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On the Convergence of Measurable Selections 
and an Application to Approximations in Stochastic Optimization 

W. RöMISCH	 - 

Es werden Bedingungen angegeben, die garantieren; daB eine Folgo (von Mengen) meBbarer 
Selektoren fast sicher, in Wahrscheinlichkeit ,und im Mittel konvergiert. Diese Bedingungen 
sind mit den entsprechenden Konvergenzeigenschaf ten der zugrunde liegenden Folge meBbarer 
Multifunktionen verwandt. SchlieBlich werden die Resultate zur Untersuchung von Approxi-
mationen für das sogenannte Vcrteilungsproblem der stochastischen Optimierung verwendot. 
IIopMyJIupywTCH yC1oBllR, rapaiapyionuie CXOJ(H MOCTb noCJIeoBaTe3ThH0CT1! (MHoecTB) 
sIaMepIIMUX CeJieXTopon HO'ITII Hanepnoe, no BO5TII0CT11 11 n cpejweM. TaKueyc.noBun 
cBnaaHbI Co cooTBeTcTByIouen CX09I1MOCTbI0 nocJIeoBaTeJIbHocTn n3Mep1Ma[x Muoro3Ha'!-
H1IX oTo6paeuHf. Pe3yJmTaTM npl!MenHIoTcn ii annpoi;cHmaqHit onpe)eJIeHHofl aaga'iH 
CToxaCTw1eCForo nporpaMMIlpoBaHusl. 
Conditions are given that guarantee that a sequence (of sets) of measurable selections converges 
almost surely, in probability and in mean. These conditions are related to the convergence of the 
underlying sequence of measurable multifunctions. The results are applied to approximations 
for the so-called "distribution problem" of stochastic optimization. 

1. Introduction and preliminaries 

Thestudy of measurable inultifuncions and measurable selections as well as of their 
('onvergence is motivated by several applications. These include probability theory 
[9], stochastic geometry [16], stochastic analysis (e.g [81]),.stochastic optimization 
[7, 20, 22, 23, 25], control theory, and mathematical economics, among other fields. 
Particularly, results about the convergence of measurable multifunct.ions and their 
measurable selections play an essential role for the design and study of approximation 
schemes in stochastic analysis and stochastic optimization (see e.g. [8] and [22]). The 
first results on the convergence of measurable selections seem to he given by SALT-
NETTI and WETS in [21] (for finite-dimenional spaces). Probably, [21] initiated the 
recent research in this field (see [1, 8: Sect. 4, 17, 22]). 

In this paper we establish conditions under which sequences (of sets) of measurable 
selections (of multifunctions with measurable graph and values in Polish spaces) 
converge almost surely, in probability and in mean. (Convergence in distribution is 
not considered; this is done in [22] and [1]). These conditions are related to the 
respective modes of Convergence of the underlying sequende of measurable multi-
functions. Finally, we outline the use of the results about measurable selection 
convergence in the study of approximation schemes for the "distribution problem'l 
of stochastic optimization. 

Thrtighout this paper, let (Q, a, P) be a complete probability space (cf. Remark 
1.2) and X be a Polish space (i.e., coinlete separable nietrizable) with metric d. Let 
,91(X) be the set of all non-empty subsets of X and (X) be the a-algebra of Borel sets 
of X. For any F 9 X and x E X let d(x, F) :=inf {d(x, y) I y E F}, d(x, F)::= ±oo if
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F 0. The stitallest a-algebra on Q X X containing {A x B I A E B E (X)} will 
he denoted by 4>( 5(X). As usual, we say that a property depending on co E Q holds 
almost surely (a.s.) or /or P-almost all co E Q if there is a set A E C4 with P(A) = 0 such 
that the property holds for all c E Q \ A. 

A set-valued map li'oni Q into X is a mapping from Q into the set of all subsets 
of X. For a set-valued map C let 

donlC:=={(D EQIC(w)=i=O  

be its domain,	 - 

GrC:= {(w,X)EXXlxEC(w)} 

he its graph and for .B	X let 

C- 1 (B) :.= {w E Q I C(w) fl B =tr 0}. 

