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Maximal Monotone Operators and Saddle Functions I') 

E. KRAUSS 

\Vir untersuchen den 1monotonen Operator TK	B x E*, fE TK X	[—I,!] E K(x, x), der 
uber das Subdifferential einer konkav-konvexen Sattelfunktion K definiert ist. Unsere Uber. 
legungen werdon durch die Tatsache motiviert, daB jeder maximal monotone Operator A in 
der Form A = TK darstellbar ist. Wir zeigen, daB TK genau dunn maximal iionoton ist, 
wenu K in einer abgeschwächten Form schiefsynsmetrisch 1st. Dies erlaubt eine Verillgemmicile- 
rung früher erzielter Ergebnisse. 

FIccJ1eyeTca MoiioToHHbIfl oneparop TK 9 B x E*, / E TK x := [—/, fi E aK(x, x), onpe-
eeHHbIll C flOMOlIi,iO (y6)H4)(j)epe1iii1aJ1a Bol'iiyTo-abmnyHJloil ce jionoil . 4yimmuiimt K. 

Paccyaeiitia o6octionaiiai TeM, 'ITO ma?+b1fi Mam-c1tMaJ1blmo MOiIOTOiIHbifi olieparop A 
MOHeT 6blTb npecraniieii B BHX A = TK . FloHaabmuaeTcn, 'ITO TK MaFccitMa.TIbIlo 510110-
T01111bift TOrga it T0I1,K0 Tora, mora K 911.1ACTCH B ocjia6jieuiioft (J)opMe hOCOCIIM: 
MeTpIi4ecmof1. DTO o6o6ueHue peay.rIbTaToII flOJIy'IeIi 1-IbIX pamlbwe. 

We investigate the monotone operator TK	E.x E*, / E TK X	[—/, /] E 8K(x, x), which

is defined via the subdifferential of a concave-convex saddle function K. Our considerations 
are motivated by the fact that each maximal monOtone operator A possesses a representation 
of the form A = "K• We show that TK is maximal monotone if and only if K is in* a relaxed 
form skew-symmetric. This allows a generalization of results obtained previously. 

1.1 Introduction 

In this paper we investigate the operator 

'K	B x E*;	I E ?K X := [—I,!] E 8K(x, x), 

which is defined via the stibdifferential of a concave-èonvex saddle function 
K: B x B — It: In [3] we imposed a condition on K (namel y, a relaxed form of skew- 
Symmetry) guaranteeing the niaxittial m	 th onotonicity of e operator TK. Now we 
show that this condition is even necessary for the inaxiniality of TK . This fact 
allows to improve several results previously obtained in [3-4]. -En the forthcoming 
Part II of this paper we show that each maximal monotone operator A B x E* 
has the form A = "K, where K is a closed and skew-symmetric saddle function. 
In general, this saddle function cannot be found constructively. It turns out, how-
ever, that several functions K with A = 7 '5- can be constructed if one relaxes the 
assumption on the skew-sytlinLetry of K. In Section 1.5 we are concerned- with the 
question how, from a given saddle function, we can construct a "more regular" one 
stick that both saddle f unctions . generate the same monotone operator 'I'. The prin-
ciples stated here allow a short presentation of many results about saddle functions. 
Here we use theuiL to generalize a principle from [4] concerning the existence of 

') Part H of the paper will be published in one of the following issues of this journal.
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certain skew-symmetric saddle functions connected with the theory of maximal 
monotone operators (compare Th. 1.6). Besides we give some estimates for the 
sizes of the domains of a saddle function K and of the monotone operator corre-
sponding to it '(compare the Th. 1.7, 1.8 and the Cor. 1.1, 1.2). These results are 
partially st.renghtened in the forthcoming Part II. Among Other things, we show 
there that the topological interior of the domain of a maximal monotone operator 
is non-empty, provided that the convex hull of this domain has an algebraic interior. 
Moreover, we shall give the following approach to the solution of the equation 
Ax 0, with a maximal monotone operator A E x E*: Find an arbitrary saddle 
function K with' TK A (since K is not supposed to be skew-syrwiietric this can 
be done in a constructive manner). Then, for any saddle point [x 0, ioI of K, the 
element (x0 + yo)/2 solves the equation Ax 0. On the other hand, if x 0 € E solves 
Ax 0, then [x0 , x0} is a saddle point of K. 

1.2 Closed saddle hinetions 

For the readers' convenience, hero we recall some definitions of R. T. Rockafeilar's theory 
of closed saddle functions. The basic material can be found in [1, 2, 7, 8] and for the finite-
dimensional case also in [5, 6]. 

