Zeitschrift fir Analysis
. und ihre Anwendungen
S \ Bd. 5 (4) 1986, S, 333 —346

Maximal Monotone Operators and Saddle Functions I %)
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1 ~
Wir untersuchen den 'monotonen Operator Ty S KX E*, f€ Tyx:=[—/f, ] € 6K(z, z), der
uber das Subdifferential ciner konkav-konvexen Sattelfunktion K definiert ist. Unsere Uber-
legungen werden durch die Tatsache motiviert, daB jeder maximal monotone Opcmtor A in
der Form A = T darstellbar ist. Wir zeigen, daB T genau dann maximal monoton ist,

wenn K in einer abgeschwiichten Form schiefsymmetrisch ist. Dies erlaubt eine Verallgemeine-
rung frither erzielter Ergebnisse.

Hecaenyerca sonotonusiii onepatop Ty S E X E*, f € Tyx:=[—/, f] € 8K(z, ), onpe-
RCa8HHHIT ¢ moMowbio cybauddepeninaia BornyTo-BeNyKI0il  ce/yioBoil - pynkunn K.
PaccysgeHnfi 0o00CHOBAHH TeM, YTO KawALIT MAKCHMATBHO MOHOTOHHSBII omepartop A
MosKeT OnTh mpeacranien B Buae A = T . llokaswmbaercsa, uto T MaKCHMAIBHO MOHO-
TOHHBIi TOrgA M TOABKO TOrAA4, Korga K sABadAercH’ B ocnalnénnoii dopme rococum-
MeTpiyeckoif. 9To ofobieHne peaynmeon MONy4YEeHHHX paublue.

We mvestlga.tc the monotone operator Ty S E.X E*, f€ Tyx:=[— —f, fl € eK(z, x), which

is defined via the subdifferential of a concave-convex saddle function K. Qur considerations

are motivated by the fact that each maximal mondtone operator 4 possesses a representation

of the form 4 = T'%. We show that T is maximal monotone if and only if K is in a relaxed .

form skew-symmetric. This allows a generalization of results obtained previously.
»

L1 Introduction - . ' "
In this paper we investigate the operator

Tk SEXE*Y [ Txai=[—/, /)€ 0K(z, ),

which is defined via the subdifferential of a concave-convex saddle function
K:E x E - R: In [3] we imposed a condition on K (namely, a relaxed forn of skew-
symmetry) guaranteeing the maximal monotonicity of the operator 7. Now we
show that this condition is even necessary for the ma\imality of 1. This fact
allows to improve several results previously obtained in [3—4]. In the forthcoming
Part 1T of this paper we show'that each maximal monotone operator 4 £ E x k*

has the form A = 7%, where K is a closed and skew-symmetric saddle functuon
In general, this saddle function cannot be found constructively. It turns out, how-
ever, that several functions K with 4 = 7', can be constructed if one relaxes the’
assumption on the skew-symnmetry of K. In Section 1.5 we are concerned: with the
question how, from a given saddle function, we can construct a “more regular’ one
such that both saddle functions generate the same monotone operator 7'. The prin-
ciples stated here allow a short presentation of many results about saddle functions.
Here we use them to generalize a principle from [4] concerning the existence of

1) Part I[ of the paper will be published in one of the following issues of this journzil.
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certain skew-symmetric saddle functions connected w1th the theory of maximal
monotone operators (compare Th. 1.6). Besides, we give some estimates for the
sizes of the domains of a saddle function X and -of the monotone operator corre-
sponding to it (Lompare the Th. 1.7, 1.8 and the Cor. I.1, 1.2). These results are
" partially strenghtened in the forbhcommg Part II. Among other things, we show
there that the fopological interior of the domain of a maximal monotone operator
is non-empty, prov1ded that the convex hull of this domain has an algebraic interior.
Moreover, we shall give the following approach to the solution of the equation
Az > 0, with a maximal monotone operator 4 & E X £*: Find an arbitrary saddle
. function K with' 7'x = 4 (since K is not supposed to be skew-symmetric this can
be done in a constructive ‘manner). Then, for any saddle pomt, [zo, o] of K, the .
“element (z, + y,)/2 solves the equation Ax 5> 0. On the other hahd, if z, € F solves
Az 5 0, then [z,, z,] is a saddle pomt of K.

L2 Closed saddle functions

For the readers’ convenience, here we recall some definitions of R. T. Rockafellar s theory
- of closed saddle functions. The basic material can be found in [1, 2, 7, 8] and for the finite-+ -
dimensional case also in [5, 6].

