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On the Convergence of Measirable Selections

and an Application to Approximations in Stochastic Optimization

\

W. Romiscyx -

Es werden Bedingungen angegeben, die garantieren, daB eine Folge (von Mengen) meBbarer
Selektoren fast sicher, in Wahrscheinlichkeit und im Mittel konvergiert. Diese Bedingungen
sind mit den entsprechenden Konvergenzetgenschaften der zugrunde liegenden Folge meBbarer
Multifunktionen verwandt. SchlieBlich werden die Resultate zur Untersuchung von Approxi-
mationen fur das sogenannte Vertellungsproblem der stocha.stmchen Optimierung verwendet.

(DOpMy.TIprlOTCﬁ ycaoBnd, rapamupyxomne CXOIUMOCTb nocne,xona'renbuoc'm (MHOMeCTB)
M3MEPUMEIX CEJICKTOPOR MOYTH HABEPHOE, N0 BEPOATHOCTH M B CPEJHEM. Takue ycaoBus
CBABAHBI CO COOTBETCTBYIOIEHt CXOAMMOCTLIO MOCIENOBATENbHOCTH M3MEPUMEX MHOrM03HAY-
HHX OTOGpanceHnit. PeayibTaThl MPUMEHAISTCA K ANNPOKCHMALMM OMPEACTSHHON 3amadil
CTOXACTUYECKOro NMPOrpaMMHPOBAHNA.

‘Conditions are given that guarantee that a sequence (of sets) of measurable selections converges
almost surely, in probability and in mean. These conditions are related to the convergence of the
underlying sequence of measurable multifunctions. The results are applied to approximations
for the so-called *‘distribution problem/ of stochastic optimization.

1. Introduction and préliminaries

The'study of measurable multifunctions and measurable selections as well as of their

convergence is.motivated by several applications. These include probability theory
[9], stochastic geomeétry [16], stochastic analysis (e.g. [81]),-stochastic optimization
[7, 20, 22, 23, 25}, control theory, and mathematical economics, among other fields.
Partlcula.rlv, results about the convergence of measurable multifunctions and their
measurable selections play an essential role for the design and study of approximation
schemes in stochastic analysis and stochastic optimization (see e.g. [8] and [2Z]). The
first results on the'convergence of measurable selections seem to be given by SaLi-
" NerTI and WETS in [21] (for finite-dimensional spaces). Probably, [21] initiated the
recent research in this field (see [1, 8: Sect. 4, 17, 22]). '

In this paper we establish conditions under which sequences (of sets) of measurable

“selections (of multifunctions with measurable graph and values in Polish spaces)

converge almost surely, in probability and in mean. (Convergence in distribution is
not considered; this is done in [22] and [1]). These conditions are related to the
respective modes of convergence of the "underlying sequence of measurable multi-
functions. FKinally, we outline the use of the results about measurable selection
convergence in the study of approximation schemes for the “dlstrlbutlon problem’?
of stochastic optimization.

Throughout this paper, let (2, £, P) be a complete probability space (cf. Remark

1.2) and X be a Polish space (i-e., complete separable metrizable) with metric d. Let.

P(X) be the set of all non-empty subsebs of X and B (X) be the g-algebra of Borel sets
of X. Forany F & X and z € X let d(z, F) =~mf{ (z,9) |y € F},dz, F):= o0 if

.
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A

F = 0. The snnallesb o-algebra on 2 X X containing {AX B| d € A, B¢ J9(X)} will
be denoted by A4:X H(X). As usual, we say that a property depending on w € 2 holds
almost surely (a.s.) or for P-almost all w € Qif there isaset 4 € Jl with P(4) = O such
that the property holds forall w € Q \_A4.

A set-valued map from Q into X is a mapping from £ into the set of all subscts
of X. For a set- valued map C let

dom C := {ag € 2 Cw) + G}

~

be its domam

irC = {(o, Z)EQXXIJLEC’(w
be lts graph and for B S X let

c-\(B ){__—. (e Q| Cw) N B + o).

A set-valued map C'is called measurab[e (weakly measumble) if C-Y(B)€ A for cach
* closed (resp. open) subset B of X. C is called Gr-measurable if Gr C € A X B(X). If
. dom C = 2, then C is called a multifunction. For a multifunction C from £ into X we
denote by S(C) the sct of all measurable x : D — X (X-valued random variable defined
on (2, A, P)) that are a.s.-sclections of C, i.e.;

SC):={x: 2> X |z measurable and z(w) € C(w) a.s.}.