A set-valued map C is called ineasurable (weakly measurable) if C- 1 (1?) iE 4 for each 
closed (resp. open) subset B of X. C is' called Or-measurable if Gr C € 4 X c(X). If 
dont C = Q, then C is called a multi/untiort. For a multifunction C front Q into X we 
denote by S(C) the set of all measurable x: Q - X (X-valued random variable defined 
on (Q, 't, 1')) that are a.s.-selections of C, i.e., 

S(C) := jx : Q - X I x-measurahle and i(a) € C(w) a.s.}. 
Consistently, 8(X) is the set of alIX-calued random variables (defined on (Q, 4, P)). 

Excellent sources for properties of measurable set-valued maps and measurable 
selection theorems (i.e.,resultsstatingwhenS(C) + 0) are [5,10,15],[18](for X Jim) 

and [24]. There the following facts can he found. 

Proposition 1.1: Let C be a st -valued map/roni 17 into X. 
a) C is Or-measurable implies that C is measurable, and this implies that C is weakly 

measurable. If C is closed-valued; then. C is Gr-measurable ill C is weakly measurable. 
b) Cis weakly measurable i// for all x € X the map d(x, C( . )) from 17 into the extended "

 

reals is measurable. If C is weakly measurable, then. dom C E . 
c) If C is Or-measurable, then there exists a measurable map x : dom C —* X such that 

x(w) € C(w), a.s. If C is a Or-measurable multi/unction, then S(C) 0 (where "a.s." 
can be replaced by "for all a)' € 17"). 
Let xE S(X) and x,, € 8(X) (n. € N). The following modes of convergence of the 

sequence (xn)nEN will he considered:	- 
(xn)flEN converges to!x 

(i) almost surely ("a.s.-convergence") if there is an A€ 4 with P(A) = 0 such 
that for all co € 17 \ A, 
limd(x(w), x((0)) = 0; 

(ii) in probability ( "P-convergence") if for every s> 0 

limP({o) € 17 d(xo), x(w))	e})	0; 
 

in mean ("m-convrgenee") if 

liin f d(x(oi), x(w)) dP = 0. 
-	0
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For the following, let e denote any of these modes of convergence in 8(X). If (xfl)flEN 
converges to x in the sense of, we shortly write x = o - urn x,,. 

Now, let C and C (n. E N) be multifunctions from Q into X.-Let us consider the 
following limits of the sequetice (8(C n ) ) fl € N of sets of measurable selections (see also 
[8: Def.2.l]): 

o - LimirfS(C) := {x E 8(X) I x = —'lint x, Zn E $(C), for all n € N}, 

	

o - Lirnsup$(C) := {x E8(X) x	- lift, Xk, Xk € S(Cnk), for all k.E N and 
.	 k—oo 

for some infinite ordered subset (flk)kEN of N), 

o - Litu S(C) := - Lirninf S(Cn) = ,- Limsup S(Cn).  
fl-*OO 

Now; we are in the position to state the aim of this paper as follows: Find conditions 
that guarantee that 

•	8(C) 9	Liminf S(C)'  
n-+ 

and
8(C) = - Liiii 8(C),	 (1.2) 

respectively. (We will write a.s. - Liniinf, P Limsup and iii - Lim etc. in the 
fl-*OO 

ease of a.s. - convergence, P-convergence and rn-convergence, respectively.) 

Remark 1.2: We n€ed that the underlying probability space is complete for 
establishing Prop. 1.1 and Prop. 4.1 in thegeneral .setting of this paper. The reader 
is referred to [18: p. 164/1651 fora discussion of ,coniplCteness".'But, note that 
Theorem 2.4 (Theorem 3.4) is also' valid for complete measure spaces with a-finite 
(finite) tiieasiIre. 

2. Almost sure convergence of measurable selections 

The study, of convergence of sequences of measurablselectionshas been initiated by 
SALINET1 and WETS in [21]. There, the case of X = flm and of closed-valued 
measurable, set-valued maps is studied. In the following letCand C(n E , N) beGr-
measurable inultifunctions from Q into a Polish space X. 

Definition 2.1: (C)€ N is said to converge almost àurely to C if there is an  E 4 
with P(A) = 0 such that for all co € Q \.A, 

C(w) = Liminf Cn() = Limnsup C(w),	•	.	 (2.1) 
where	 -	 - 

Liminf C(w) := {x E . I x = lim X,,, Zn E C(w) for all n E 1N},	(2.2) 

no	. 