By E and F we denote, if not otherwise stated, locally convex Hausdorff spaces
over the reals. For the dual pairing between E and the topologically dual space E*
both the notations f(z) and (f, ) are used. We are dealing with functions with-
values in the: extended real line R:= R u{4o0}. Let p: E >R be convex (i.e. r ’
epip:= {[z,t] € EX R: p(z) < #} is.a convex set). We call p proper if p(z) > —oo'
for all z € E and dom p := {z € E: p(z) < +o0} %= 0. The closure cl p of p is the

pomtw1se supremum of all continuous affine minorants of p (with ¢l p= —oo if
there is-no such minorant):
el p(z) = sup inf {f(z — v) + p(v)} T S R ))
JEE® vEE .

In the case p = cl p we say that p is closed. The subdifferential d0p < E x E* of p
is defined by

\

[z, /] € &p —p(x)—f—/(b—x)Sp(v) for all z,eE (L)

The same notions also make sense for concave functions ¢: F - R. One.has only |
to change the roles of 400 and —oo, < and =, sup and inf'in the definitions above
For example, the closure of a concave functlon is given by

cl g(z) := inf sup {f(z — ») + q(v)}, . (L1.3)
. IGF‘ veF .

" and for the subdifferential dq of ¢ holds
=, f1€ 0 = g(z) + f(v — =) = ¢q(v) forallveF : (1.4)

By a saddle function K: E X F — R we shall always understand a function which
is concave in the first argument and convex in the second one. The conver closure
cl, K of K is obtained by closing K(z, -} as a convex function (for arbitrary z € E),
and similarly the concave closure cl, K. l‘wo saddle functions K and 'L are said to
be equivalent if we have cl; K = cl; L for 7 = 1, 2. If both cl, K and cl, K are equiv-
" alent to K we refer to K as a closed saddle function. In particular,'the lower closure
cl, ¢l K and the upper closure cl, cly K of K are closed saddle functions. For these
saddle functions we can even say more. Namely, the lower closure is lower closed
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~ and the upper closure is upper closed. Here lower closed saddle functions L are
characterized by the identity cl, ¢l, . = L, and upper closed ones by cll cy L=1L.
We call K proper if dom K := doml K x dom2 K = 0, with ¢

dom, K:= {z € E:cl, K(z,y) > —oo forall y € F)
and ' . :
dom, K :={y € F:cly K(z,y) < +ooforallze E}. 7~ .

Note that.a closed saddle function is proper if and only if it is finite in at least one
point. If 8,K(-, y) (resp. & K(z, -)) is the subdifferential of the concave function
"K(-, y) (or of the convex function K(z, -), respectively), the mapping !

OK: E X F — 25°XF*; 0K (z, y) := 9,K(2, y) X 8:K(z, y),
is referred to as the subdifferential of K. An important feature of 'equ:ivalent saddle
functions is that they have the same subdifferentials. :

We shall occasionally make use of the conventions inf @.= +oc0 and sup @ = —oo.
Moreover, sometimes we shall identify a multivalued mapping with its graph. ~

" L3 Ske\\;-sym}netric saddle functions

. In this section we investigate different versions of the notion of a skew-symmetric saddle
_function. AH these notlons will frequent,ly be used in the scquel. We start with

Defmltlon I 1:Let K: E X F — R be a saddle function. Then we- say that
1. K salz.s/zes the condition (x) if g

. ~
cl, K(x, %’) <'cl, K (x; rry y) forall z,y€ E, (%)
\ N .« -
2. K satisfies the condition (+%) if ’

c Kz, z) =0 = clyK(z,z) forall xz¢ E, : . (%)
3. K s skew-symmetric if - ‘
cly K(z,y) = —cly K(w,z) forall z,y¢ E. _ )
- The relations bet;ween these not’i(;ns are the conten;us of

Lemmal.l: For ang y saddle function K:E X E — R the zmplzcalzons (i) — (ii)
— (iii) kold true:

(i) K <s a skew-symmetric saddle function,
(i1) K satisfies the condition (*x),
(iii) K satisfies the condition (x). . ;

"Proof: The first implication has been proved in [4]. Let K now satisfy the condi-
tion (¥x). Clearly, (x) holds whenever z ¢ dom, K or y ¢ domy K. Assuming -
z € dom,; K and y € dom, K we get U »

o K(x x -+ y) < cly K(z, z) + cly, K(z, y) < cl, K(z, y)
2 2 2 == ]

2 = 2
cl, K(z, y) ol K(z, y) + by Ky, 1/)
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1] P .
Lem wma 1.2: Any closed suddle function satisfying the condition (xx) is proper.

Proof: Suppose that K: E X E — R is,improper. For reasons of symmetry we
can assume dom, K = @. Then cl, K(,y) = —oco for all z,y € E and hence, c¢l, K
= cl; ¢cl; K = —oo. But this.is contradictory to the condition (**) |

Now we give a simple criterion for the closedness of skew- symmetnc saddle func-

tions.