Consistently, S(X) is the set of all X - calu(,d random variables (defined on (Q, 4, P))

Excellent sources for properties of measurable set-valued maps and measurable

» selection theorems (i.e., resultsstating when S(C) == ) are[5 10,15}, (18] (forX = Rm)
and [24]. There the followmor facts can be found.

Proposn ion 1.1: Let Cbe set valued muap from Q into X.

a) C s Gr-measurable implies that C is measurable, and this implies that C is weak ly
measurable. [ f C s closed-valued; then C is Gr-measurable iff C is weakly measurable.

) Cis weakly measurable I,f/ for all x € X the map d(x C(- )) from Q into the extended
reals is measurable:. If C is weakly measurable, then dom C € 4.

¢) If C is Gr-measurable, then. there exists a meusurable map z :dom C — X such that
z(w) € Clw)as. IfCisa Gr-measumble multz/mzctwn, then S(C) =+ O (where “a. 8. ”
can be replaced by “for all w € 27). |

N

Let x€ S(X) and x, € S(X) (n € N). The following modes of convergence of the
sequence (x,),en Will be considered : .
(%n)nen converges to!x . ,
(i). : “almost su-rély (“a.s.-convergence”) if there is an A € A with />(4) = 0 such
that forall w € 2\ 4, .

lim d(x,,(cu), x(w)) =

(i) in probability (“P-convérgcnce”) if for every ¢ > 0 s

lim P({w € 0! rl(z,,(w), z(w)) = g}) =0; ) '
n—>oo . i
- (iii) zn mean (¢ .m (,onvérgence )if

hm fd(:l:,,(w), x(w) ) ))dP = 0.

n—o0 Q
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For the following, let o denote any of these modes of convergence in S(X). If (z,)sen
converges to z in the sense of g, we shortly write z = ¢ — lim z,. '

Now, let C and C, (n € N) be multifunctions from @ into X.-Let us consider the
following limits of the sequence (S(C )),,eN of sets of measurable selections (see also

[8: Def. 2.1]): ‘ . -
o — Liminf S(C,,) = {x ESX)|z=0p —‘lim :z:,,,' x_,, € S(C,,), for all n € N}, . <

o — Limsup 8(C,) := {x € S(X) |z = o — luu e, :z:,; € S(C,,), forall k€ N and .
n—>00 k—00

for some mflmte ordered subset (n;)kev of N},

0 ; Lnn S(C yi=p — lemf S(C,) = p,— Limsup S(C,).

n—oo . B—>00 v R—>»00

\ow we are in the position to state the aim of this paperas follows Fmd conditions
that guarantee that :

'8(C) S ¢ — Liminf S(C,) S (1.1)
. ’a.nd n—o0 . . .
S(C) = o — Liin 8(C), o (1.2)

respectlvely (We will write a.s. — Liminf, P — Lunsup and m — Lim etc. m the
n—oo n—>00 >0
case of 8.s. — (,onvergence P-convergence and m- convergence, respectively. )

Remark 1.2: We need that’ the underlymg pt_obablllty space is complete for
establishing Prop. 1.1 and Prop. 4.1 in the general setting of this paper. The reader
is referred to [18: p. 164/165] for.a discussion of ,,completeness”.’But, note that
Theorem 2.4 (Theorem 3.4) is also valid for complete measure spaces with o- flmte
(finite) measure. : '

2.4 Almost sure convergence of measurable selections

- The study, of convergence of sequences of measurablé selections, has been initiated by
SALINETTI and WETS in [21] There, the casc of X =R™ and of closed-valued
measurable.set-valued maps is studied. In the following let ‘Cand C,(n € \) be Gr-
measurable multifunctions from into a Polish space X. ‘

.Deflnltlon 2.1: (Cplnex is sald to converge almost surely to C if there isan 4 € A
with P(4) = 0 such that for all w € 2 \ 4,

C(w) = Liminf Cy(w) = Limsup Cy(w), . .~ . (2.1)
n—o0 n—>00 . : -
where ’ : ’
' = T,lmmf C (w) ={re'X | = hm s Xy 6 Cu(w) for all =€ N}, (2.2)