Limsup C(w) := {x E X x = limn Xk, Xk E Cnk(W) for all k E N,	(2.3) 
n-+oo'	- 

and for some infinite ordered subset (n . )kE N of N}.	 - 

Remark 2.2: Almost sure convergence of(rneasurable) multifunctions was intro-
duced in [21] (see also [251). Note that the sets Liminf Cn(w) and Linisup C(a)) (a) E Q) 

n-*oQ	 n-oo
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are clerly closed. If X is locally compact and C is closed-valued, then it follows from 
[16: p. 10] (see also [211) that (C) EN converges almost surely to C if and only if there 
exists an A E cit with P(A) = 0 such that for all x E X and a E Q \ A, 

lim d(x, C(w)) = d(x,C(w)).	 (2.4) 

Now, we are interested in conditions that guarantee (1.1) and (1.2), respectively, 
for the case of almost sure convergence, and their relations-to , the notion in Def. 2.1. 

• The next result turns out to he useful for the proof of convergence results formeasur-
able selections.	 S 

Le in ii a 2.3: Let C (n.E N) be Gr-measurable multi/unct ions from Q into X. For all 
x E 8(X) there is a sequence x, E S(C), n E N, such that for all n E N and co E Q, we have 

d(i(w), x(w))	rl(x(w), C(w)) + n'. 

Proof: Let x E 8(X) and n E N he arbitrary, but fixed. We define. 

B(x0;r):={zEXId(z,x0 ) < r}, for .x0EX,r>0; 

D:Q-*8(X), 

D(w) :r= {z E C(w) d(z, x(w))	d(x(w), Ch(w))+ n} 

= C(w) n J3(x(w), r(w)) for co E Q, 
where	 .5 

r(w) := d(x(oi), C(a)) ± fl, w E Q. 

Sinc the map (w, z) –* d(z, C(w)) is a Caratheodory function from Q X X into II., 
is a real random variable. Because of [5: p. 88] and Prop. 1.1, B(x(.), 

r( . )): Q --> 5(X) is a Gr-measurable closed-valued multifunction. This implies 

- Or D -•' Cr Cn n Or B(x( . ), r( . )) E cA)< (X), 

i.e., Dn is Gr-measurahle. Again using Prop. 1.1 we obtain a reasurable map x: Q 
- X such that x(w) E D(a), for all w E Q I 

The öre in 2.4: Let C and C(n E N) be Gr-mea.surable multi/unctin.s /roin Q into X. 
a) 8(C)	a.s. — :Liinf S(C) i/and only if there is an A E4 with I'(A) = 0 such 

that /or all (o E Q \ A,C(co) c Liminf C(w) (equivalently: lirn d(x, C(a))) = 0, for 
all  E C(w)). 

h) Let (C) neN be almost surely convergent to C. Then 

8(C) = a.s. — Lim 8(C).

/  n-00 

Proof.: a) Lt x  S(C) be arbitrry, but fixed. Because of Leiiinia2.3 thereis a 
sequence x E S(C), n E N, such that for all n E N and U) E Q, 

d(x(w), x. (co)) ;S d(x(w), C. (to)) ± n'. 

This implies  

•	 lim d(x(w), x(w)) = 0 a.s., i.e. x E a.s. — Liminf 8(C). 
S	 n—+ 

Thus, the if-part of assertion a) is proved. For the converse the reader is referred to 
[8: pp. 271-2731.	 5	

5	 - 

55	 7

/
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h) Because of part a), it remains to show that a.s. - Limsup B(C) 
Let	 '-co- 

x E a.s. - Linisup S(C), i.e., lini d(x(w), Xk(W)) = 0 a.s., 

where . xk E S(C,1 ) for all k E N and. (flk)kEN is a subsequence of N. Thus, we have 
x(w) E Limsup C(&)	C(w) a.s., i.e., x E S(C) I 

fl-4' 