Lemma 1.3: Let K ExE R be skew-symmélrz’c. Then
1. dom," K = dom, K, - : ‘(I.5')

2. K s lower closed (upper closed) +f und onh if cly K = K (resp. ¢l K = K)
holds true. .

For the proof we refer to [4]. ‘The identity (I.5) ;giv‘es rise to the following

- Definition - 1.2: Let K: EXE — R be skew-symmetric. Then we set
Dom K:= dom, K = dom, K. N ’

It’is interesting that a relaxed version of the identity (I.5) remains true if K
merely satisfies the condition (x*). We get

Lémma I 4: For any closed saddle function K: E X E — R satzs/ymg the condation
(*x) it holds

doml K = dom, K. . ’ (1.6)

In Sect,lon 1.5 we shall generalize the statement of Lemma 1.4, prov1ded that £ is a re-

" flexive Barfach space (compare Cor. .2 and also Th. 1.8). Moreover, we shall thére investigate

the question how Lemma 1.4 has to be modified if the saddle function K only satisfies the
condition{#) (compare Cor. T.1).

Proof of Lemma I.4: For reasons of symmetry it sufflces to prove dom,; K

< dom, K. Thus, let 4 € dom, K be given arbitrarily. Hence, by the definition of
dom, K, we find an £ € E* and a real number ¢ such that !

¢4+ k(v — xy) =< cly K(zy,v) forall veE. ' v (L.7)

Let us suppose z, 4 dom2 K. Then the sets {2:0} and {dom, K} can be S(,parated
we find an f € E* and an ¢ > 0 with

e+ flv —x) =0 forall vedom, K. : . (1.8)

Now consider the functional g=2f+h, where 2> 0 is a fixed number with
2 4+ ¢ =:0 > 0. According to (1.7) and (1.8) we obtain

(g, zo — v) + cly K(xo, v) =6 forall v¢€ dom, K - ' (1.9)

. and consequently.

(9, 20 — v) + ¢l K(zo,9) 26 forall veE. C (110
B) taking into account the closedness of K, (1.10) yields '
cly K(zy, xo) = cly (,l K (2, o) = sup inf {g(zy — 1,) + cly K(xo, z,)} =6>0,

gEE® vEE
whmh is‘a contradiction to our assumption (xx)

The different notions of skew-symmetry we have introduced lead to a characteristic struc-
ture of the set of saddle points of these saddle functions. This question will be more detailed
investigated in the forthcoming Part II.
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. L4 A monotone operator corresponding to saddle functions B

'

In this section we study the properties of a certain operator Ty S £ X E* which ¢an be intro-
duced for each saddle function K on the space £ X E. Especially, we show that Ty is maximal
monotone if and only if K satisfies the condition (s). In the forthcoming Part IL we demon-
strate that the subfamily of the monotone operators of type Tk is cofinal in the family of all
monotone operators. More spccmcally, for each monotone operator 4 & E X E* there is a

saddle function K: E x £ — R such that Th is ‘a monotone extcnsion of A. In particular.
all maximal monotone operators are of type Tx. These facts are the backéround of all our

‘considerations. We begin with N

: Deflnltlon I.3: Tet K: FE XE — R be a saddle function. Then we define the
operator 1’,\ S E X E* by ’

€ Tex:=[=f, /) € 0K(z, z). - ° - (L11)

By the definition of the subdifferential 6K the relation / € Txxis eqluvalent to
K(z, x)—/(b—x) = K(v, z), veE, } _ (1'12)

Kz, z) 4 f(w — 2) < K(z, w), we E. )

We show now that the operator 7'x generalizes the notion of the subdlfferentlal ofa
convex function.

Theorem I.1: Let p:E—->Rbea proper convex function. Then Ty = 0p holds
true for any saddle function K: E X E — R with '

K(x, y) = ply) — p(z) of xe€ dom p or y¢&domp. (I.13)

" Euch such saddle /unctzon s skew-symmelric. [ /, addationally, p s closed, then K s

also closed and we have Dom K = dom p.

For the proof we refer to [4]. Saddle functions for which the condlt,xon (I 13) is
fuifilled are, for exdmple

. y) — p(x) for y € domp
Ky(z, y) = {7)(./) ) for y 7
, +co. otherwise ,
and '
. _{ply) — p(=) - for z€ dom P
Kol y) = {—oo otherwise

Our subsequent considerations will rest on the following

Theorem 1.2: Let K:EXE — R be proper. Then Ty S X E* 15 a monotone

opemtor .