Limsup C (w):={r€ X |z=Ilinzg, z € C(w) forall k€N, (2.3)

n—00 k—>00
and for some mflmte ordered subset (7 )yen of 7\}

Remark 2.2: Almost sure convergence of (measurable) multifunctions was intro-
+ duced in [21] (eee also ["5]) Note that the sets Liminf C,,(w) apd' Limsup Cy(w) (w € )

\r n-->00
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. are clearlv closed. If X is locally compact and C is closed-valued, then it follows from
[16: p. 10] (see also [21]) that (C,).en converges almost surely to C if and only if there
exists an 4 € A with P(4) = 0 such that for all z € X a.nd w€ RN\ A4, '

\ lit d(z, Cy(w)) = d(x,, (@)- ' ~ (2.4)

. Ao N
AN ’

Now, we are interested in conditions that guarantee (1.1)and (1.2), respectively,
for the case of almost sure convergence, and their relations to the notion in Def. 2.1.

-The next result turns-out to be useful forthe proof of convergence results for. measur-.
able selections.

. Lemma 2.3: Let C, (n§ N) be Gr-measumble multifunctions from Q into X. For all
x € S(X) thereisa sequence x, € S(C,),n€ N, such that for ull n € N and w € Q, we have

© dz(w), x,,(w)) < ri( (w),.‘ ) )) + »L. N
Proof Let z € S(X) and n € N be arbrtrary, but fixed. ch defme ’ R
B(:ro, r)y:= {2 € €X | d(z, I NS r} for .z, € X, 7 > 0
D,: 0 - #(X), ‘

-

. D w(@) := = {2 € Cyf (@) | d(z (o)) < d(x(w), Calw))+ n71}
T L= Cp(w) n Blz(w), 74( w)) for we L,

where |

ralw) 1= d(z(w), Ca(w)) + 171, 0 € Q.

Sincé the map (w, ) — d(z, C (w)) is a Caratheodory function frova X X into- R,
d(x (), Cal- ) is a real random variable. Because of [5: p. 88] and Prop. 1.1, B( (-)s
7o(- )) 02— J’(X) is a. Gr-measurable closed-valued multlfunctlon This implies '

. GrD, = GrC, nGrB(x() 7’,,())694)((?( )

i.e., D, is Gr-measurable. Again using Prop. 1.1 we obtain a measurablc map x, : 2
> X such that Z,(w) € Dy(w), forall w € 2 1

Theorein 2.4: Let C dnd C.(n € N) be Gr-measurable 'nmlti/uncm)‘ns from 2 into X. -
a) S(C) S a.s. — Liminf $(C,) if and only if there isan A € A with F'(4) = O such

n—>00

that for all w € £2 \ 4, Clw) E Limint C.(w) (equivalently: lim d(:c, C (w)) = 0, for
allz € C(w)). n—>00 n—>00
b) Let (Cy)nen be almost surely convergent to C. Then
S(C) = a.s. — Lim 8(C,). h

Y n—)OO

Proof: a) Let z € S(C) be arbitrary, but fixed. Because of Lemma-2.3 there is a
. sequence &, € S(C,),n € I\ such that for all n € N and o € Q,

d(z(w), zu(w)) < d(x(w ), C, (w)) -1,
This implies , ) )
lim d(x(w x,,(w)) = O a.s., le. z € as. — Liminf §(C,).

n—»00 R n—>c0

Thus, the if-part of assertlon a)is proved For the converse the reader is referred to -
[8: pp. 271—"7‘3]
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b) Because of parb a), lb remains to show that as. — Limsup S(C,) S S( Y.
Letl . n—00 . ..

TE€as — lesup S(C ), i.e., llm d(x(w), 2 w)) =0 as,
where z, € 8(C,,) for all k€ N and (n)eex is 2 subsequence of N. Thus, we have
z(w) € lesup C (w) C(w) a.s., ie.,z€ S(C) § .

Remark 2.5: Theorem 2.4a) is also stated and proved as part a) of Theorem 4.1
in [8]. But, note that the “if-part” is proved using Lemma 2.3. In [8], the selections
2, (n € N) are constructed in a direct way from Castamg representations of C,, (n € N).