Remark 2.5: Theorem 2.4a) is also stated and proved as part a) of Theorem 4.1 
in [8]. But, note that the "if-p.rt" is proved using Lemma 2.3. In [8], the selections 
x, (n € N) are constructed in a direct way from Castaing representations of C, (n € N). 
Theorem 2.4b) generalizes Theorem 4.1 4.lc) in [8], since almost sure convergence of 
(C,1 ) (N to C does not imply (2.4) in 'arbitrary Polish spaces. It is not clear whether 
the converse holds in this part of the Theorem! For a discussion of this subject and of 
other aspects, the reader is referred to [8: Remark 4.3]. Theorem 2.4 can be viewed as 
a generalization of [21: Theorem 4.3] from' R to a . Polish space X. Another such 
generalization is stated as The 1.1 in[17]. There the author assumes the follow- 
ng: (Q, c4) is a measurable space, X a separable metric space and C, C(n € N) are 
complete-valued weakly measurable multifunctions. Then he proves a result similar 
to TheOrem 2.4a), butdoes not permit exceptional sets of tileasure zero for the selec-
tions. Note that in our concept of S(C) the exceptional sets may depend on the, selec-
tions.  

Exmple 2.6: Let Y be a metric space, I: Q  X -- Y be A X(X)-Ineasurable 
[8: Def. 1.2] and BE (Y). Let us consider the following set-valued map Cfroin Q 
into 

w -^ C(w) := {x E X I /(a, x) € B}. 

Clearly we have 

Gr C := {(w, x) E QX 'X I f(w, x) € B} = /'(B) € A x (X), 

i.e., C is Ge-measurable.  
Add itionally, let /, : Q X X -± Y (n € N) be a X (X)-measurahle mappings and 

C(n.EN)bedefinedby  

C(co):={xEX/(w,x)EB}, for wEQ. 

Assume that C and C, (n € N) are multifunctions. The following proposition gi ve s 
sufficient conditions for the a.s. - convergence of (Cfl ) flE N to C. 

Proposition 2.7: Let C and C (n E N) be as inExampte 2.6 and assunie that there is 
an A € 4 with-P(A) = 0 such that for all a E 1? \ A, 

x, x E X (n E 'N) are such that x = limx, then we have 

lim /(w, x) = /(oi, X)-,-	. 

(ii) C(w) = cI {x € X I f(w, x) € intB}, where "cI" denotes the closure and "int" the 
interior 0/ a set,  

(iii)' B is closed. 
Then (C) EN converges to C almost surely.  
The proof is a consequence of [14: Sätze4.1 and 4.21 . applied to C(w)'and C(w) 

(it € N) for each * co € Q \ A. Especially, (i) and (ii) imply 

C(w) 9 Lf 0(w), for w € Q\\ A,
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and (i) and (iii) imply 

C(w) 9 Limsup C,,(), for v S 17 \\ A I 

Remark 2.8: Note that (2.1) is closely related to the notions "open" ("lower semi-
ntinuous according to Berge") and "closed" in [Ii, 14, 2] in the context of para-

metric optimization. Example 2.6 and Prop. 2.7 only serve a an illustration of the 
general result. Of course, more general Gr-rneasurable niultifunctions (as in [7, 18: 
p. 171/172]) could be considered. Itis well-known that the "constraint qualification" 
(ii) is rather restrictive; This fact is discussed in [2: Sect. 3.11 and in [13] and it is 
shown how to overcome this obstacle (in particular,'hy imposing certain convexity or 
regularity conditions).	.	S	 S.	

0 

3. Convergence of measurable selections in probability and in mean 

As in Section 2, let C and C,,(n E i) be Or-measurable multifunctions from 17 into a 
Polish space X. For later use wedefinè the following set-valued maps from  into X 
for all nsN and all e>0, 

A,,(w) := C(w) " eC,,(w)
for all wEQ, 

A€. (w) := A,,(o)u (C,,(w) \: sC(w)) J	 - 
where sF := {x S X I d(x, F) <e} for any subset F 9 X. Note that the set-valued 
maps	,, and A,.n(n E N, s> 0) are clearly Or-measurable. 

Definition 3.1: (Cfl ) fl(N issaid to converge in probability to  if for all s >0 and 
any compact subset K 9 X, liiii P(:,(K)) = 0. 

Convergence in probability of measurable multifunctions was introduced in [21: 
Sect. 5] and [22: Sect. 11. In [21] and [22] the usual relations between convergence in 
probability and almost sure convergence (and convergence in distribution, respec-
tively) are proved for the case X = R . The following result establishes one of these 
relations in a more general situation. 