The proof of this result has been given in [3]. 1t is easy to sce that 7'y is not mono-
tone for improper“saddle functions provided ‘that the domain D(Tx) of Ty consists
of at least two elements. For the investigation of the operator 7' it will sometimes
be convenient to replace the system (1.12) by a single inequality. This is done in

PropositionT.1: Let K: E X E — R be proper.” Then the following conditions, are

equivalent:
(i) €Tk : - .
i (i) =z edom K n d0}112 K and = : : (I.19)
v 4w cl, K(z,w) — cl, Kz, x) e ’
//(.—_2_—13)§ < 5 , ’1,,1(,619.
- 92 Analysis B 5, Heftd (1986) ;. ' .

’
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‘Moreover, vf K s closed, then both these conditions are equivalent to

| (ii‘i)/ /(” 7;_“’ — x)

\

When dealing with saddle functions with values in the éxtended real line R, one has to
‘take care that there does not occur any mdefmlte expression of the kind +c0 — co. In (L. 14)

this is achieved by the assumption z ¢ dom, K n dom, K and in (I.15) by the rcqulremcnt
[v, w] € dom K.

< cl, K(z, w) — cly, K(v, z)

= ) [z, w] € dom K. (1.15)

Proof of Proposition I.1: The equivalence (i).& (iii) has bccn proved in [3].
Concerning the ‘implication (i) => (ii) we refer to [3: (8)]. To prove (ii) = (i), from
(1. 14) we deduce -

K(v, x) +/(v+w—2x) ScllK(L,x) +/(v+w— 2z) = ¢l K(z, w) = K(z, w)

)
for all v, w € E. Setting here v = z, or w = z, respectlvely, we obtain the system
(I.12), i.e. f € Tyx U

From Prop. 1.1 one can easily derive the following Lhamcterlzatlon of the domain
D(T') of the operator 7.

. Proposntxon I2 Let K:EXE —>R be proper. Then the following inclusions
ho!d true: : .

D(Ty) & {x € E:cly K(v, z) < cly K(x, w) for v; w, with —;;—?f —‘x}

C {x Edonﬁl K ndom, K: él, K(z, x) = cl, K(z, z)}.

In the next section and in the forthcoming Part IT we shall generalize the statement of
Prop. 1.2 provided that 7'y is a maximal monotone operator.

Proof of Proposition I.2: The first inclusion results from (1.14). Setting here -
- v =w = 2z we find cl, K(z, 2) < cl, K(z, 2), hence cl, K(z, ) = ¢l K(z, z). Further-
more, if in the .inequality cl, K(v, 2) = cl, K(z, w) (z;, weEFE, (v+w)/2= x) we
choose » € dom; K =@ then we get z¢€ dom; K. A similar argument shows
z € dom, K 1

Now we are going to ask for thc maximal nonotonicity of the operator T.

Theorem 1.3: Let K: EXE — R be a saddle function such that Ty S K X E* 4s
mummal monotone. Then K necessarily satisfies the condition ().

The proof of this statement is given in Section L.6. The forthcoming Part L[ contains some
‘results which make the condition (#) more transparent. For a preliminary interpretation of
the condition (#) one should recall the estimate for the domain of TK given in Prop. L.2.

We show now that under quite natural assumptions on K and the space E, the
condition (x) is also sufficient for the maximality of 7'x.

Theorem 1.4: Let K: E X E — R be a closed proper suddle function on « reflexive _
Banach space. Then Ty is maximal monotone of and only if K satisfies the condition

(%) . ‘

Proof: One part of this statcment is alrcady contained.in Th. 1.3. The runammg
one has been proved in [3] (compare the remark following Th. 2 of that paper) &

1t is easy to see how Th.'T.4 reads if the saddle function K is not supposed to be
closed. In this case we obtam

=~
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Theorem L5: Let K: B X E — R be proper and let E be a reflexive Banach space.
Then T'x is mazimal monotone if and only +f Tx = T'k for each B, e, K< K <l K,
and all these saddle functions K satisfy the condition (%).

‘Proof: Let Ty be maximal monotone. A little thought shows that TK is a mono-
tone extension of Tk for each K, cl, K £ K < cl, K. This implies 7y = T%. Hence,
on account of TH. 1.3, T satisfies the condition (*)..On the other hand, the interval
¢, K < K < ¢l,'K containsat least one closed saddle function, namely K =clcl K.
Onc easily verlfles dom K S dom K, so that K is proper. The mammallty of Ty =Tk
is now a consequence’ of Th. 1.4 1

1t. is obvious that the operators 7'x and 7', coincide for equivalent sa,ddle func-
. tions K and L. More important for our purposes is the following simple result, which
" is an immediate consequ.nce of the definition of the operator T'y.

s B — . - . -
Lemmal.5: Let K: E X E — R be a saddle function and define L: EX E — R
by Lz, y) := — K(y, x). Then we have Ty = T'y.