Theorem 2.4b) generalizes Theorem 4.1¢) in [8], since almost sure convergence of”

(C,)nexn to C does not imply (2.4) in arbitrary Polish spaces. It is not clear whether
the converse holds in this part of the Theorem! For a discussion of this subject and of
other aspects, the reader is referred to[8: Remark 4.3]. Theorem 2.4 can be viewed as
‘a generallzatlon of [21: Theorem 4.3] from R™ to a Polish space X. Another such

generaluatlon is stated as Theorem 1.1 in [17]. There the author assumes the follow-

ng: (2, A) is a measurable space, X a separable metric space and C, Cy(n € N) are

- complete- -valued weakly measurable multifunctions. Then he proves a result similar

to Theorem 2. 4a), but does not, permit exceptional sets of measure zero for the selec-
tions. Note that in our concept of S(C) the exceptional sets may depend on the selec-
tions. .

anmple 2.6: Let Y be a metric space, f: 2X X — Y be A X(ﬂ( )- -measurable
[8: Def. 1.2] and Be B(Y). Let us consider the follomng set-valued map C from Q
into X
- w>Clw):={x€X|[f(w,z)€ B}.

Clearly we have . ‘ .
Gr € i= {(w,2) € 2X X | f(w,7) € B} = [(B) € A X B(X),

i.e., C is Gr-measurable.

Addltlonallv, let f,: 2X X — Y (n € N) be £ X B(X)-measurable mappings andv

C (n € N) be defined by ,
Colw) == {x € X! f,(w, x)éB}’, for wEQ

" Assume that C and C, (n € N) are multifunctions. The following proposition glves'

. sufficient. conditions for the a.s. — convergence of (Cy)nen t0 C

. Proposition 2.7: Let C and C,, (n € N) be as 1n Example 2.6 and assume that there s

an A € A with. P(A) = 0 such that for all w € 2 \ 4,

(i) if xz, x, € X (n € N) are such that x = lim z,, lhen we have
n—oo

lim /,(w, Z,) = f(o, 2);

7—00

(ii) Clw) = cl{z € X | Hw, ) € int B}, where “cl” denoles the closure and ““int” the

anterior of a set,

(iii) B s closed.
Then (C,)nen converges to C almost surely. ’ /

The proof is a consequence of [14: Sitze 4.1 and 4.2]- a.pplled to C(w) and Cy(w) -

(n € N) for each w € Q N A. Especxally, (i) and (ii) imply
C(w) < Liminf Cp{w), "for we RN 4,

ﬂ—’m
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and (i) and (iii) imply

\

C(w) € Limsup C,(w), for we N 4 @
n—00 ) N
l

Remark 2.8: Note that (2.1) s closely related to the notions “open” (“lower semi-
continuous according to Berge”) and “closed” in [11, 14, 2] i in the context of para-
metric optimization. Example 2.6 and Prop. 2.7 only serve as an illustration of the
general result. Of course, more gcncral(xr measurable multifunctions (as in [7, 18:
p- ]71/172] could be considered. It is well-known that the “‘constraint quallflcatlon _
(ii). is rather. restrictive; This fact is dl%usscd in [2: Sect. 3.1] and in [13]} and it is
shown how to.overcome this obstacle (in particular, by i 1mposmg certain conve\uty or
regularity conditions). :

BN

3. 'Conv_crgence of measurable selections in probability and in mcai

As in Section 2, let C and Cy(n € N) bé Gr-measurable multifunctions from £ into a
Polish space X. For later use we'definé the following set-valued maps from Q into X
‘forallnehanda,lle>0

ial@) = Clo) \ eOl@) -
Do) = Nialw)u (Calw) N £0()

" where ¢F := {x € X |d(z, F) < ¢} for any suBset F S X. Note that the set-valued
maps A, and A, .(n € N, ¢ > 0) are clearly Gr-measurable.

} forall we Q, P

_ Definition 3.1: (C)nen 18.5aid to converge in pr(}blabilily toC if forall ¢ > 0 and
any compact subset K & X, lim P(A 1K) ) =0. -

n>00
Convergence in probability of measurable multlfunct,lons was mtroduced in [21:
Sect. 5] and [22: Sect. 1]. In [21] and [22] the usual relations between convergence in
probability and almost sure convergence (and convergence in distribution, respec-
tively) are proved for the case X = R™. The following result, establishes one of these .
relations in a more general sitiation.