By E and F we denote, if not otherwise stated, locally convex Hausdorff spaces 
over the reais. For the dual pairing between E and the topologically dual space E* 
both the notations f(x)and (I, x) are used. We are dealing with functions with 
values in the extended real line It := ft u {±oc}. Let p: B --> It be convex (i.e.( 
epi p := {[x, t] E B x R: (x)	1) is , a convex set). We call p prop4r if p(x) > —oo 
for all x € B and dom p := {x € B: p(x) < +°°}	0. The closure clp of p is the 
pointwisc supremum of all continuous affine minorants of p (with ci p	—oo if

there is no such minorant): 

ci p(x) = sup ml {/(x - v) + p(v)j.  
IEE vEE 

In the case p = cI p we say that p is closed. The subdi//erential ap K x E* of p 
is defined by 

[x,/] € c9p := p(x) + f(v - x)	p(v)- for all v € K.	 1 (1.2) 

The sat'ne notions also make sense for concave functions q: F --> A. One, has only 
to change the roles of +oo and —oc,	and , sup and infin the definitions above. 
For lexample, the closure of a concave function is given by	 - 

cI q(x) := inf sup {/(x - v) + q(v)},	 (1.3) 
fEF vef 

and for the subdifferential aq of q holds - 

[x,/]€q:=q(x)+/(v_x)q(v) for all vEF.	 (1.4) 
By a saddle function K: K x F —* It we shall always understand a function which 

is concave in the first argument and convex in the second one. The convex closure 
el2 K of K is obtained by closing K(x, .) as a convex function (for arbitrary x € K), 
and similarly the concave closure c1 1 K. Two saddle functions K and 'L are said to 
be equivalent if we have cl i K = cl i L for i 1, 2. If both ell K and e1 2 K are equiv-
alent to K we refer to K as a closed saddle function. In particular, the lower closure 
e1 2 c1 1 K and the upper èlosure e1 1 cl 2 K of K are closed saddle functions. For these 
saddle functions we can even say more. Namely, the lower closure is lower closed
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and the upper closure is upper closed. Here lower closed saddle functions L are 
characterized by the identity c12 c1 1 L = L, and upper closed ones by cl c12 L = L. 
We call K proper if doinK: =  doni 1 K x dom 2 K = 0, with 

doin 1 K:= {x € E: c1 2 K(x, y) > —co for all y E F} 
and

dom2 K:= (yE F:cl 1 K(x,y)< +oo for all x€ B). 

Note that a closed saddle function is proper if and only if it is finite in at least one 
point. If a 1 K( . , y) (resp. a2 K(x, .)) is the subdifferential of the concave function 
K( . , y) (or of the convex function K(x, -), respectively), the mapping 

aK B x F - 2E* X F' * ; K(x, y) := a 1 K(x, y) x a2K(x, y), 
is referred to as the subdif/erential of K. An important feature of equivalent saddle 
functions is that they have the same subdifferentials. 

We shall occasionally make use of the conventions inf 00= +oo and sup 0 = —oc. 
Moreover, sometimes we shall identify a inultivalued mapping with its graph. - 

1.3 Skew-symmetric saddle functions 

In this section we investigate different versions of the notion Of a skew-symmetric saddle 
function. All these notions will frequently be used in the sequel. We start with 

L - 
Definition 1.1: Let K: EX E_—>R be a saddle function. Then we-say that 
I. K satisfies the condition (*) if	

0	 0 

cl2K(x')	cliK(a Y,y) for *all x,y€E,	 (*) 

2. K satisfies the condition (**) if 

c1 2 K(x, x)	0	cl 1 K(x, z) for all x € B,	 '	(**) 
3. K is skew-symmetric if	 -	 0 

c1 2 K(x, y) = —e1 1 K(y, x) for all z, y € B. 

The relations between these notions are the contents of	 0 

Lernni al. 1: For any saddle /unction K: E X  -- it the implications (i)	(ii)

-* (iii) hold true: 

(i) K is a skew-symmetric saddle /unction, 
(ii) K satisfies the condition  

(iii) K'satis/ies the condition (*).	 0 

' Proof: The first implication has been proved in [4). Let K now satisfy the condi-
tion (**). Clearly, (*) holds whenever: x 4 dom 1 K or y q donr2 K. Assuming 
x E d6m 1 K and y € dom2 K we get 

C1 2 K	
x	y)	c12 K(x, x) ± c1 2 K(x, y)	c1 2 K(x, y) 

c11 K(x, y)	cl 1 K(x, y) + c1 1 K(y, 

0	

2 

1K( 
	,
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L e in iii a 1.2: Any closed saddle function satisfying the condition (* *) is proper. 
Proof: Suppose that K: K x K — 11 is, improper. For reasons of symmetry we 

can assume doni 1 K = 0. Then c1 2 K(, y) = — oo for all z, y E K and hence, c1 1 K 
= c1 1 cli K	—oc. But this . is contradictory to thccondition (**) I 

Now we give a simple criterion for the closedness of skew-syniiuet.ric saddle func-
tions. 