1.5 On the construction of skpwésymme_tr'ic saddle functions.” Results

In this section we show that the characterization of the operator T, as given in (1.12) and
(I.14), can be considerably. simplified if we have some more information about the skew-
symmetry of K. Later on we ask for saddle functions L for which the operator T is a monotone |
extension of a given operator T'x. An important role will here be played by skew-symmetric
saddle functions L and those which satisfy'the inequality -

cl, Lz, y) < —cl, L(y, x) forall z,y€kE.

The latter ones are just the saddle functions which can be majorized by a closed skew-sym-
metric saddle function. We apply these results to get some estimates for the domains of a
saddle function and its corresponding monotone operator. Other applications are contained
in the forthcoming Part IT. Some of the results are rather technical. The reader who is not
interested in too many details is advised only to read Prop. 1.3 and the Th. I.6 —1.8, together
with the Cor. .1 and [.2. For the sake of u better reading all proofs are given in the next
section.

As already announced, we are now looking for & simple characterization of the
operator T'x. A first “result i is :

Lemma 1.6: For any saddle function K:EXE — R the dmplication (i) => (ii)
holds true. If Tk is maximal monotone, then (i) and (ii) are even equivalent:
(i) el K(u,u) =0 forall u € E. \
(ii) Each paz‘r [z, f] € Tk satisfies the inequality ‘
j(v—x)SI\(.c,b) forall ve E. . - (1.16)

The implication (ii) — (i) reflects the fact that each maximal monotone operator ACSEXE*
satisfies the inequnlity inf {( / — hgyv — Zo); [0, flEA} =0 for each z, 6 E, ho E E*.

The followmg result can be v1ewed as a converse of Lemma 1.6. ‘ .
Lemmal7:Lete K:EXE > Rbea saddle /unclzon with N
cl, K(z,v) & —cl; K(v, z)" for all z,v € h. ‘ S Y

Then a pair [z, f] € E X E* belonés to T z/ 2t obeys the mequalzlv/ (T 16).

The statements of Lemma 1.6 and Lemma 1.7 are put together in

22+
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. . ‘
Proposition I.3: Let K: E X E — R -be a saddle function with
cly K(u,v) < —cly K(v,uw) and ¢l K(u,u) 20, wovek.  (L18)

>

Then the following conditions are equivalent:
(i) [, /] € Tx, .. .
(it) flo — 2) = K(z,v) forallv e K, :

(iil) f € 0,K(z, x) and cl, K(z, z) = K(z, z), .
(iv) there exists w g € E* with {—g, f] € 6K (=, x), o
(v) there exists ay € E with [—/, f}-€ 0K(z,y). - . - -

~

The assumption (I. 18 implies that K satisfies the condition (#). It is fulfilled, in particular,
for skew- symmetnc saddle functions. Other saddle functions. for which (I.18) holds true will
be considered in the forthcoming Part II. _

The background of our subsequent considera.tions is the following v
Proposition1.4: Let K: EX E — Rbea saddle function such that

ol K(z,y) < ~cl, K(y, ) for all z,y€ E. A
Then there exists-a closed skew—aymmetrw saddle function L: E X E - R wzth
cl Kz, ) < Lz, y) < < —cly K(y,x) forall z,y € E. (1.19)

The proof which was glvcn in [4] is non- constructive. In the forthcoming Part II we shall
calculate such a saddle function L under certain regularity assumptions on K.

Now it séems natural to ask how the operators Tx and T, relate to each other if ‘
the saddle function‘s K and L satisfy (1.19).

Lemma I 8: For each puzr of saddle functions K, L: E X E — R with .
cly, K(z; 7/) = Lz, 1/) —cl, K(y,z) forall z,y€ E (T.‘20.)

the following statements ure true:

(i) dom, K & dom, Ln dom; L, dom, L udom, L S dom,cl, K. (I.21)

(i) Any pair (z,f]1 € £ X E* with f(v — 2) < K(z,v), v € K, belonqs to 1.

(iii) If additionally cl, K(u, u) = 0,u € L, holds then we also have Ty & ’]'

The preceding lemma provides us with a tool to attack a more general quesuon
Let an arbitrary saddle function K be glven We ask whether we can find a certain
interval of saddle functions such that T, 2 Tk holds for cach L belongmg to this
interval, Results of thls type are of special interest if the interval in‘consideration
contams a skew- symmetnc saddle function. For this purpose we need the followmg

DefinitionT:4: To an arbitrary saddle function K:E x E — R we associate -
another saddle function LK EXE->R by .

cl A(x, v,) — cly K(vz,x).z;, + vy v
_ 2 S T

for edch v € E and z € dom, K ndom, K. Otherwise we set Ly(z, v) = —oo.

