 1 — 9 ]/—1‘/_

ﬁ
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4; Now let a number d, > 0 and two éequences {exte=1.2..., {Okte=1.2... satisfying
the conditions (8), (9), (17) and (18) be given. Suppose, moreover that the conditions
(1)—(111) are satisfied. Then the followmg theorem holds.

Theorem: The lzmzt Junction wu(t) = lim wu( t) of the functions wu, defined by (3),
Y uy = 0, 25 a solution of the initial value problem (1) belonging to A, if -

N

0=<t<a(s,—s), a=a [[(1—25).
. k=1 -

\

By similar considerations (cf. the bibliography) the umqueness of the solutlon in
the scale &, can be proved, too.- : .

5. Since

- (o‘cq")"

Mg
<]

I
it

In(1— 'aqk)' = —
. 7

if0'< g <1,a>0,ag <1, and since.

© . i i
ik o—- q _ > q .
: élq 1—¢ = 1—y¢
one can easily check that -

7

1

||zg .

X (l—aq)>(1—aq)

This inequalit,y allows to obtain lower bounds for the infinite products regarded in
Section 3. In this way one is able to estimate the t-interval in which the solution -
u = u(t) of the initial value problem (1) exists. In order to illustrate this method
we assume sy = 1, T =1, K = R = 1, C = 1/8. Then the first choice of the num-
ber a formulated in Section 3 leads to the condition @ < 1/2 and we get for a the
estlmate

oo ’ 1
1_ (1 — 2a l*") > a,(1 — 2a,2)1~ %,

’

Finally one gets.with a, = 0,35 the estimate a > 0,2389, thus the limit function

-u = u(¢) exists and belongs to B, at least for ¢ with 0 < ¢ < 0,2389(1 — s). In
this case Nishida’s estimates prove- the ~convergence of the w, ="w(¢)-only for
@ <.1/16. :
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