Lemma 1.3: Let K: E x  — It be skew-symmetric. Theit 
1. dom1K = doni 2 K,	

-	
(1.5) 

2. K is lower closed (upper closed) if and only V. c1 2 K = K (resp. c1 1 K = K) 
holds true. 

For the proof we refer to [4]. -The identity (1.5) giv,es rise to the following 
Definition 1.2: Let K: K XE —* It be skew-syntnietric. Then we 'set 

,Dom K: = doni 1 K = doni 2 K. 
It'is interesting that a relaxed version of the identity (1.5) remains true if K 

merely satisfies the condition (**). We get 
L  ru ma 1.4: For any closed saddle function K: K x K —> It satisfying the condition 

(**) it holds	 V 

doni K = dow2 K.	 V	

(1.6) 

In Section 1.5 we shall generalize the statement of Lemma 1.4, provided that E is a re-
flexive Baifach space (compare Cor. 1.2 and also Th. 1.8). Moreover, we shall there investigate 
the question how Lemma 1.4 has to be modified if the saddle function K only satisfies the 

	

•	condition*) (compare Cor. Ti). 

Proof of Lemma 1.4: For reasons of symmetry it suffices to prove dow 1 K 
dow2 K. Thus, let z0 E dow 1 K he given ar}itrarily. Hence, by the definition of 

dom 1 K, we find an h € K* and a real number c such that	I 

c ± h(v — z0 ) < c1 2 K(x0, v) for all v € K.	
V	

(17) 

•	Let us suppose x0 q dotm1 2 K. Then the sets {x0} and {don1 2 K} can be separated, i.e. 
we find anfE E* and añs>Owith 

s +t(v—xo) 0 for all vEdom2K.	V	
•	 ( 1.8) 

Now consider the functional g 2-f + h, where 2. > 0 is a fixed number with 
2.e + C =: 5 > 0. According to (1.7) and (1.8) we obtain	

V 

-	 (g, x0 — v) + c1 2 K(x0 , v)	6 for all v E don1 2 K	 (1.9) 
and consequently 

(g, x0 — v) + c1 1 K(x0 , v) L> 6 for all V E K.	 (1.10) 

By taking into account the closedness of K, (1.10) 'yields 

c10 K(x0, x0) = c12 c1 1 K(x0, x0 ) = sup inf {g(x0 — v) + cl 1 K(xo, v)}	(5 > 0, 
gEE VEE	 V 

which is a contradiction to our assumption (**) I 
The different notions of skew-symmetry we have introduced lead to a characteristic struc-

ture of the set of saddle points of these saddle functions. This question will be more detailed 


	

- -	investigated in time forthcoming Part II.
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1.4 A monotone operator corresponding to saddle functions 

In this section we study the properties of a certain operator TK B x B* which 6an be intro-
diiced for each saddle function K on the space B x B. Especially, we show that TN is maximal 
monotone if and only if K satisfies the condition (s). In the forthcoming Part IL we demon-
strate that the subfamily of the monotone operators of type TN is cofinal in the family of all 
monotone operators. More specifically, for each monotone operator A 9 B x Et there is a 
saddle function K: B x B - H such that TN is a monotone extension of A. In particular. 
all maximal monotone operators are of type TN. These facts are the background of all our 
considerations. We begin with	 s 

Definition 1.3: Let K: B X  - R he a saddle function. Theri we define the 
operator TN 9 E x E* by 

'I € T1 x := [..L//J € 9K(x, x).	 (1.11)


By the definition of the subdifferential O K the relation / € T,x is equivalent. to 

.K (x, x) - /(v - z) ^ K(v,x),	v € E,	
'I 12 

K(x, x) -4- /(w - x)	K(x, w),	w € E. J 

We show now that the operator . TN generalizes the notion of the subdifferential of a 
convex function. 

rfheo rein 1.1: Let p: K —* It be a proper convex function. Then 'K = p holds 
true /or any saddle function K: EX B —± It with 

•. K(x, y) = P(Y) - p(x) if x € doni p or y € dom i.	 (1.13)


Each such saddle function is skew-symmetric. if, additionally, p is closed, then K is 
also closed and we have Dom K = dorn p.	- 

For the proof we refer to [4]. Saddle functions for which the condition (1.13) is 
fulfilled are, for example,	 - 

) 1t1(x y — I p(y) — p(x) for y € doni p —	 - 
 I. +o otherwise 

and 
-	-	Ip(y) — p(x) for x € doin p 

k-	
- 

. 2 (x, y) =- —oc otherwise


Our stbseqiient considerations will rest on the following 

Theore iii 1.2: Let K: E X  - It be proper. Then TK 9 K x E* is a ?nOnotone 
operator. 