- Lg(z, v) = inf

" Concerning an mterpretatlon of this saddle function we mention that the condi-
- tion (I.14) of Prop. I.1 can be reformulated as f(u — ) =< Lg(z, u) for all u € l‘n :
It ‘can easily be checked that the saddle function Ly obeys the inequality

Ly(z, y) < —Lg(y, z) forall z,y¢ K. ‘ (1.22)

. Hehce, the following statement makes sense.

'
K
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Proposition 1.5: Let K: E X E — R be proper. Then we have Ty = = I’, for each

saddle function L/ Ex E — R with o

s Li(z, y) < Lz, y) < —chy Lx(,2), @,y € E. ~ (. 23)
If Ty 2s mazimal. monotone, then each L satzs/zes tke condition (x*) and T}, conwzdes
with Tg. . . . /

We are now going to derive some consequences of Prop 1.5. The 1mportance of
the following theorem will become clear in the forthcoming Part'II, when we are
concerned with the representation of .monotone operators by saddlc functions. It
allows to pass here from arbitrary saddle functlons to skew-symmetric ones. Th. 1.6

' generalizes a result previously obtained in (4).

. and Ts.

Theorem 1.6: Let K: EXE — R be a saddle /unctwn domI K ndom, K =+ @.
Then thére exists a closed skew-symmetric saddle function L: E X E - R with

dom; K ndom, K S Dom L & dom, K ndom, K,

such that T, is a monotone extenszon of Tx. If Eis a reﬂezwe Banack space, then T' z's~
- even ma:mmal monotone. N .

Another consequence of Prop. 1.5 is the following estlmate for the domains of K

Theorem L.7: Let K: E ><F — R be a proper saddle function suck that Ty s
maxzma\l monotone. Then the identity
N ~

‘dom; K + dom, K
2

dom, K n dom, K =

holds. ‘ v

In the forthcoming Part IT we shall sharpen this result considerably, provided
that E is a reflexive Banach space. The next result shows how the assertion of
Lemma I.4 is'modified if one there replaces the condition () by the condition. (x).

Corollary L.1: Let E be a reflexive. Banach space and let K:EXE —R be a
closed proper saddle function satzs/ymg the condition (x). J'hen the identity (1. 24)

Jholds true.

Now we $how that the assertions of Th. 1.7 and Cor. I.1 can be strenghtened; if
we additionally suppose the saddle function K to satisfy the condition (*). For a
reflexive Banach space ¥, we obtain a generalization of Lemma I.4.

Theorem I.8: Let K: E X E — R be a proper saddle function- such that ’]‘K 18

mazximal monotone. If K satisfies the condition (xx) then we have

=@ D(Ty)  (124)

dom,; K = dom, K = dom,; K n cionn K =to D(T%). (1.25) )

.Corollary 1.2: Let E be a reflexive Banach space and let™K be a closed proper
saddle function satisfying the condition (xx). ‘Izen the identity (1. 20) holds true.

1.6 On the construction of skew-symmetric saddle funetions. Proofs

Now wefurnish the proofs for the results of the preceding section.
Proofof Lemma 1.6: (i) = (ii): For an arbitrary pair [z, f] € Tk one has ¢, K(z, x)

= K(z,x) and K(z,2) + f(w — z) < K(z, w) for any{w'e E (compare Prop 1.2).
Due to our assumption cl, 'K(z, z) = 0 we get f(w — =) < K(x, w), w € E, as d(,sn‘ed
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(1) = (1):. We supposed 7'x to be maximal monotonc. Let us show that thc

assumption
toL L e K(v,v) <0, - o (1.26)

'~ for some vo € E, leads to a contradiction. By the definition of the concave closure
(comparc (1.3)), (L. 26) iniplies the existence of a g, € E* and an ¢ > 0 with

go(w — 1) — K(w, ve) = ¢ > 0 for anif we K. ('I 27)

" According to our assumption (11) (] 27) yields (f + g0, w — vo) =& for each pair
[w, f] € Tx. Since 7'x was maximal monotone, we get, —¢o € T'kve. Hence, ¢ =0, |
which contradicts the choice of ¢ i

.

Proof of Lemma 1.8: (i): The closing of the inequality (1.20) with respect to
the convex argument yields ‘ :

cly K(z,y) < cly Lz, y) £ —clycly K(y, ), =z, y€k. (1.28)
A similar'\procedure for‘the concave argument shows ..
cycly K(z'y) < cly Lz, y) < —cl, K(y,2), x,y€E. ; (L.29)

These ineqdalities. immediately imply the first assertion.
. (ii): We have to show that the inequality

flw — ) = K(z,w) forall we F ) : | - (1.30)

implies [z, /] € T,. From (1.30) follows _ . v
flw —.z) = cly, K(z, w), weE, - X , (L.31) .