Proposition 3.2: Let X be a non-compact Polzsh space. (Cy)nen converges tn prob-
ability to C +f 2t converges almost surely to C.

-

. Proof: Let (C,)sen converge almost surely to € and let ¢ > 0 and K — X compact
be arbitrary. Because of Prop. 1.1, there exist measurable mappmgs Z, :dom (A, #()
n K) -> X (n € N) such that

Zp{w) € N alw)n K. forall’ wEdom(AL af ﬂK)\N,,, o
where N € A with P(N ) = 0. We define .
N:=UN,, 4, := dom (A, ,,( U K)\N for all n,

neN
and we note that P(¥) = 0. For a fixed 7 E X \ K we define for each n € N meas-
urable mappings z, : 2 X,
Tp(w), @ E A4,
Y, w€ 2 \\ 441» .

xn(w) =
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For all n € N we have .
PATAK) = PlA,) = Pllw € 21 d(z(w). ) > 0)
\ = Plle e d@w), ) 2 dy K)).
Because of the almost sure convergence of (C, ),,e\ to C, the sequence (Ae.n)nex con-
verges almost surely to 0 This implies )
lim (l(:L,,(w) 1/) = 0a. 8. zmd thus, lim P({w €0 | d(x(w), ) = d(y, K)}) o1

n—)oo n—oo
i

" Remark 3. ‘% The following result can be proved analogously to Prop. 3. 2: Forall
¢ > 0 and any compact subset K = X

llm P((A, ")‘l (K ) =0

if there is an A4 € A with P(A) = 0 such that for all w E 2\ A
L Clw ) = leme (w)

n—»oo

VA

"Theorem 3.4: Let C and C (n € N) be Gr-measurable mullyfunctions /rom Q nto X.
a)y S(C ) C P — Liminf S(C,) #f for «ll € > 0.and any compact subset K S X,

lll]] P( (FK)) = 0.
b) Let C' be closed-valued and (C IneN converge m probabzlm/ to C. Then
S(C) = P — Lim S(C,).

n—00

‘Proof:a) Let z € S(C) and leét ¢ >0 and § > O be arbitrary, but fixed. Because
of [4 Theorem 1.4], there i is a compact, K & X such bha.b,

(‘I(X\ ]\))<£

°

By,assumpbion, there is an n,€ N such that for all n =Ny,

’ ' S : ' - a
‘ P( Q| Ninlw) n K- 0)) < .
Bemuse of Lemma 2.3, there is a sequence x, €. S((,,) n € \r such that. for all ne N
&nd w € .(.), R . ~ -
d('r w), :t',,(w)) é (x(w ), C (w ) + n‘l _
'l‘hcn there is an n, € N, n; = n,, such that for a]l n = ng,

P(lw € 2] d(z(w), ,,(w)) = )

<P ({w € 21delo), 0uw) 2 5}) i€ @ 12(0) € Ao

< Pllwe 2 | Ho) € Abma(@)n Ki) + = < 6.
Thus, x € P — lelnf S(C,,). .

T n—00 - ‘
) 'Because of part a), It remains to show that

(C) 2 P — Limsup S((‘ ).

3 ! n-—>o00

'lo|e-;
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Let x € Limsup S(C-) ie., a scqucnce (zk)keq converges to x in probabllxt,y, where

x5 € S(C,,k), for all k € N, and (n)ren is @ subsequence of N.
Let ¢ > 0and 6 >'0 be arbitrary, but fixed. Because of Prohorov’s Theorem [4:
Theorem 6; "], there is a compact subset- Ka cX such that

» 6.
sup P(lw € 2| x,,(w) € XN K)) 5
keN .

i

. By assumption, there is a &y € N such that for all & = k,,

P(A,,,.(Ans))si I

Then we have for all k = k, : _ v
‘ Pl{w € 2 | d(zi(w), Cw)Ze)
< Pllw € 2| mulw) € K, d(zlw). C(w) = })

b3| o

+ _
< Pl{w € 2'| (Cnil(w) \,eC(w)) h Ky + 0}) % T

< P( m.(lm) ggé. S

This means that the sequence (e () C(.-)))“N converges in probability to zero. There
", exists a subsequence (z )jen such that . o t
" lim dfwg,(w), x(a;))':wf).a..s. and lim d(z,(0), C(w)) = 0 a.s.
oo jooo ) '
ThlS 1mphes d(x(w), C(w) =0 a.s. Since C is closed-valued by assumption, we obtain
z€ S(C) 8 o ' )
Let us mt,roduce_the following notations:
) D'*(E, F):= sup d(z, F),
. ' ZEE :

, ‘(E, Fe P(X))
D(E, F) := max {sgp d(z, F), sup d(z, E)}. .