Proposition 3.2: Let X be a non-compact Polish space. (C,,),,€ N converges in prob-
ability to C if it cbnverges almost surely to C. 

Proof: Let (C,,),,€N converge almost surely to C and let e > 0 and K X compact 
he arbitrary. Because of Prop. 1.1, there exist measurable mappings x,, :dom (A3() 
n K) - X (n S N) such that 

,,(w) S A,,(w) n K. for all' co S dom	fl K) \ N,,, 

where N,, S 4 with P(Nn) = 0. We define	 0	 - 

N:= U N,,, A,,:= dom (A,,( . ) u K) \ N, for all h, 
nEN	 - 

and we note that P(N) = 0. For a fixed E X \ K we define for each n 5 N rneas-
itrable mappings x,, : Q-* X,

co
ly, 

	S A,, 
x,,(w)

cvEQ\A,,.
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For all it E N we have	
..	 - 

Em
	= P(A) = P({w E Q d(x(a), y) > 0) 

= P(w E Q I d(x(w), y) > d(y, K)}). 
Because of the almosf. sure consiergence of (Cn )nEN to C, the sequence ()rj con-
verges almost surely to 0. This implies 

urn d(x(w), y) = 0 a.s., and thus, hun P({w E Q I d(x((jj), y)	d(y, K)}) =0 I 

Remark 3.3: The following result can he proved analpgouslytoProp. 3.2: Forall 
> 0 and any compact subset K X, 

lini P((AT)- ' (K)) = 0 
n—	 . - 

if there is an A (4 with P(A) = 0 such that for all co E Q \ A, 

C(w) 9 Liminf C(w). 

Theorem 3.4: Let C and C(n EN) be Or-meãsurable multifunctions /romQ into X. 
a) S(C) P - Linuinf S(C) if for all e > 0 and any compact subs et K X, 

lini P(()-' (K)) =0.	
S	 - 

h) Let C be c1sed-valued and (C)€N converge in probability to C. Then 

-	S(C)=P— Lim S(C). 

Proof: a) Let x E- (C) and let e >0 and ô >0 be arbitrary, but fixed. Because 
of [4: Theorem 1.4], there is a compact K	X such that 

P(x-1(X \ K)) -2 

By, assumption, there is an n0 E N such that for all n	710, 

P({w E Q ! A ( /2)fl (w) n K-+ 0)) 

Because of Lemma 2.3, there is a sequence x, E-S(C), h E N, such that- for all n E N 
and wEQ,	 - 

d(x(w), x,(w))	d(x(w), C(w)) + fl'. 
Then, there is an it 1 E N, n1 2^ n0 , such that for all n 

P({cu E Q I d(x(w), x((0)) > })
 

	

- ^ P ({ E Q d(x(w), C.((')))^
	

=	E .Q x	.E  

:51- P((w E Q I x(w) E L 12 . n (w) n K)) ±	6. 

Thus, x E P - Liminf S(C).	 0 S	
0 - 

h) Because of part a), It remains to show that	 - 

8(C) Q P - Limsup S(C).  
0	 fl+,3	-
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Let x 6 Limsup S(C), i.e., a sequence (Xk)k(N converges to x in probability, where 

Xk 6 S(C ), for all k 6 N, and (flk)kEN is a subsequence of N. 
Let s > 0 and ô >'O be arbitrary, but fixed. Because of Prohorov' Theorem [4:


	

•	Theorem 6.2], there is a compact subset K5	X such that 

supP({w 6 Q J xk(w) € X\ K6)) <. •1 

keN	 2 
By assumption, there is a k0 6 N such that for all k	k0, 

-.	 -. 

	

•	Then we have for all k 2^! k0,  

P({w E Q I d(xk(w), 0(w))	e}) 

< 1'(w 6 Q I xk(w) E K 6 , d(xk (w). 0(w))	r}) + 4 
< P({w € Qj (Cnft(w) \&(o)) n K6 + ø}) +	 -,


^ F((K)) ± - 

This means'thàt the sequence (d(xk ( . ), C( . )))kEN converges in probability to zero. There 
exists a subsequence (xk,)EN such that 

Iiiii d(xk,(w), x(w)) = ' O a.s. and lirn d(x,..,(w), 0(w)) = 0 a.s. 
•	

,—*o,	

-	 I 
This implies d(x(w), 0(w)) =0 a.s. Since C is closed-valued by assumption, we obtain 
xES(C)I	 -: 