The proof of this result has been given in [3]. it is easy to see that TN is not mono-
tone for imnpropersaddle functions provided that the domain D(TK ) of TK consists 
of at least two elements. For the investigation of the operator TN it will sometimes 
be convenient to replace the system (1.12) by a single inequality. This is done in 

Proposition 1.1: Let K: E X B —* It be proper. 'Then the following conditions , are 
equivalent:	 . 

(i) / € JKx;  
(ii) x € doni 1 K r dopi2 K and	'	 (1.14) 

/v +w	\	e1 2 K(x,w) . — c1 1 K(v,x) 
2	_X)	

'	2	 v,w€/. 

22 Armlysis l id. 5, Heft 4 (1986)
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Moreover, if K is closed, then both these conditions are equivalent to 

(V 

± w	\	e1 1 K(x, w) - c1 2 K(v,	
[v, w] E dom K.	(1.15) /	2	 2	'. 

When dealing with saddle functions with values in the extended real line R, one has to 
take care that there does not occur any indefinite expression of the kind +00 - cc. In (1.14) 
this is achieved by the assumption x E dom 1 K a d6m 2 K and in (1.15) by the requirement 
[v, IV) EdomK. 

Proof of Pro 5pOsition 1.1: The equivalence (i)	(iii) has been proved in [3]. 
Concerning the 'implication (i)	(ii) we refer to [3: (8)]. To prove (ii)	(i), from 
(1.14) we deduce	

S 

•	K(v, x) +/(v ± w - 2x) c11 K(v, x) + f(v + w - 2x) :5 cl 2 K(x, w) < K(x, w) 
for all v, w E E. Setting here v = x, or w = x, respectively, we obtain the system 
(1.12), i.e. / € TKx I 

From Prop. 1.1 one can easily derive the following characterization of the domain 
D(T) of the operator 

Proposition 1.2: Let K: K x B -	be proper. Then the following inclusions

hold true:

D(T)	{x E B: c1 1 K(v, x)	e1 2 K(x, w) for v; w t with	°
2	X1 

(x € dom 1 K n doin 2 K: ell K(x, x) = c1 2 K(x, x)).	. 
In the next section and in the forthcoming Part II we shall generalize the statement of 

Prop. 1.2 provided that TK is a maximal monotone operator. 

Proof of Proposition 1.2: The first inclusion results from (1.14). Setting here 
v = w = x we find e1 1 K(x, x)	c1 2 K(x, x), hence c1 2 K(x, x) = c1 1 K(x, x). Further-
more, if in the inequality c1 1 K(v, x)	c1 2 K(x, w) (v, w € B, (v+ w)12 = x) we

choose v E doin 1 K 0 then we get x € dorn 1 K. A similar argument shows 
x€doiu2 Kl	- 

Now we are going to ask for the maximal nionotonieiy of the operator TK. 

Theorem 1.3: Let K: B x B -* It be a saddle junction such that TK 9 B x J' is 
maximal monotone. Then. K necessarily satisfies the condition (*). 

The proof of this statement is given in Section 1.6. The forthcoming Part If contains some 
*results w1ich make the condition (*) more transparent. For a preliminary interpretation of 
the condition (s) one should recall the estimate for the domain of TK given in Prop. 1.2. 

We show now that under quite natural assumptions on K and the space E, the 
condition (*) is also sufficient for the maxitnality of TK. 

Theorem 1.4: Let K: B x £ - It be a closed proper saddle junction on a reflexive - 
Banach space. Then T K is maximal monotone if and only if K satisfies the condition 

Proof: One part of this statement is already contained in Th. 1.3. The remaining 
one has been proved in [3] (compare the remark following Th. 2 of that paper) I 

It is easy to see how Th.1.4 reads if the saddle function K is not-supposed to be 
closed. In this case we obtain	 S	 -
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Theorem 1.5: Let K: B x B -* h be proper and let E be a reflexive Banach space. 
'men 'K is maximal monotone if and only if 'TK = Tg for each K, cl 2 K :!^ K ^ cl1K, 
and all these saddle functions K satisfy the condition (*). 

'Probf: Let TK be niaximal monotone. A little thought shows that TR is a thono-
tone extension of TK for each K, ci, K :!E^ K c1 1 K. This implies TK, = Tk . Hence, 
on account of Tif. 1.3, TFc satisfies the condition (*).. On the other hand; the interval 
c1 2 K :E^ K	c1 1 X contains at least one closed saddle function, namely K = c12 c1 1 K.

One eaily verifies dom K 9 dom K, so that K is proper. The maxiinality of 'K 
is now a consequence' of Th. 1.4 I	 S 

It is obvious that the operators TK and 'I',. coincide for equivalent saddle func-
tions K and L. More important for our purposes is the following simple result, which 
is an immediate consequ. nee of the definition of the operator TK. 