! " lzee . zeF .
(‘“Hausdorff-distance’’)

N

Corollary 3.5: Let C and Cy(n € N) be as in Theorem ‘3 4.

a.) S( ), S P — Linminf 8(C,) of for all & > 0, T
lim P({w € Q| DH(C(w), Cp(w)) = e}) =0. ' ' b

b) Let C be closed- valued und assume that /or all e > 0
lim P({w.E Q| D(Clw), Cy(w)) Z ]} = 0.

Then 8(C) = P — Lim S(C,). ‘ ' ‘
"Proof: Letn €N, e> Oand K S X con,pact, be arhitrary. By definition follows
(A& V(K -—{wtexec nK|d(xo(w))>e=}:®}

S {w € 2] D*(C(w), Ca(w)) = ¢} )
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.

Thus, a) follows from part a) of Theorem 3.4. Analogously, N
ATK) E {w € 21 D(C(), Colw)) Z ¢}
and assertion b) also follows from the Theorem l

Remark 3.6: It' can be seen from the corollary tha.t Theorem 3.4 generalizes [S:.
Theorem 4.2]. It follows from Prop. 3.2 and Remark 3.3 that the conditions of Theo-

rem 2.4 are stronger than those of Theorem 3.4. Because of [8: Remark 2.2] it is
clear that

S(C) = al,.s.' — Lim §(C,) implies S(C) =P — le S(C, )

n—r0 ~ ,

"Definition 3.7: (Cp)nen'is said to converge in mean to C’ 1ff

© . lim [ D(Cy(w), w))dP—O

n—co 2 -

This mode of convergence of measurable multifunctions was considered in (23, 9]
Clearly, convergence in mean implies convergence in probability.

Corollary 318: Let C and Cy(n € N) be as tn Theorem 34. T
a) S(C) & m = Liminf 8(C,) ¢f lim f D*(C (), C(w)) dP = 0.
n—co - n—o0 2

b) Let C be closed-valued and assume that (C,).eN converges in mean to C Tken

S(C) =m — le S(O ). . \ . ‘
(NN
Proof: It is an nnmedlate consequence of a Chebyshev type mequalltv and Corol-
lary 3.5 1

" Theorem 3.4 and its corollaries represent the main results of . this paper. Appli-
cations to concrete measurable multifunctions seem to be possible if e.g. the results of
[2] are used. A simple example can be found in [8: p. 278/279]. '

>

4. An application to approximations in stochastic optimization
_ In this section, we outline the use of measurable selection convergence for the study
of approximations for the so-called “distribution problem” of stochastic optimization.”
This appllcatlon of our results is only meant to be illustrative. . |
Let f: 2X X — R becA X B(X) — measurable and C: 2 — P(X) be & Gr-measur-
able multifunction from 2 into X. We introduce the followmg notations:

R:i=Ru (+o0},
¢: 0> R, p(w) := inf fw, 2) | 2 € C)} for we L,
p:2>X, )= {z€ )] fo,2) = po) for €. S

Proposition 4.1 Let/ and C be as above. Then, .(p is measurable and y s Gr-measur-
able.

Proof: The measurability of ¢ follows from [5: Lemma IIL. 39]. The Gr-measura-
blllt,y of y follows from

Gry = GrCn{(o,z) € QXX | flw, 2) = p(w)} € A X B(X)

by standard arguments and by assumption @
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’
i

The question for ihe distributioﬁ or.some of its characteristic values of the “opti-
mal value’ ¢ and (or) of an “optimal solution’ (i.e., a selection of ) is usually called

. the distribution problem of stochastic optimization (sc(, [6, 12]). Note that this pro-

\

blem makes sense by Prop. 4.1. The reader is referred to ‘numerous results about this
subject (e.g. [3, 6,.7, 20, 22, 23]). -
Following theapproach of [23, 20, 22] we now study apprommatlons for the problem

Hw; x) — Min!s.t. 2 € C(w) (w € Q). : ’ . (4.1)
Let, additionally, f, : 2XX >R (n € N) be A X B(X) — measurable and C, : 2.