‘which together with the inequalities (1.28) and (I1.29) leads to ' )
fo—2) Sclh Lz, v), vEE, : (L.32)

and , o ' ’
fw—2) S —el, Lw,2), weE. - (1.33)

‘In particular, we get z E~domlL n dom, L. Moreover, t,he adding of (I.32) and
(1.33) yields : :

g (2/ +w x) < cly L(z,v) — cly L(w, z) ’
~ . 2 - 2 )

Recalling Prop. I.1 we get [z, f] € T, as desired.
(iii) : This statement follows from (ii) by an application of Lemma 1.6

Proof of Lemma1.7: Set in Lemma I.8 L = K §

\

v, w€e K.

" Proof of Proposition 1.3: The implications (i) = (iv) = (iii) and (i) => (v). are
obvious, while (ii) = (i) follows from Lemma I.7. (iii) = (ii}: We consider an ele-
ment f € 9,K(z, ). The assumption (I.18) implies cl, K(z, ) = 0. Since in (iii) we.”
supposed cl, I\(x z) = K(z, z), we obtain f(v — 2) < K(z, x) 4 f(v — z) < K(=z, v)
for any v € E, i.e. (ii). (v) = (ii): For this purpose we assume [—, /1 € oK (z, y).
We find = -,

K@ y) — (o — 2) 2l Kv,y), v€E, ‘ (I34)
and . . l . "
K(x,y) + f(w — y) < cly K(z, w), weE k. (1.38)

) \ - N .
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~ Setting » = y in (I.34) and w = z in (1.35) we obtain_
cl, K(y, y) = K(z, y) + flx — y) = cly K(z, z). (I1.36)

()n account of our assumpt,lon (I.18) we have cl, K(y,y) = 0 and cl, K(z, z) =< 0.
Thus (I.36) implies K(z, y) = /(y — x). Inserbmg this identity into (I ‘35) we get
flw — z) £ K(z, w) for w € E, i.e. (i) 1

Proof of Proposition 1.5: In order to prove the inclusion 7'y & 7T';, we con-

sider an arbitrary element [z, /] € Tx. In view of the definition of the saddle func-

" \tion' Ly we obtain f(v — z) < Lg(z, v) for all v € E (compare Prop. 1.1). The closing
~ of this inequality with respect to the convex argument yields \

Jw— ) Sy Lu(m,v) for ve £ and [z,/]€ Ty.. - (137)

The inclusion T'x'S T, now results from Lemma 1.8 if we therc replace the saddle
function K by Lg. Let us suppose now that 7'x is maximal monotone. Then, from
(1.37) and Lemma I.8 (i) we can conclude

/ @ % D(Tx) < dom, Ly S dom, L ndom, L

for each saddle function L with

o Lz, y) < Liz, ) < —cly Lg(y,2), zy€E. (1.38)

In particular, all these saddle functions are proper. Hence, as a consequence of

Th. 1.2, T', is a monotone operator. Since T'x was maximal monotone the inclusion

Ty S 7T, implies T, = Tx. The inequality (I.37) can now be read as f(v — z) -
=< cly Lg(z,v); v € E and [z, f] € Tie1,1,0 = Tk. We can now apply Lemma I. 6 to

the sadd]e function cl, Ly and obtam

cly cly Ly(z,2) Z 0 forall z ¢ E. : T (1.39)
The inequality (I1.38) implies ,
cclyely Lg(z, y) S cly L{z,y) and cly L(z, y) < —cl, cly Lg(y, ). (I.40)

“for-all 2, y € E. From (1.39) and (1.40) we can easily deducc the desired inequality
cly, Lz, x)SOScl L, x)iorallxebl .

Now we are in the position to give the

Proof of Theorem LI.3: ¥or an improper saddle function K the condition () is
‘trivially satisfied, so that we can assume K to be proper. We introduce a saddle
function L: E x E — R,

];(x, y) = inf {011 Kz, y)) ; cly ]\(?/2: : ) [y, v2] € dom K, 1 ‘2*‘ Y2 1/}

-

It can casily be checked that L fulfils the conditions
ey L=L and Lg(x,y) < Lz, y) < —Lyg(y, ) for =, yek,

with 71,\— as in Def. 1.4. According to Prop. 1.5, Ly has to satisfy the condition (**)‘
so that we obtain L(x, x) = 0 for z € E. By the definition of L, this just means. .
that K satisfies the condition (x) 8
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Proof of Theorem 1.6: We define a saddle function L: £ X £ — R by

"clz K(z, y) L cly, K(y, z) fOI: z € dom, K ndom, K,

. v,2 ' . y€dom K ndom, K
Lz, y):= Lo ’ for %€ dom, K n dom, K,

s 3 y ¢ dom, K ndom, K
: \— ' for 4 dom, K ndom, K.