Le ni'ma 1.5: Let K: B x B - it be a saddle function and define L: B x B --->- R 
by L(x, y) := —K(y, x). Then we have TK = 

1.5 On the construction of skew-symmetric saddle functions: Results 

In this section we show that the characterization of the operator TK, as given in (1.12) and 
(1.14), can be considerably simplified if we have some more information about the skew- 
symmetry of K. Later on we ask for saddle functions L for which the operator TL is a monotone 
extension of a given operator TK . An important role will here be played by skew -symmetric 
saddle functions L and those which satisfy-the inequality 

cl2 L(x, y) 5 —c4 L(y, x) for all x, y E E. 

- The latter ones are just the saddle functions which can be majorized by a closed skew-sym-
metric saddle function. We apply these results to get some estimates for the domains of a 
saddle function and its corresponding monotone operator. Other applications are contained 
in the forthcoming Part IT. Some of the results are rather technical. The reader who is not 
interested in too many details is advised only to read Prop. 1.3 and the Th. 1.6-1.8, together 
with the Cor. 1.1 and 1.2. For the sake of a better reading all proofs are given in the next 
section. 

As already announced, we are now looking for a simple characterization of the 
operator 'K A first'result is 

Lemma 1.6: For any saddle function K: B X  - R the implithtion (i) (ii) 
holds true. If 7'K is maximal monotone, then (i) and (ii) are even equivalent: 

(i) cl 1 K(u, u)	0 for all u E B. 
(ii) Each pair [x, I] € 7'K satisfies the inequality 

- x) 5.K(x,v) for all v E E.	 S	 (1.16) 

The implication (ii) - (i) reflects the fact that each maximal monotone operator A	B x E - 
satisfies the inequality inf {(f - h0 , v - x0 ); [v,/] € Al ^S 0 for each x0 € B, h0 € E*. 

The following result can be viewed as .a converse of Lemma 1.6.	 S 

Leninia 1.7: Let K: B x B -- it be a saddle function with 

c1 2 K(x, v)	—c1 1 K(v, x) for all x, v € B.	 (1.17)


The? a pair [x, f] € B X B* belongs to TK if it obeys the inequality (1.16). 
/ 

The statements of Lemma 1.6 and Lemma 1.7 are put together in 

22*
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Proposition 1.3: Let K: K x B	be a saddle function with 
c12 K(u, v)	—c1 1 K(v, u) and c1 1 K(u, u) > 0,	u, v € B.	(1.18) 

Then the following conditions are equivalent: 
(i) [x, /I € 'K	

S 

•	(ii) f(v - x) :5-: K. (x, v) for all v € B, 
(iii) f E a2K(x, x) and cl K(x, x) = K(x, x), 
(iv) there. exists a g. € E* with [—g, /] € bK(x, x),	 7 

(v) there exists a y € K with [—f,./J-€•eK(x, y).. 
The assumption (1.18) implies that K satisfies the condition (ss). It is fulfilled, in particular, 

for skew-symmetric, saddle functions. Other saddle functionsfor which (1.18) holds true will 
be considered in the forthcoming Part II. 

The background of our subsequent considerations is the following 
Proposition 1.4: Let K: B x  - It be a saddle Junction such that 

c1 2 Kx, y)	--'cl2 K(y, x) for all x, y E B. 
Then there exists a closed slcew-syrnmetric saddle function L: E x K - it with 

•5_/ 

02 K(x, j) ;5 L(x, y) ^ —01 2 K(yx) for all x, y € B.	 (1.19) 
The proof which was given in [4] is non-constructive. In the forthcoming Part II we shall 

calculate such a saddle function L under certain regularity assumptions on K. 

Now it seems natural to ask how the operators TK and TL relate to each other if 
the saddle functionb K and L satisfy (1.19). 

Le m in a 1.8: For each pair of saddle functions K, L: E x B -* 11. with 

01 2 K(x; y)	L(x, y) < —01 2 K(y, z) for all x, y € K	 (1.20) 

the following statements are true:	 - 
(i) dow 1 , K c doni 1 L n dow2 L,. dom 1 L u d01112 L	dow2 012 K.	(1.21) 

(ii) Any pair [x, /] E B x E* with /(v - x) s^ K(x, v), v E K, belongs to 7'1, 

(iii) If additionally e1 K(u, u)	0,u E E, holds then we also have 'TK	- 
The preceding lemma provides us with a' tool to attack a more general question. 