Let us introduce the following notations:
0 

•	

' D(E, F) := sup d(x, F), 
zEE

I -	 1	•'-' ••	 '•- '-' k-"- 
/) 

D(E, F) := max sup d(x, F), sup d(x, E) 
1ZEE	 ZEF 

("Hausdorff-distance") 

CorollaIy 3.5: Let C and C. (n € N) be a.s in' Theorem 3.4. 
a) S(C) 9 P — LiminfS(C) if for all e> 0,	 - 

lirnP({w € Q I D(C(w), C(w))	0..  

b) Let C be closed-valued and assume that /or all e > 0,  
lim P(w Q I D(C(w), C(w)) 	}) == 0. 

	

•	•ThenS(C) = P — LirnS(C).	 - 

Proof: Let n N, e> 0 and K X conjpact be arbitrary. By definition follows 
(K) = w € Q I {x € 0(w) n K I d(x, C(w)) > e} 0) 

. {co € QIDIC(w), Cn (w))	e}. •	 /
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Thus, a) follows from part a) of Theoreni 3.4. Analogously, 
A(K) 9 '(co E 9 D(C(w), C(o4) ^! 

and a'ssërtion h) also follows from the Theorem I'. 
Remark 3.6: It can he seen from the corollary that Theorem 3.4 generalizes [8: 

Theorem 42] It follows from Prop. 3.2 and Remark 3.3 that the conditions of Theo-
rem 2.4 are stronger than those of Theorem 3.4. Because of [8: Remark 2.2] it is 
clear that

8(C) =. a.s. - Lim S(C) implies 8(C) = P Lim $(C) 
n_o 

l)efinition 3.7: (Cn )nEN"is said , to converge in mean to C if'  
lim fD(C(w),C(w))dP=O.	

0 

n–oQQ	 - 

This mode of convergence of measurable multif unctions was considered in [23, 91. 
Clearly, convergence in mean implies convergence in probability. - 

Corollary 3.8: Let Cand C(n EN) be a.sin Theorem 3.4. 
a) 8(C) m = Liminf 8(C) 1/ lim f .D + (C(w), C(w)) dP = 0. 

n—oo-	n—oo Q 
b) Let C be closed-valued and assume that (Cfl ) flEN converes in mean to C. Then 

• 8(C)=m—LrnS(C).	 /	 S 

Proof: It is an , immediate consequence of aChebyshev-type inequality and Coro1-
lary3.5 I	 ,. 

Theorem 3.4 and its corollaries represent the main results of this paper: Appli-
cationsto concrete measurable multifunctions seem to be possible if e.g. the results of 
[2] are used. A simple example can be found in [8: p. 278/2791. 

4. An application to approximations in stochastic optimization	. 0 

In this section, we outline the use of measurable selection convergence for the study 
of approximations for the so .c'alled "distribution problem" of stochastic optimization.' 
This application of our results is only meant to be illustrative., 

Let/': 9 x X —* R be 4 X (X) - measurable and C: 9 -- (X) be a Or-measur-
able multifunction from 9 into X. We introduce the following notations:	S 

R:=Ru{±oo},  

9 ; , 	:== inf {/(w, x) I x E C(w)} for co E 9, 
Q–* X,	(w) := {x E C(w) I /(w, x) Sr (w} for oE 9. 

Proposition 4.1: Let/ and C be as above. Then, q' is measurable and 'V* isGr-meas'ur-
able. 

Proof: The measurability of p follows from [5: Lemma 111.39]. The Or-measura-
bility of p follows from 

Gr ip = Or C n ((co, x) E Q X X I /(w, x)	((o)} E ' X (X) 
by standard arguments and by assumption I	 -
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The question for the distribution or, some of its characteristic values of the "opti-
mal value" p and (or) of an "optimal soliitibn" (i.e., a selection of ) is usually called 
the distribution problem of stochastic optimization (see [6, 12]). Note that this pro-
blern makes sense by Prop. 4.1. The reader is referred tonunierous results about this 
Subject (e.g. [3, 6,7, 20, 22, 23])..  