One eas_ﬂy verifies the relations : .
L =cl,L, dom, L = dom; K ndom, K = 0, (L41)
dom, L < dom, K n do_n12 K ‘

I

and the i.ncqualit-ics
Ly, y) = Lz, ) < Ly, 2) S —Lg(y, ),

with L,\ as in Def. I.4. Hence, we can apply Prop. 1.4 to the saddle functlon L
and obtain a closed skew- -symmetric saddle function L: E X E — R with

Ly(z, y) < Liz, y) = Liz,y) = —Ly, o) ~Lkly.2), = ycE.
‘We show.that L fulfils all requu'ements ‘of Th. L6. First, according to Lemma .8

(i), we get dom, £ = Dom L < dom, L, which together with (1.41) yields @ == dom, K

n dmm K € Dom L C dom,; K ndom, K. On account of Prop. 1.5, 7', is a mono-
tone extension of 7'x. For a reflexive Banach space E, the maximal monotomcnty
-of Ty follows from Th. 1.4 1 ‘ o

Proof of Theorem 1.8: It sufflces to verify the inclusion
dom, K < co D(T). . : ‘ (1.42)

Indeed for reasons of symmctry, together thh (L.42) we obtain domy, K< co D(Ty)
and hence, . .

. \
co D(Tx) S dom, K ndom, K < dom; K & co D(’l' )s t=1,2 (1.43)

(compare Prop. 1.2). This relation lmmedlate]y lmplles the desired identity (] 25).
To prove (1.42) let an arbitrary element z, € dom, K be given. By the definition
of dom, K we find an A'¢ E* and a ¢ € R with . '

oy K(v, 20) < h(s — 2g) + ¢ forall v € B. ' ' (1.44)

Suppose now x, ¢ co D(1'x). Then, by the sepamtlon theorem for convex sets, there
exist a g € E* and an ¢ > 0 with

0=gv—z)—e for ve DT ) . - : (14'5)

Now we set f = —h — g, where i > 0 is 'a real number with ¢ < Ze. Then, from.
(I.44).and (1.45) we can conclude

o Ko, ) /(o — ) forall v € D(T).  (1.46)

Now let an arbitrary element [2,7) € Tx be given. Since K was snpposed to satisfy
. the condition (*x), by Lemma 1.6 we get

jw —2) < cl, K(z,w) forall we E. l o (1.47)
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Setting v = 2z in (1.46) and w = z, in (1.47) yields (f — §, z, — z) = O for ‘cach pair
[2,7] € Tk. Since TK was supposed- to be maximal monotone, we can conclude
[z, f] 6 T, which is a contradlctlon to the assumptlon Zo § cOD(Tk) B

Proof of Corollary I 2: Under our assumptions the operator ’[’K is maximal
monotone (compare Th. 1.4). Hence the assertion follows from-Th I8 8

Proof, of TheoremI7 Let us consider the saddle function L:E XF—>R
Li=cly L where L is defined by *

i - o - -
Lz, )= inf {cll (x, y1) - cly K(yo, x);y _ zp ‘!2‘ Y2 [y, 32] € dom K}’

for cach y€ £ and z¢ doml K ndom, K. For =z¢ doml Kn dom2 K we set
(2, y) = —oo. One easily verifies the inclusions

7 — dom, K +dom, K

dom, L € dom, K ndom, K, dom, L 2 dom, 3

o

o ' (1.48)
Obviously L satisfies the inequality ,
oly Ly(z, y) = L(z, y) < —Lx(y,z) for z,y¢€ E,

" where Ly is taken from Def. I.4. Since T'x was supposed to be maximal monotone, . |
we can conclude from Prop. 1.5 that also 7', = Tk is maximal monotone and that
L satisfies the condition (#x). Moreover, we have L = cl, L = cl, ¢l, L, ie. Lisa

closcd saddle function. We can now apply Th. 1.8 to . and obtam dom, L = dom, L
= co D(T;) = co D(Tx). By (1. 48) this ledds to

dom,; K + dom, K
: 2

Ilﬂ :

co D(Tk) g dom, K ndom, K.

‘Since the inclusion dom, K ndoni, K S 1/2 (dom, K+ dom, K) is t.rivially satis-
fied, we get the desired identity (1.24) I

Proof of Corollary I.1: Under our assumptions the operator Ty is maximal
monotone (compare Th. 1.4), so that we can apply Th. 1.7

1
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