Let an arbitrary saddle function K be given. We ask whether we ban find a certain 
interval of saddle functions such that T 1, LD TK holds for each L belonging to this 
interval. Results of this type are of special. interest if the interval in' consideration 
contains a skev-synmnetric saddle function. For this purpose we need the following 

1)efinition.L4: To an arbitrary saddle function K: B XE - it we associate 
another saddle function LK: B x K - It by	 - 

-	Id 2 K(x, v 1 ) - c1 1 K(v21 x) v 1 + v2 
2	 2 = V 

for each v € K and x € dow 1 K n dom 2 K. Otherwise we set L(x, v) = —oo. 
Concerning an interpretation of this saddle function we mention that the condi-

tion (1.14) of Prop. 1.1 can he reformulated as7(u - x)	LK(x, u) for all u € 
It-can easily be checked that the saddle function LK obeys the inequality 

LK (x, y )	—L(y, x) for all x, y € K.	 (1.22) 
Hence, the following statement makes sense.	-
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Proposition 1.5: Let K:E x  R be proper. Then we have T	TL for each

saddle function L:.Fj x B - R with 

cl2 L,(x, y)	L(x, y) ^ —c1 2 LR (y, x),	x, y E E.	 (1.23)

1/ TK is maximal, monotone, then each L satisfies the condition (**) and T1 coincides 
with T1.  

We are now going to derive some consequences of prop. 1.5. The import'ance of 
the following theorem will become clear in the forthcoming Part II when we are 
concerned with the representation of monotone operators by saddle functions. It 
allows to pass here from arbitrary saddle functions to skew-symmetric ones. Th. 1.6 
generalizes a result previously obtained in [4]. - 

Theorem 1.6: Let K: E x  - it be a saddle function, dom 1 K  don't, K 0. 
Then there exits a closed 8kew-syinmetric saddle function L: F X B - R with	- 

don't, K n don't, K Dom L 9 dom 1 K n-dotn2 K,	- 

such that TL is a monotone extension of T. If F is a reflexive panach space,' then T L is' 
even maximal -monotone. 

Artother consequence of Prop. 1.5 is the following estimate for the domains of K 
• and TK. 

Theorem 1.7: Let K: E XE -*R be a proper saddle function such that T K is 
maximal monotone. Then the identity  

dom 1 K + don't, K - dom 1 K n dom K	 2	
= Co D(I)	 (1.24) 

holds. 
In the forthcoming Part II we shall sharpen this result considerably, provided  

that E is a reflexive Banach space. The n'ext result shows how the assertion of 
Lei't'tma 1.4 isniodified if one there replaces the condition (**) by the'condition (*). 

Corollary 1.1: Let B be a reflexive. Banach space and let K: F x  - R be a 
closed proper 'saddle function satisfying the condition (*). Then the identity (1.24) 

.holds trite.  
Now we éhow that the assertions of Th. 1.7 and Cor. 1.1 can be strenghtened if 

we additionally suppose the saddle function K to satisfy the condition (**). For a 
reflexive Banach space F, we obtain a generalization of Lemma 1.4. .	 ., 

Theorem 1.8: Let K: E x  - R be a proper saddle function such that 'TK is 
maximal monotone. If K satisfies the condition (**) then we have	- 

don't 1 K	d0111 2 K = dom 1 K n don't 2 K =	D('J'K ).	 (1.25) - 

Corollary 1.2: Let F be a reflexive Banach space and letK be a closed proper 
saddle function satisfying the condition (**). 'J'/een the identity (1.25) holds true. 

1.6 On the construction of skew-symmetric saddle functions. Proofs 

Now we-furnish the proofs for the results of the preceding section. 
Proof of Lent nia 1.6: (i) = (ii): For an arbitrary pair [x, f] E TK one has c1 1 K(x, x) 

= K(x, v) and K(x, x) + f(w - x) ;5 K(x, w) for any( wE B (compare Prop. 1.2>. 
Due to our assumption c1 1 'K(x, x)	0 we jet f(w - x)	K(x, w), w € F, as desired.
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(ii) = (i): We supposed '1K to be maximal monotone. Let us show that the, 
assumption 

cl K(v0, v0) < 0,	-	 (1.26) 

for Some v0 E E, leads to a contradiction. By the definition of the concave closure 
(conipare (1.3)), (1.26) implies the existence of a g 0 ('E* and an e> 0 with 

g0(w— v0) - K(w,v0) r >0 for any wE B.	 (1.27) 
- '	According to our assumption (ii), (L27) yields (I + go, iv - v0) 	for each pair - 

[w, /] € TK. Since 'K was maximal monotone, we get —g 0 E' 'J'KVO. Hence, e	0,

which contradicts the choice of E I 

Proof of Lemma 1.8: (I): The closing of the inequality . (I.20) with respect to 
the 'convex argument yields	 - 

c1 2 K(x, y) ;S 01 2 L(x, y)	—c1 1 cl2 K(y, x),	x, y E B.	 (1.28)


A. similar procedure fothe concave argument shows 

c1 1 c1 2 K(x;y) ;S c1 1 L(x, y) :!E^ —cl 2 K(y, x),	x, y € B.	 (1.29) 

These inequalities immediately imply the first assertion 
(ii): We have to show that the inequality 

AW .- x) 5 K(x, w) for all w E . B	 '	(1.30)


implies [x, /] € T,. From (1.30) follows 

/(w —.x) :!i^ c1 2 K(x, w),	w € B,	-'	 (1.31)


which together with the inequalities (1.28) and (1.29) leads to 

- x) < 01 2 L(x, v),	v € B,	 .	 (1.32)

and

/(w - x)	—c1 1 L(w, x),	w € B.	 (1.33) 

'In particular, we get x € dom 1 L n dom2 L. Moreover, the adding of (1.32) and 
(1.33) yields	

. 
•	

. 