Following the approach of [23, 20,22] we now study approximations for the problem 

/(w; x) - Mm! s.t. x E C(w) (co E Q).	.	 (4.1) 

Let, additionally, f,, : Q x X R (n E N) be 4 x (X) - measurable and C,, P. 
->(X) (n'E

,
 N) be Or-measurable multifunctions. We consider a sequence of stochastic 

optimization problems 

f,,(w, x) --*.,'4in!l s.t: x  C,,(w) ((o E Q, nE N)	 (4.2)


and we define for all n E N and w E Q 

q,,(w) := inf If.(-, x) I x  C,,(w)}, 

-	,,((o) := {x E C,,(w) I /,,(w, x) = ,,((o)). 
[3] and [23] contain results on the convergence of (n)n€ and (n)€N in the case of 

stochastic linear programming. In [20] and [22: Sect 8] the convergence of "stoehas-, 
tic infinia" (i.e., of (fl),,EN) is.studied (forthe case X = R-) using the theory of con- 
vergence of measurable niultifunctions. In the following we will present a result on 
convergence of the sequence of "optimal solution sets" 

Theorem 4.2: Let/, /,,(?zE N) . be AX(X) - measurable mappings front S2  X 
intoR and C, C,, (n E ) be Gr-measurable ?nultif-unctzons from P into X. Assume that 

(i) C is closed-valued and (C,,),,tN converges in probability to C, 
(ii) for all x E 8(C) and x,, E S(C,,), n E N, such 1/tat x = P - urn x,,, we have 

•	 /(. x( . )) = P

	

 
fl 

li 	x,,(.)),	
- 

ni	
/ 

n-I-co 

(iii) ip,, is de/ind as in (4.2) and is a multifunctionfrom Pinto X, for olin E N; p is 
as above. 

Then P - Litnsup S(ip,,) 

Proof: Because of Theorem 3.4, (i) implies 
• S(C)=P— Lim S(C,,).	 -	.	.	 (4.3) 

Let x E P	Limsup 8(, i.e., x = P - lini Xk, x. E	for all k € N. Especially, 
nco 

we have Xk E 1S(C,,),k E . N, and it follows from (4.3) that x € 8(C). By (4.3) there 
exists a sequence Y. E 8(C,,), it E N, such that x = P - linu i,,. For all n € N, let 

fl-I-CO 

- ._IXk if?t flk k E N 
Xfl	 otherwise.  

Then x = P —lim. (ii) implies	 . 

P - lint /., (•)) = P -- lirn t . , x( . )) =1 P - urn q(.) 
n-±co	 k-.co 

It remains to show that f((o, x(w))	q(w) a.s. Let F > 0 be arbitrary, but fixed.

We consider the following set-valued map D : from P into X, 

D(w) : =,{x C C(I-D) j/(w, x)	r(w)}, for all co E Q,
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where
{ p(w) + e if (w)> - 

r(a)) :=	
€-	otherwise. 

It is clear that D is a . Gr-measurable multifunction (see also Example 2.6). Let 
E 8(D)	8(C) (see Prop. 1.1). By (4.3) there exits a sequence ±, E 8(C), n E N, 

with
P 

n-±oo 

Consequently, there is a further subsequence of (k)kEN, say (nk,)jEs, such that 
(1'nk)jEN and (f(;, ±nk,(.)))I(N convere almost surely. Thus, we obtain 

x(w)) = lim flk ( w ) :5-, /((0, (w)) !E^ r(w) a. 

Since > 0 was arbitrary, this means /(w, x(w)) < (w) a.s. and thus, x E 8(y) I 
Re mar k 4.3: Note that it seems not to be easy to cheek whether P - Limsup 8() 
0. One possibility for doing this is to show that (8())eN is contained i n a set of 

X-valued random variables which is compact with respect . to convergence in pro-
tbability. Note that [8: Theorem 4.9] states a criterion for compactness with respect 
to this mode of convrgence.. 

The study of approximation schemes (4.2) for the original stochastic optimization 
problem (4.1) is motivated byan approach to solve (4.1) via "discretizing" the ran-
dom variables involved in (4.1) (see [20], and [19] in a somewhat different context; 
see also [26] for a recent survey on approximations in-stochastic programming). 

Acknowledgement: The author wishes to thank Prof. Heinz EngI (Univrsität 
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paper.  
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