. —=-PX) (n E/\l) be Gr-measurable multifunctions. We considera sequence of st,ochastu,‘

optimization problems

folw, 7) > Mint s, z € Cuw) (w € 0, m Ny, (4.2)
and we define foralln € Nand w € @, - B '

Palw) = inf {fa(w, 2) | 2 € C (@)},

ya(@) = {2 € Co(w) | fo(w, 2) = Pn(w)) - )

[3] and [2‘3] contain results on the convergence of (@u)nen and (w,,),,eN in the case of
stochastic linear programmmg In [20] and [22: Sect. 8] the convergence of “stochas:.
tic infima” (i.e., of (@,)nex) is-studied (for’the case X = R™) using the theory of con-
vergence of measurable multifunctions. In the followmg we will present a result on
convergence of the sequénce of “optimal solution scts™ (S(y,))aex-

Theorem 4.2: Let f, fu(n € N) be A X B(X) — measurable mappings from 2 X X
into R and C, C, (n € N) be Gr-measurable multz/unctzons from L2 into X. Assume that

(i) C s closed-valued and (Cp)nen converges in probability to C,

(1) for ¢ll z € b(C) and z, € S(C,), n € N, such that x = P — lim z,, we have

/(.,.,x(.)) =P~ lgl;/n( s Za(*)) s T

(m) y, 18 defined as in (4.2) and is a multz/uncfwn from Qinto X, /or ullm €N ps

as above.
Then P — Lunsup S(y,) S S(y ).

n—00

Proof: Because of Theorem 3.4, (i) implies

S(C) =P — le S(C,)- . ; : (4.3)
Letze P — lesup S(w,,), e,z =P — llm Ty, T | € S(rp,,k) for all k € N. Especxall),
N k—»

we have 1z, ¢ S( Cp), k €N, and it follows from (4.3) that z € S(C). By (4.3) there
exists a sequence Z, € S(C,), n € N, such that x = P — lim Z,. For all n € N, let

’ . {x,, if n=n¢ keN ‘
° xn [ . N
| T, otherwise. R
Then x = P — lim &,. (ii) implies
TP —lim /(&) = P — lim /"k(. z(-)) = P — lim ol = - ()
y n—00 ko0

It remains to show that /(w, ) < ¢(w) a.s. Let ¢ > 0 be arbltrary, but flxed
We consider the following set- valued map D : from 2 into X,

D(w fz € C(w) | flw, x) S .7(w)}, fo‘r all we Q,
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where - :
—€ otherwise.

It is (,lea.r that' D is a-Gr-measurable multifunction (see also Example 2.6). Let

2 € S(D) & S(C) (see Prop 1.1). By (4.3) there exists a sequence £, € S(C,), n € N,

with
P .—llm/,,(, )_f( :%( ) o

Consequently, there is a furt,her subsequence of (m)ien, say (nu)jen, such that

(q;,,k jeN. and (/,,‘( :t,.k,( ))) N converge almost surely Thus, we obtain
N

v

flw, x(w)) = llm %k w) = f(w, ﬁ(w)) = r(w) a¥s.

Since ¢ > 0 was arhlt,rary, this means /(w x(w)) = ¢(w) a.s. and t,hus z€ S(w)

Remark 4.3: Note that it seems not to be easy to check whether P — lesup S(wn)

% @. One possibility for ‘doing this is to show that (S ( (¥n))nex is contamed in a set of
X-valued random variables which is compact with respect-to convergence in pro-
ibability. Note that [8: Theorem 4.9] states a criterion for compactness with respect
to this mode of convergence.

The study of approxnmatlon schemes (4.2) for the orlgmal stochastic optiniization
probleni (4.1) is motivated by an approach to solve (4.1) via “discretizing” the ran-
dom variables involved in (4.1) (see [20], and [19] in a somewhat diiferent context;

see also [26] for a recent survey on approximations in-stochastic programming).
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