(v ± w 
-) 

< cl 2 L(x, v) - cl 1 L(w, x)	
€ E - 

Recalling Prop. 1.1 we get [x, I] € TL as desired. 
(iii) :This statement follows from (ii) by an application of Lemma 1.6 I 

Proof of Lemma.'I.7: St in Leiinia 1.8 L =. K U 

	

Proof of Proposition 1.3: The implications (i)	(iv)	(iii) and (i)	(v). are 
obvious, while (ii)	(i) follows from Lemma 1.7. (iii)	(ii): We consider an ele-
ment. / E 2 K(x, x). The assumption (1.18) implies c1 1 J(x, x)	0. Since in (iii) WO" 
supposed c1 1 K(x, x) = K(x, x), we obtain /(v - z)	.K(x, x) + /(v - x)	K(x, v) 
for any v E B, i.e. (ii). (v)	(ii): For this purpose we assume [-/, /] € K(x, y).

We find

K(x, y) - /(v - x)	c1 1 K(v, y),	'V € B,	 -	(1.34) 
and  

K(x., y) + /(w - y)	cl 2 :K(x, w),	w € B.	 (1.35)
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Setting v =y in (1.34) and w= x in (1.35) we obtain_ 

c1 1 K(zJ, y) ;5 K(x, y) + /(x - y)	c1 2 K(x, x).	 (1.36) 

On account of our assumption (1.18) we have c1 1 K(y, y) ^ 0 and c1 2 K(x, x)	0. 
Thus (1.36) implies K(x, y) =	- x). Inserting this identity into (1.35) we get


- x) ;E^ K(x, w) for w € E, i.e. (ii) I 

	

Proof of Proposition 1.5: In order to prove the inclusion 9'K 9 TL, we con-	- 
sider an arbitrary element [x, I] E TK. In view of the definition of the saddle func-

'tior LK we obtain /(v -- x)	LK (x, v) for all v € E (compare Prop. 1.1). The closing

of this inequality with respect to the convex , argument yields 

	

T x) ;5 c12 LAX, v)- for v € li and [x, /] € Tx. ,	 (1.37) 

The inclusion TK TL now results from Lemma 1.8 if we there replace the saddle 
function K by LK. Let us suppose now that TK is maxizal monotone. Then, from 
(1.37) and Lemma 1.8 (i) we can conclude 

/	ø+D(TK)doInlLK dom1Lndom2L, 

for each saddle function L with 

C1 2 LK (x, y)	L(x, y)	—c1 2 LAY, x),	x, y E E.	 (1.38) 

In particular, all these saddle functions are proper. Hence, as a consequence of 
Th. 1.2, TL is a monotone operator. Since TK was maximal monotone the inclusion 
'K implies TL = T. The inequality (1.37) can now be read as /(v - x) 
<_ cl 2'L(x, v); v € E and [x,/] € T(CI.L K) = TK . We can now apply Lemma 1.6 to 
the saddle function c1 2 LK and obtain  

c1 1 c1 2 LAX, x)	0 fof all x € E.	 (1.39)


The inequality (1.38) implies 

c1 1 c1 2 LK(X, y) 5 el l L(x, y) and c1 2 .L(x, y)	—c1 1 e1 2 LK(Y, x) .	(1.40) 

for all x, y € E. From (1.39) an1 (1.40) we can easily deduce the desired inequality 
cl 2 L(x, x) 5 0	el l L(x, x) for all x € B I 

Now we are in the position to give the 

Proof of Thcoretii 1.3: For an improper saddle function K the condition (*) is 
trivially satisfied, so that we can assume K to be proper. We introduce a saddle 
function L: B x B -* It, 

L(x, y) := i f {cl i K(x, Yi) - cl 2 K(y21	
: [y i, Y2] € doni K, 

It can easily be checked that L fulfils the conditions 

el l L = L and LK(X, y) ^5 L(x, y)	-L(y, x) fpr x, y € B, 

with LK as in Def. 1.4. According to Prop. 1.5, uK has to satisfy the condition (**), 
so that we obtain L(x, x)	0 for x € B. By the definition of L, this just means - 
that K satisfies the condition (*) I
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Proof of Theorem 1.6: We define a saddle function t: E x  - Ft by 

c1 2 K(x, y) L c1 3 K(, x)	
for x E doni 1 K n dom2 K, 

2	 . y Edom K r dom2 K 
L(x, y) := 

+00	 for X E doin1 K n dom2 K, 

-	y q dom 1 K n doni2 K 
—00	 for x q dom 1 K n doni2 K. 

One easily verifies the relations	 - 

£ = ci,t, dom 1 L = dom 1 K n dom2 K 0,	 (1.41) 
doni2 L dorn 1 K n dom 2 K 

and the inequalities 

L(x,y) ;5.L(x,y)	—L(y,x)—LK(y,x), 

with LK as in Def. 1.4. Hence, we can apply Prop. 1.4 to the saddle function .t 
and obtain a closed skew-symmetric saddle function L: E x E -± It with 

LK (x,y);5jL(x,y)L(x,y);5 —L(y,x)'^ —L(y,x),	x,yE K. 
We show that L fulfils all requirements of Th. 1.6. First, according to Lemma 1.8 
(i), we get doni 1 L 9 Dom L dow 2 L, which together with (1.41) yields 0 dom 1 K 
n don12 K Dom L dpni 1 K n d0m2 K. On' account of Prop. 1.5, "L is a mono-
tone extension of "KS For a reflexive Banach space K, the maximal monotonicity 
of TK follows from Th. 1.41 

Proof of Theorem 1.8: It suffices to verify'the inclusion 

dow2 K	öD(T).	 (1.42) 

Indeed, for reasons of symmetry, together with (1.42) we obtain dow 1 K	D(TK) 
and hence,	 - 

co D(TK) doni K n dow2 K dom i K c D(TK ),	i = 1,2	(1.43) 

(compare Prop. 1.2). This relation immediatly implies the desired identity (1.25). 
To prove (1.42) let an arbitrary element x0 € dow2 K be given. By the definition 

• ofdom2 Kwe find. anh€ E* and acE Rwith 

el l K(v, x0).5 h( - x0) + c for all v € K.	 (1.44) 
• Suppose now x 0 q eo D(T). Then, by the separation theorem for convex sets, there 

exist aqE E* and ant> Owith 

0	(v - x0) - e for v E D(TK ).	 (1.45) 
Now we set / = —h - 2g, where A > 0 is 'a real number with c Ac. Then, from 
(1.44).and (1.45) we can conclude	 - 

c1 1 K(v, x0) /(x0 - v) for all v € D(TK). (1.46) 

Now let an arbitrary element [z, j] E T1 be 'iven. Since K was supposed to satisfy 
the condition (**), by Lemma 1.6 we get 

j(w - z)	c1 2 K(z, w) for all w € B.	 (1.47)
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Setting v = z in (1.46(and w = x0 in (1.47) yields (/ - j, x0 - z) 0 for 'each pair 
[z, j] E TK. Since TK was supposed- to be maximal monotone, we can conclude 
[x0, I] € JK which is a contradiction to the assumption x 0 J Fo_ D(TK ) U 

Proof of Corollary 1.2: Under our assumptions the operator TK is maximal 
monotone (compare Th. 1.4). Hence, the assertion follows from-Th. 1.8 I 

Pioof1 of Theorem 1.7: Let us consider the saddle functiOn L: E X  
L := c12 Ii, where L is defined by 

L(x, i) := inf	Iqx, y) - cl2 K(y2 , X)	h ± Y2
 [YII 121 E dom K} 

for each y € E and x € donh K ri doni2 K. For x q doni 1 . K r dow2 K we set 
L(x, y)	—oo. One easily verifies' the inclusions	 . 

doni 1 K + dorn 2 K -	doni1 L dom 1 A . r dom2 K, doiii2 L dow2 t = 
I.

(1.48) 
Obviously L satisfies the inequality 

C1 2 LAX, y) ^ L(x, y) :!E^- —LAY, x) for x, y € E, 

where LK is taken from Del. 1.4. Since TK was supposed to be maximal monotone, 
we can conclude from Prop. 1.5 that also TL = TK is maximal monotone and that 
L satisfies the condition (**). Moreover, we have L = c1 2 £ = c12 c1 1 L, i.e. L is a 
closed saddle function. We can now apply Th. 1.8 to L and obtain dotii 1 L = dow2 L


	

•	coD('I'1) = 6D(TK ). B y (1.48)thisleádsto 

doni 1 A + dow2 K	
D(TK) dom K n dow2 K: 

2 

Since the inclusion dow 1 K n dow 2 K	1/2 (dow 1 K+ dom2 ) is trivially sais-




fied,we get the desired identity (1.24) I 
Proof of Corollary 1.1: Under our assumptions the operator TK is maximal 

monotone (compare Th. 1.4), so that we can apply Th. 1.7 I 
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